

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

Mar6n	Schulz:	LLNL	
Mahesh	Rajan:	SNL	

Donald	Maghrak:	Krell	Ins6tute	
Jim	Galarowicz:	Krell	Ins6tute	

Greg	Scantlen:	Crea6veC	
	

LLNL-PRES-503451	

11/16/2015	
	

Why	This	Tutorial?	
v Performance	Analysis	is	becoming	more	important	

Ø  Complex	architectures	and	complex	applicaFons	
Ø Mapping	applicaFons	onto	architectures	is	hard	
Ø  Today’s	applicaFons	only	use	a	fracFon	of	the	machine	

v Performance	analysis	is	more	than	just	measuring	>me	
Ø What	are	the	criFcal	secFons	in	a	code?	
Ø  Is	a	part	of	the	code	running	efficiently	or	not?	
Ø  Is	the	code	using	the	resources	well	(memory,	TLB,	I/O,	…)?	
Ø Where	is	the	greatest	payoff	for	opFmizaFon?	

v O@en	hard	to	know	where	to	start	
Ø Which	experiments	to	run	first?	
Ø  How	to	plan	follow-on	experiments?	
Ø What	kind	of	problems	can	be	explored?	
Ø  How	to	interpret	the	data?	

2	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Tutorial	Goals	
v Basic	introduc>on	into	performance	analysis	

Ø  Typical	pi]alls	wrt.	performance	
Ø Wide	range	of	types	of	performance	tools	and	techniques	

v Provide	basic	guidance	on	…	
Ø  How	to	understand	the	performance	of	a	code?	
Ø  How	to	answer	basic	performance	quesFons?	
Ø  How	to	plan	performance	experiments?	

v Provide	you	with	the	ability	to	…	
Ø  Run	these	experiments	on	your	own	code	
Ø  Provide	starFng	point	for	performance	opFmizaFons	

v Prac>cal	Experience:	Demos	and	hands-on	Experience	
Ø  IntroducFon	into	Open|SpeedShop	as	one	possible	tool	soluFon	
Ø  Basic	usage	instrucFons	and	pointers	to	documentaFon	
Ø  Lessons	and	strategies	apply	to	any	tool	

3	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Open|SpeedShop	Tool	Set	
v Open	Source	Performance	Analysis	Tool	Framework	

Ø Most	common	performance	analysis	steps	all	in	one	tool	
Ø  Combines	tracing	and	sampling	techniques	
Ø  Extensible	by	plugins	for	data	collecFon	and	representaFon	
Ø  Gathers	and	displays	several	types	of	performance	informaFon	

v  Flexible	and	Easy	to	use	
Ø  User	access	through:	
GUI,	Command	Line,	Python	Scrip6ng,	convenience	scripts	

v Scalable	Data	Collec>on	
Ø  InstrumentaFon	of	unmodified	applica6on	binaries	
Ø  New	opFon	for	hierarchical	online	data	aggrega6on	

v Supports	a	wide	range	of	systems	
Ø  Extensively	used	and	tested	on	a	variety	of	Linux	clusters	
Ø  Cray	and	Blue	Gene	support	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 4	

11/16/2015	
	

“Plan”/“Rules”	
v Staggered	approach/agenda	

Ø  First	two	sessions:	performance	analysis	basics	
Ø  Third	session:	more	specialized	topics	(I/O,	memory,	GPU)	
Ø  Forth	session:	dedicated	Fme	for	hands-on	exercises	

v  Let’s	keep	this	interac>ve	
Ø  Feel	free	to	ask	quesFons	as	we	go	along	
Ø  Ask	if	you	would	like	to	see	anything	specific	in	the	demos	

v We	are	interested	in	feedback!	
Ø What	was	clear	/	what	didn’t	make	sense?	
Ø What	scenarios	are	missing?	

v Updated	slides	available	before	SC	
Ø  hgp://www.openspeedshop.org/wp/category/tutorials	
Ø  Then	choose	SC2015	Monday	Nov	16	tutorial	

5	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

v  Mar>n	Schulz:	LLNL	
v  Mahesh	Rajan:	SNL	
v  Jim	Galarowicz:	Krell	
v  Donald	Maghrak,	Krell	
v  Greg	Scantlen,	Crea>veC	

v  Larger	team	
Ø William	Hachfeld	and	Dave	Whitney:	Krell	
Ø  Jennifer	Green,	David	Montoya,	Mike	Mason,		
David	Shrader:	LANL	

Ø  Anthony	Angelastos,	SNL	
Ø Mag	Legendre	and	Chris	Chambreau:	LLNL	
Ø  Dyninst	group	(Bart	Miller:	UW	&	Jeff	Hollingsworth:	UMD)	
Ø  Phil	Roth:	ORNL	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 6	

Presenters	

11/16/2015	
	

Outline	
v Welcome	
v  Concepts	in	performance	analysis	
v  Introduc>on	into	Tools	and	Open|SpeedShop		
v  How	to	run	basic	>ming	experiments	and	what	they	can	do?	
v  How	to	deal	with	parallelism	(MPI	and	threads)?	
v  How	to	properly	use	hardware	counters?	
v  <LUNCH>	
v  Slightly	more	advanced	targets	for	analysis	

Ø  How	to	understand	and	opFmize	I/O	acFvity?	
Ø  How	to	evaluate	memory	efficiency?	
Ø  How	to	analyze	codes	running	on	GPUs?		

v  DIY	and	Conclusions:	DIY	and	Future	trends	
v  Hands-on	Exercises	

Ø  On	site	cluster	available	
Ø  We	will	provide	exercises	and	test	codes	

7	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	1	
Concepts	in	Performance	Analysis	

8	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Typical	Development	Cycle	
v Performance	tuning	is	an	essen>al	
part	of	the	development	cycle	
Ø  PotenFal	impact	at	every	stage	

•  Message	pagerns	
•  Data	structure	layout	
•  Algorithms	

Ø  Should	be	done	from	early	on	in	the	life	
of	a	new	HPC	code	

Ø  Ideally	conFnuously	and	automaFcally	

v Typical	use	
Ø Measure	performance	and	store	data	
Ø  Analyze	data	
Ø Modify	code	and/or	algorithm	
Ø  Repeat	measurements	
Ø  Analyze	differences	
	

Coding	

Debugging	

Tuning	

Algorithm

Code/Binary

Correct Code

Efficient (?) Code

9	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

A	Case	for	Performance	Tools	
v  First	line	of	defense	

Ø  Full	execuFon	Fmings	(UNIX:	“Fme”	command)	
Ø  Comparisons	between	input	parameters	
Ø  Keep	and	track	historical	trends	

v Disadvantages	
Ø Measurements	are	coarse	grain	
Ø  Can’t	pin	performance	boglenecks	

v Alterna>ve:	code	integra>on	of	performance	probes	
Ø  Hard	to	maintain	
Ø  Requirements	significant	a	priori	knowledge	

v Performance	tools	
Ø  Enable	fine	grain	instrumentaFon	
Ø  Show	relaFon	to	source	code	
Ø Work	universally	across	applicaFons	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 10	

11/16/2015	
	

Performance	Tools	Overview	
v  Basic	OS	tools	

Ø  Fme,	gprof,	strace	

v  Hardware	counters	
Ø  PAPI	API	&	tool	set	
Ø  hwcFme	(AIX)	

v  Sampling	tools	
Ø  Typically	unmodified	binaries	
Ø  Callstack	analysis	
Ø  HPCToolkit	(Rice	U.)	

v  Profiling/direct	measurements	
Ø  MPI	or	OpenMP	profiles	
Ø  mpiP	(LLNL&ORNL)	
Ø  ompP	(LMU	Munich)	

v  Tracing	tool	kits	
Ø  Capture	all	MPI	events	
Ø  Present	as	Fmeline	
Ø  Vampir	(TU-Dresden)	
Ø  Jumpshot	(ANL)	

v  Trace	Analysis	
Ø  Profile	and	trace	capture	
Ø  AutomaFc	(parallel)	trace	analysis	
Ø  Kojak/Scalasca	(JSC)	
Ø  Paraver	(BSC)	

v  Integrated	tool	kits	
Ø  Typically	profiling	and	tracing	
Ø  Combined	workflow	
Ø  Typically	GUI/some	vis.	support	
Ø  Binary:	Open|SpeedShop	(Krell/TriLab)	
Ø  Source:	TAU	(U.	of	Oregon)	

v  Specialized	tools/techniques	
Ø  Libra	(LLNL)	

Load	balance	analysis	
Ø  Boxfish	(LLNL/Utah/Davis)	

3D	visualizaFon	of	torus	networks	
Ø  Rubik	(LLNL)	

Node	mapping	on	torus	architectures	

v  Vendor	Tools	

11/16/2015	
	

How	to	Select	a	Tool?	
v  A	tool	with	the	right	features	

Ø  Must	be	easy	to	use	
Ø  Provides	performance	analysis	of	the	code	at	different	levels:	libraries,	

funcFons,	loops,	statements		

v  A	tool	must	match	the	applica>on’s	workflow	
Ø  Requirements	from	instrumentaFon	technique	

•  Access	to	and	knowledge	about	source	code?	RecompilaFon	Fme?	
•  Machine	environments?	Supported	pla]orms?	

Ø  InteracFve	and	batch	mode	analysis	opFons	
Ø  Support	iteraFve	tuning	with	ability	to	compare	key	metrics	across	runs		

v  Why	We	Picked/Developed	Open|SpeedShop?	
Ø  Sampling	and	tracing	in	a	single	framework	
Ø  Easy	to	use	GUI	&	command	line	opFons	for	remote	execuFon	

•  Low	learning	curve	for	end	users	
Ø  Transparent	instrumentaFon	(preloading	&	binary)	

•  No	need	to	recompile	applicaFon	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 12	

11/16/2015	
	

Next	Step:	Interpret	Data	
v Tools	can	collect	lot’s	of	data	

Ø  At	varying	granularity	
Ø  At	varying	cost	
Ø  At	varying	accuracy	

v  Issue	1:	Understand	your	
tool	and	its	limita>ons	
Ø  No	tool	can	do	everything	
(at	least	not	well)	

Ø  Choose	the	right	tool	for	
the	right	task	

v  Issue	2:	Ask	the	right	ques>on	
Ø  Need	to	know	basic	issues	to	
look	for	to	get	started	

Ø  Need	to	understand	expected	behavior	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 13	

11/16/2015	
	

Issue	1:	Tool	Types	
v Data	acquisi>on	

Ø  Event	based	data:	triggered	by	explicit	events	
•  Direct	correlaFon	possible,	but	may	come	in	bursts	

Ø  Sampling	based	data:	triggered	by	external	events	like	Fmers	
•  Even	distribuFon,	but	requires	staFsFcal	analysis	

v  Instrumenta>on	
Ø  Source	code	instrumentaFon:	exact,	but	invasive	
Ø  Compiler	instrumentaFon:	requires	source,	but	transparent	
Ø  Binary	instrumentaFon:	can	be	transparent,	but	sFll	costly	
Ø  Link-level:	transparent,	less	costly,	but	limited	to	APIs	
Ø  Tradeoff:	invasiveness	vs.	overhead	vs.	ability	to	correlate	
Ø  Big	quesFon:	granularity	

v Aggrega>on	
Ø  No	aggregaFon:	trace	
Ø  AggregaFon	over	Fme	and	space:	simplified	profile	
Ø Many	shades	of	gray	in	between	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 14	

11/16/2015	
	

Issue	2:	Asking	the	Right	QuesFons	
v Step	1:	Find	where	the	problem	actually	is	

Ø Where	is	the	code	spending	Fme?	
•  Which	code	secFons	are	even	worth	look	at?	

Ø Where	should	it	spend	Fme?	
•  Have	a	(mental)	model	of	your	applicaFon	

v Use	overview	experiments	
Ø  IdenFfy	boglenecks	for	your	applicaFon	

•  Which	resource	in	the	system	is	holding	you	back?	
Ø  Decide	where	to	dig	deeper	

•  Important	resource	AND	worth	opFmizing	AND	unexpected	behavior	

v Pick	the	right	tool	or	experiment	in	a	tool	
Ø  Target	the	specific	bogleneck	
Ø  Decide	on	instrumentaFon	approach	
Ø  Decide	on	useful	aggregaFon	
Ø  Understand	impact	on	code	perturbaFon	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 15	

11/16/2015	
	

v Step	1:	Iden>fy	computa>onal	intensive	parts	
Ø Where	am	I	spending	my	Fme?	

•  Modules/Libraries	
•  Loops	
•  Statements	
•  FuncFons	

Ø  Is	the	Fme	spent	in	the	computaFonal	kernels?	
Ø  Does	this	match	my	intuiFon?	

v  Impact	of	memory		hierarchy	
Ø  Do	I	have	excessive	cache	misses?	
Ø  How	is	my	data	locality?	
Ø  Impact	of	TLB	misses?	

v External	resources	
Ø  Is	my	I/O	efficient?	
Ø  Time	spent	in	system	libraries?	

16	

What	to	Look	For:	SequenFal	Runs	

CPU

L1 Cache

L2 Cache

Main Memory

Shared L3 Cache

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

What	to	Look	For:	Shared	Memory	
v Shared	memory	model	

Ø  Single	shared	storage	
Ø  Accessible	from	any	CPU	

v Common	programming	models	
Ø  Explicit	threads	(e.g.,	POSIX	threads)	
Ø  OpenMP	

v Typical	performance	issues	
Ø  False	cache	sharing	
Ø  Excessive	SynchronizaFon	
Ø  Limited	work	per	thread	
Ø  Threading	overhead	

v Complica>ons:	NUMA	
Ø Memory	locality	criFcal	
Ø  Thread:Memory	assignments	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 17	

CPU

L1

L2 Cache

Main Memory

CPU

L1

CPU CPU

CPU CPU

Mem.

Mem.

Mem.

Mem.

11/16/2015	
	

v Distributed	Memory	Model	
Ø  SequenFal/shared	memory	nodes	coupled	by	a	network	
Ø  Only	local	memory	access	
Ø  Data	exchange	using	message	passing	(e.g.,	MPI)	

v Typical	performance	issues	
Ø  Load	imbalance;	Processes	waiFng	for	data	
Ø  Large	fracFon	of	Fme	on	collecFve	operaFons	
Ø  Network	and	I/O	contenFon	
Ø  Non-opFmal	process	placement	&	binding	

18	

What	to	Look	For:	Message	Passing	

Memory

Node

Memory

Node

Memory

Application

MPI Library

NIC

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

What’s	Next	
v Overview	of	Open|SpeedShop	

Ø  Help	to	understand	demos	and	hands-on	exercises	

v Basic	ques>ons	
Ø Where	am	I	spending	my	Fme?	
Ø  How	to	understand	the	context	of	this	informaFon?	

v Hardware/Resource	u>liza>on	
Ø  How	to	use	hardware	counters	efficiently?	
Ø  How	to	turn	this	informaFon	into	acFonable	insight?	

v Next	step	beyond	the	computa>onal	core	
Ø  How	well	is	my	I/O	doing?	
Ø  How	well	am	I	uFlizing	memory?	
Ø  How	can	I	understand	the	performance	on	accelerators?	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 19	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	2	
IntroducFon	into	Tools	and	Open|SpeedShop	

11/16/2015	
	

Open|SpeedShop	Tool	Set	
v Open	Source	Performance	Analysis	Tool	Framework	

Ø Most	common	performance	analysis	steps	all	in	one	tool	
Ø  Combines	tracing	and	sampling	techniques	
Ø  Extensible	by	plugins	for	data	collecFon	and	representaFon	
Ø  Gathers	and	displays	several	types	of	performance	informaFon	

v  Flexible	and	Easy	to	use	
Ø  User	access	through:	
GUI,	Command	Line,	Python	Scrip6ng,	convenience	scripts	

v Scalable	Data	Collec>on	
Ø  InstrumentaFon	of	unmodified	applica6on	binaries	
Ø  New	opFon	for	hierarchical	online	data	aggrega6on	

v Supports	a	wide	range	of	systems	
Ø  Extensively	used	and	tested	on	a	variety	of	Linux	clusters	
Ø  Cray,	Blue	Gene,	ARM,	Intel	MIC,	GPU	support	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 21	

11/16/2015	
	

Classifying	Open|SpeedShop	
v Offers	both	sampling	and	direct	instrumenta>on	

Ø  Sampling:	for	overview	and	hardware	counter	experiments	
Ø  InstrumentaFon	for	communicaFon/memory	events	

•  InstrumentaFon	at	API	level:	MPI,	pthreads,	OpenMP,	…	
•  Some	support	for	user	instrumentaFon	

v  Instrumenta>on	
Ø  At	the	link	level	

•  Well	suited	for	API	level	instrumentaFon	
•  Can	sFll	cause	bursty	overhead	

Ø  Loop	analysis	based	on	binary	instrumentaFon	techniques	
•  Executed	post	mortem	for	sampling	experiments	
•  Overhead	outside	the	criFcal	both	to	avoid	perturbaFon	

v Aggrega>on	
Ø  By	default:	profile	over	Fme	intervals	

•  Full	traces	possible	for	some	experiments	(e.g.,	MPI)	but	costly	
Ø  AggregaFon	over	processes	possible,	but	not	default	

•  Enables	user	to	query	per	process/thread	data	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 22	

11/16/2015	
	

srun	–n4	–N1	smg2000	–n	65	65	65		osspcsamp	“srun	–n4	–N1	smg2000	–n	65	65	65”		 MPI	ApplicaFon	

Post-mortem	O|SS	

hgp://www.openspeedshop.org/	

Open|SpeedShop	Workflow	

11/16/2015	
	

AlternaFve	Interfaces	
v Scrip>ng	language	

Ø  Immediate	command	interface	
Ø  O|SS	interacFve	command	line	(CLI)	

•  openss	-cli		
	
	

v Python	module	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 24	

Experiment Commands
 expView
 expCompare
 expStatus

List Commands
 list –v exp
 list –v hosts
 list –v src

Session Commands
 setBreak
 openGui

import openss

my_filename=openss.FileList("myprog.a.out")
my_exptype=openss.ExpTypeList("pcsamp")
my_id=openss.expCreate(my_filename,my_exptype)

openss.expGo()

My_metric_list = openss.MetricList("exclusive")
my_viewtype = openss.ViewTypeList("pcsamp”)
result = openss.expView(my_id,my_viewtype,my_metric_list)

11/16/2015	
	

Central	Concept:	Experiments	
v Users pick experiments:

Ø  What to measure and from which sources?
Ø  How to select, view, and analyze the resulting data?

v Two main classes:
Ø  Statistical Sampling

•  Periodically interrupt execution and record location
•  Useful to get an overview
•  Low and uniform overhead

Ø  Event Tracing
•  Gather and store individual application events
•  Provides detailed per event information
•  Can lead to huge data volumes

v O|SS can be extended with additional experiments

11/16/2015	
	

Sampling	Experiments	in	O|SS	
v  PC	Sampling	(pcsamp)	

Ø  Record	PC	repeatedly	at	user	defined	Fme	interval	
Ø  Low	overhead	overview	of	Fme	distribuFon	
Ø  Good	first	step,	lightweight	overview	

v  Call	Path	Profiling	(user>me)	
Ø  PC	Sampling	and	Call	stacks	for	each	sample	
Ø  Provides	inclusive	and	exclusive	Fming	data	
Ø  Use	to	find	hot	call	paths,	caller	and	callee	relaFonships	

v  Hardware	Counters	(hwc,	hwc>me,	hwcsamp)	
Ø  Provides	profile	of	hardware	counter	events	like	cache	&	TLB	misses	
Ø  hwcsamp:	

•  Periodically	sample	to	capture	profile	of	the	code	against	the	chosen	counter	
•  Default	events	are	PAPI_TOT_INS	and	PAPI_TOT_CYC	

Ø  hwc,	hwcFme:	
•  Sample	a	hardware	counter	Fll	a	certain	number	of	events	(called	threshold)	
is	recorded	and	get	Call	Stack	

•  Default	event	is	PAPI_TOT_CYC	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 26	

11/16/2015	
	

Tracing	Experiments	in	O|SS	
v  Input/Output	Tracing	(io,	iot)	

Ø  Record	invocaFon	of	all	POSIX	I/O	events	
Ø  Provides	aggregate	and	individual	Fmings	
Ø  Store	funcFon	arguments	and	return	code	for	each	call	(iot)	

v MPI	Tracing	(mpi,	mpit,	mpioh)	
Ø  Record	invocaFon	of	all	MPI	rouFnes	
Ø  Provides	aggregate	and	individual	Fmings	
Ø  Store	funcFon	arguments	and	return	code	for	each	call	(mpit)	
Ø  Create	Open	Trace	Format	(OTF)	output	(mpio])	

v  Floa>ng	Point	Excep>on	Tracing	(fpe)	
Ø  Triggered	by	any	FPE	caused	by	the	applicaFon	
Ø  Helps	pinpoint	numerical	problem	areas	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 27	

11/16/2015	
	

AddiFonal	Experiments	in	OSS/CBTF	
v  POSIX	thread	tracing	(pthreads)	

Ø  Record	invocaFon	of	all	POSIX	thread	events	
Ø  Provides	aggregate	and	individual	rank,	thread,	or	process	Fmings	

v MPI	Tracing	(mpip)	
Ø  Record	invocaFon	of	all	MPI	rouFnes	
Ø  Provides	aggregate	and	individual	rank,	thread,	or	process	Fmings	
Ø  Lightweight	MPI	profiling	because	not	tracking	individual	call	details	

v Memory	Tracing	(mem)	
Ø  Record	invocaFon	of	key	memory	related	funcFon	call	events	
Ø  Provides	aggregate	and	individual	rank,	thread,	or	process	Fmings	

v  Input/Output	Tracing	(iop)	
Ø  Record	invocaFon	of	all	POSIX	I/O	events	
Ø  Provides	aggregate	and	individual	rank,	thread,	or	process	Fmings	
Ø  Lightweight	I/O	profiling	(iop)	

v  CUDA	NVIDIA	GPU	Event	Tracing	(cuda)	
Ø  Record	CUDA	events,	provides	Fmeline	and	event	Fmings	

28	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Performance	Analysis	in	Parallel	
v How	to	deal	with	concurrency?	

Ø  Any	experiment	can	be	applied	to	parallel	applicaFon	
•  Important	step:	aggregaFon	or	selecFon	of	data	

Ø  Special	experiments	targeFng	parallelism/synchronizaFon	

v O|SS	supports	MPI	and	threaded	codes	
Ø  AutomaFcally	applied	to	all	tasks/threads	
Ø  Default	views	aggregate	across	all	tasks/threads	
Ø  Data	from	individual	tasks/threads	available	
Ø  Thread	support	(incl.	OpenMP)	based	on	POSIX	threads	

v Specific	parallel	experiments	(e.g.,	MPI)	
Ø Wraps	MPI	calls	and	reports		

•  MPI	rouFne	Fme	
•  MPI	rouFne	parameter	informaFon		

Ø  The	mpit	experiment	also	store	funcFon	arguments	and	return	
code	for	each	call	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 29	

11/16/2015	
	

How	to	Run	a	First	Experiment	in	O|SS?	
1.   Picking	the	experiment	

Ø  What	do	I	want	to	measure?	
Ø  We	will	start	with	pcsamp	to	get	a	first	overview	

2.   Launching	the	applica>on	
Ø  How	do	I	control	my	applicaFon	under	O|SS?	
Ø  Enclose	how	you	normally	run	your	applica>on	in	quotes	
Ø  osspcsamp	“mpirun	–np	256	smg2000	–n	65	65	65”	

3.   Storing	the	results	
Ø  O|SS	will	create	a	database	
Ø  Name:	smg2000-pcsamp.openss	

4.   Exploring	the	gathered	data	
Ø  How	do	I	interpret	the	data?	
Ø  O|SS	will	print	a	default	report	
Ø  Open	the	GUI	to	analyze	data	in	detail	(run:	“openss”)	

	 How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 30	

11/16/2015	
	

Example	Run	with	Output	
v osspcsamp	“mpirun	–np	2	smg2000	–n	65	65	65”	(1/2)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 31	

Bash>	osspcsamp	"mpirun	-np	2	./smg2000	-n	65	65	65"	
[openss]:	pcsamp	experiment	using	the	pcsamp	experiment	default	sampling	rate:	"100".	
[openss]:	Using	OPENSS_PREFIX	installed	in	/opt/OSS-mrnet	
[openss]:	Se|ng	up	offline	raw	data	directory	in	/tmp/jeg/offline-oss	
[openss]:	Running	offline	pcsamp	experiment	using	the	command:	
"mpirun	-np	2	/opt/OSS-mrnet/bin/ossrun	"./smg2000	-n	65	65	65"	pcsamp"	
	
Running	with	these	driver	parameters:	
	(nx,	ny,	nz)				=	(65,	65,	65)	
	…	

	<SMG	naFve	output>	
…	
Final	RelaFve	Residual	Norm	=	1.774415e-07	
[openss]:	ConverFng	raw	data	from	/tmp/jeg/offline-oss	into	temp	file	X.0.openss	
	
Processing	raw	data	for	smg2000	
Processing	processes	and	threads	...	
Processing	performance	data	...	
Processing	funcFons	and	statements	...	
	

11/16/2015	
	

Example	Run	with	Output	
v osspcsamp	“mpirun	–np	2	smg2000	–n	65	65	65”	(2/2)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 32	

[openss]:	Restoring	and	displaying	default	view	for:	
	/home/jeg/DEMOS/demos/mpi/openmpi-1.4.2/smg2000/test/smg2000-pcsamp.openss	

[openss]:	The	restored	experiment	idenFfier	is:		-x	1	
	
	Exclusive	CPU	Fme									%	of	CPU	Time		FuncFon	(defining	locaFon)	
								in	seconds.	
								3.630000000										43.060498221		hypre_SMGResidual	(smg2000:	smg_residual.c,152)	
								2.860000000										33.926453144		hypre_CyclicReducFon	(smg2000:	cyclic_reducFon.c,757)	
								0.280000000											3.321470937		hypre_SemiRestrict	(smg2000:	semi_restrict.c,125)	
								0.210000000											2.491103203		hypre_SemiInterp	(smg2000:	semi_interp.c,126)	
								0.150000000											1.779359431		opal_progress	(libopen-pal.so.0.0.0)	
								0.100000000											1.186239620	mca_btl_sm_component_progress	(libmpi.so.0.0.2)	
								0.090000000											1.067615658		hypre_SMGAxpy	(smg2000:	smg_axpy.c,27)	
								0.080000000											0.948991696		ompi_generic_simple_pack	(libmpi.so.0.0.2)	
								0.070000000											0.830367734		__GI_memcpy	(libc-2.10.2.so)	
								0.070000000											0.830367734	hypre_StructVectorSetConstantValues	(smg2000:	
struct_vector.c,537)	
								0.060000000											0.711743772		hypre_SMG3BuildRAPSym	(smg2000:	smg3_setup_rap.c,233)	
		
v View	with	GUI:		openss	–f	smg2000-pcsamp.openss	

11/16/2015	
	

Default	Output	Report	View	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 33	

Toolbar to switch
Views

Graphical Representation

Performance Data
Default view: by Function

(Data is sum from all processes
and threads)

Select “Functions”, click D-icon

11/16/2015	
	

Statement	Report	Output	View	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 34	

										
Performance Data

View Choice: Statements
Select “statements, click D-icon

Statement in Program that
took the most time

11/16/2015	
	

Associate	Source	&	Performance	Data	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 35	

					
Double click to open

source window
Use window controls to
split/arrange windows

Selected performance
data point

11/16/2015	
	

Library	(LinkedObject)	View	

36	

					

Libraries in the application

Select LinkedObject
View type and Click

on D-icon

Shows time spent in
libraries. Can indicate

imbalance.

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Loop	View	

37	

					

Statement number of start
of loop.

Select Loops
View type and Click

on D-icon

Shows time spent in loops.

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Open|SpeedShop	Basics	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 38	

v  Place	the	way	you	run	your	applica>on	normally	in	quotes	
and	pass	it	as	an	argument	to	osspcsamp,	or	any	of	the	other	
experiment	convenience	scripts:	ossio,	ossmpi,	etc.	
Ø  osspcsamp	“srun	–N	8	–n	64	./mpi_applicaFon	app_args”	

v  Open|SpeedShop	sends	a	summary	profile	to	stdout	
v  Open|SpeedShop	creates	a	database	file		
v  Display	alterna>ve	views	of	the	data	with	the	GUI	via:		

Ø  openss	–f	<database	file>	
v  Display	alterna>ve	views	of	the	data	with	the	CLI	via:		

Ø  openss	–cli	–f	<database	file>	
v  On	clusters,	need	to	set	OPENSS_RAWDATA_DIR	

Ø  Should	point	to	a	directory	in	a	shared	file	system	
Ø  More	on	this	later	–	usually	done	in	a	module	or	dotkit	file.	

v  Start	with	pcsamp	for	overview	of	performance	
v  Then,	focus	on	performance	issues	with	other	experiments	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	3	
Basic	Fming	experiments	and	their	Pros/Cons	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 39	

11/16/2015	
	

IdenFfying	CriFcal	Regions	
Flat	Profile	Overview	
v Profiles	show	computa>onally	intensive	code	regions	

Ø  First	views:	Time	spent	per	funcFons	or	per	statements	

v Ques>ons:	
Ø  Are	those	funcFons/statements	expected?	
Ø  Do	they	match	the	computaFonal	kernels?	
Ø  Any	runFme	funcFons	taking	a	lot	of	Fme?	

v  Iden>fy	botleneck	components	
Ø  View	the	profile	aggregated	by	shared	objects	
Ø  Correct/expected	modules?	
Ø  Impact	of	support	and	runFme	libraries	

40	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Call stack profiling & Comparisons
v Call Stack Profiling

Ø  Take a sample: address inside a function
Ø  Call stack: series of program counter addresses (PCs)
Ø  Unwinding the stack is walking through those address and

recording that information for symbol resolution later.
Ø  Leaf function is at the end of the call stack list

v Open|SpeedShop: experiment called usertime
Ø  Time spent inside a routine vs. its children
Ø  Key view: butterfly

v Comparisons
Ø  Between experiments to study improvements/changes
Ø  Between ranks/threads to understand differences/outliers

41	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Adding	Context	through	Stack	Traces	
Func>on		

A	

42	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

Func>on		
B	

Func>on		
C	

Func>on		
D	

Func>on		
E	

v  Missing	informa>on	in	flat	
profiles	
Ø  DisFnguish	rouFnes	called	from	

mulFple	callers	
Ø  Understand	the	call	invocaFon	

history	
Ø  Context	for	performance	data	

v  Cri>cal	technique:	Stack	traces	
Ø  Gather	stack	trace	for	each	

performance	sample	
Ø  Aggregate	only	samples	with	

equal	trace	

v  User	perspec>ve:	
Ø  Bugerfly	views	

	(caller/callee	relaFonships)	
Ø  Hot	call	paths		

•  Paths	through	applicaFon	that	
take	most	Fme	

11/16/2015	
	

Inclusive	vs.	Exclusive	Timing	
Func>on		

A	

43	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

Func>on		
B	

Func>on		
C	

Func>on		
D	

Func>on		
E	

v  Stack	traces	enable	
calcula>on	of	inclusive/
exclusive	>mes	
Ø  Time	spent	inside	a	funcFon	only	

(exclusive)			
•  See:	FuncFon	B	

Ø  Time	spent	inside	a	funcFon	and	
its	children	(inclusive)			

•  See	FuncFon	C	and	children	

v  Implementa>on	similar	to	flat	
profiles	
Ø  Sample	PC	informaFon	
Ø  AddiFonally	collect	call	stack	

informaFon	at	every	sample	

v  Tradeoffs	
Ø  Pro:	Obtain	addiFonal	context	

informaFon	
Ø  Con:	Higher	overhead/lower	

sampling	rate	

Inclusive	Time	for	C	

Exclusive	Time	for	B	

11/16/2015	
	

InterpreFng	Call	Context	Data	
v  Inclusive	versus	exclusive	>mes	

Ø  If	similar:	child	execuFons	are	insignificant	
•  May	not	be	useful	to	profile	below	this	layer	

Ø  If	inclusive	Fme	significantly	greater	than	exclusive	Fme:	
•  Focus	agenFon	to	the	execuFon	Fmes	of	the	children	

v Hotpath	analysis	
Ø Which	paths	takes	the	most	Fme?	
Ø  Path	Fme	might	be	ok/expected,	but	could	point	to	a	problem	

v Buterfly	analysis	(similar	to	gprof)	
Ø  Should	be	done	on	“suspicious”	funcFons	

•  FuncFons	with	large	execuFon	Fme	
•  FuncFons	with	large	difference	between	implicit	and	explicit	Fme	
•  FuncFons	of	interest	
•  FuncFons	that	“take	unexpectedly	long”	
•  …	

Ø  Shows	split	of	Fme	in	callees	and	callers	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 44	

11/16/2015	
	

Inclusive	and	Exclusive	Time	Profiles:	UserFme	

Basic	syntax:	
ossuserFme	“how	you	run	your	executable	normally”	
	
Examples:	
ossuserFme	“smg2000	–n	50	50	50”	
ossuserFme	“smg2000	–n	50	50	50”	low	
	
v Parameters	

Sampling	frequency	(samples	per	second)	
AlternaFve	parameter:	high	(70)	|	low	(18)	|	default	(35)	
	

Recommenda6on:	compile	code	with	–g	to	get	statements!	

	
	 How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 45	

11/16/2015	
	

Reading	Inclusive/Exclusive	Timings	
v Default	View	

Ø  Similar	to	pcsamp	view	from	first	example	
Ø  Calculates	inclusive	versus	exclusive	Fmes	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 46	

Exclusive
Time

Inclusive
Time

11/16/2015	
	

Stack	Trace	Views:	Hot	Call	Path	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 47	

			

Access to call paths:
•  All call paths (C+)
•  All call paths for

selected function (Cê)

Hot Call Path

11/16/2015	
	

Stack	Trace	Views:	Bugerfly	View	
v Similar	to	well	known	“gprof”	tool	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 48	

Pivot routine
“hypre_SMGSolve”

Callers of
“hypre_SMGSolve”

Callees of
“hypre_SMGSolve”

11/16/2015	
	

Comparing	Performance	Data	
v Key	func>onality	for	any	performance	analysis	

Ø  Absolute	numbers	o�en	don’t	help	
Ø  Need	some	kind	of	baseline	/	number	to	compare	against	

v Typical	examples	
Ø  Before/a�er	opFmizaFon	
Ø  Different	configuraFons	or	inputs	
Ø  Different	ranks,	processes	or	threads	

v Very	limited	support	in	most	tools	
Ø Manual	operaFon	a�er	mulFple	runs	
Ø  Requires	lining	up	profile	data	
Ø  Even	harder	for	traces	

v Open|SpeedShop	has	support	to	line	up	profiles	
Ø  Perform	mulFple	experiments	and	create	mulFple	databases	
Ø  Script	to	load	all	experiments	and	create	mulFple	columns	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 49	

11/16/2015	
	

Comparing	Performance	Data	in	O|SS	
v Convenience	Script:	osscompare	

Ø  Compares	Open|SpeedShop	up	to	8	databases	to	each	other	
•  Syntax:	osscompare	“db1.openss,db2.openss,…”	[opFons]	
•  osscompare	man	page	has	more	details	

Ø  Produces	side-by-side	comparison	lisFng	
Ø  Data	metric	opFon	parameter:		

•  Compare	based	on:	Fme,	percent,	a	hwc	counter,	etc.	
Ø  Limit	the	number	of	lines	by	“rows=nn”	opFon	
Ø  Specify	the:	viewtype=[funcFons|statements|linkedobjects]	

•  Control	the	view	granularity.		Compare	based	on	the	funcFon,	statement,	
or	library	level.	FuncFon	level	is	the	default.		

•  By	default	the	compare	will	be	done	comparing	the	performance	of	
funcFons	in	each	of	the	databases.		

•  If	statements	opFon	is	specified	then	all	the	comparisons	will	be	made	by	
looking	at	the	performance	of	each	statement	in	all	the	databases	that	are	
specified.		

•  Similar	for	libraries,	if	linkedobject	is	selected	as	the	viewtype	parameter.	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 50	

11/16/2015	
	

Comparison	Report	in	O|SS	
osscompare	"smg2000-pcsamp.openss,smg2000-pcsamp-1.openss”	
openss]:	Legend:	-c	2	represents	smg2000-pcsamp.openss	

[openss]:	Legend:	-c	4	represents	smg2000-pcsamp-1.openss	

-c	2,	Exclusive	CPU			-c	4,	Exclusive	CPU		FuncFon	(defining	locaFon)	

			Fme	in	seconds.						Fme	in	seconds.	

								3.870000000											3.630000000		hypre_SMGResidual	(smg2000:	smg_residual.c,152)	

								2.610000000											2.860000000		hypre_CyclicReducFon	(smg2000:	cyclic_reducFon.c,757)	

								2.030000000											0.150000000		opal_progress	(libopen-pal.so.0.0.0)	

								1.330000000											0.100000000	mca_btl_sm_component_progress	(libmpi.so.0.0.2:	
topo_unity_component.c,0)	

								0.280000000											0.210000000		hypre_SemiInterp	(smg2000:	semi_interp.c,126)	

								0.280000000											0.040000000		mca_pml_ob1_progress	(libmpi.so.0.0.2:	topo_unity_component.c,
0)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 51	

11/16/2015	
	

Summary	/	Timing	analysis	
v Typical	star>ng	point:	

Ø  Flat	profile	
Ø  Aggregated	informaFon	on	where	Fme	is	spent	in	a	code	
Ø  Low	and	uniform	overhead	when	implemented	as	sampling	

v Adding	context	
Ø  From	where	was	a	rouFne	called,	which	rouFne	did	it	call	
Ø  Enables	the	calculaFon	of	exclusive	and	inclusive	Fming	
Ø  Technique:	stack	traces	combined	with	sampling	

v Key	analysis	op>ons	
Ø  Hot	call	paths	that	contains	most	execuFon	Fme	
Ø  Bugerfly	view	to	show	relaFons	to	parents/children	

v Compara>ve	analysis	
Ø  Absolute	numbers	o�en	carry	ligle	meaning	
Ø  Need	the	correct	base	line,	then	compare	against	that	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 52	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	4	
Analysis	of	parallel	codes	(MPI,	threaded)	

11/16/2015	
	

	Parallel	ApplicaFon	Performance	Challenges	

v Architectures	are	Complex	and	Evolving	Rapidly	
Ø  Changing	mulFcore	processor	designs	
Ø  Emergence	of	accelerators	(GPGPU,	MIC,	etc.)	
Ø MulF-level	memory	hierarchy	
Ø  I/O	storage	sub-systems	
Ø  Increasing	scale:	number	of	processors,	accelerators	

v Parallel	processing	adds	more	performance	factors	
Ø MPI	communicaFon	Fme	versus	computaFon	Fme	
Ø  Threading	synchronizaFon	Fme	versus	computaFon	Fme	
Ø  CPU	Fme	versus	accelerator	transfer	and	startup	Fme	tradeoffs	
Ø  I/O	device	mulF-process	contenFon	issues	
Ø  Efficient	memory	referencing	across	processes/threads	
Ø  Changes	in	applicaFon	performance	due	to	adapFng	to	new	
architectures	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 54	

11/16/2015	
	

	Parallel	ExecuFon	Goals	

v Ideal	scenario	
Ø  Efficient	threading	when	using	pthreads	or	OpenMP	

•  All	threads	are	assigned	work	that	can	execute	concurrently	
•  SynchronizaFon	Fmes	are	low.	

Ø  Load	balance	for	parallel	jobs	using	MPI	
•  All	MPI	ranks	doing	same	amount	of	work,	so	no	MPI	rank	waits	

Ø Hybrid	applicaFon	with	both	MPI	and	threads	
•  Limited	amount	of	serial	work	per	MPI	process	

	 How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 55	

*	Diagram	from		Performance	Metrics	for	Parallel	Programs:	hgp://web.info.uvt.ro/~petcu/calcul/	
	

11/16/2015	
	

Parallel	ExecuFon	Goals	
v What	causes	the	ideal	goal	to	fail?	

Ø  For	MPI:	
•  Equal	work	was	not	given	to	each	rank	
•  There	is	a	out	of	balance	communicaFon	pagern	occurring	
•  The	applicaFon	can’t	scale	with	the	number	of	ranks	being	used	

Ø  For	threaded	applicaFons:		
•  One	or	more	threads	doing	more	work	than	others	and	subsequently	
causing	other	threads	to	wait.	

Ø  For	hybrid	applicaFons:	
•  Too	much	Fme	spent	between	parallel/threaded	regions	

Ø  For	mulFcore	processors:	
•  Remote	memory	references	from	the	non-uniform	access	shared	
memory	can	cause	sub-par	performance	

Ø  For	accelerators:	
•  Data	transfers	to	the	accelerator	kernel	might	take	more	Fme	than	the	
speed-up	for	the	accelerator	operaFons	on	that	data	-	also	-	is	the	CPU	
fully	uFlized?	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 56	

11/16/2015	
	

Parallel	ApplicaFon	Analysis	Techniques	
v What	steps	can	we	take	to	analyze	parallel	jobs?	

Ø Get	an	overview	of	where	the	Fme	is	being	spent.	
•  Use	sampling	to	get	a	low	overhead	overview	of	Fme	spent	

–  	Program	counter,	call	stack,	hardware	counter	

Ø Examine	overview	informaFon	for	all	ranks,	threads,	…	
•  Analyze	load	balance	informaFon:	

– Min,	max,	and	average	values	across	the	ranks	and/or	threads	
– Look	at	this	informaFon	per	library	as	well		

o  Too	much	Fme	in	MPI	could	indicate	load	balance	issue.	
•  Use	above	info	to	determine	if	the	program	is	well	balanced	

–  Are	the	minimum,	maximum	values	widely	different?		If	so:	
o  Probably	have	load	imbalance	and	need	to	look	for	the	cause	of	
performance	lost	because	of	the	imbalance.	

o  Not	all	ranks	or	threads	doing	the	same	amount	of	work	
o  Too	much	waiFng	at	barriers	or	synchronous	global	operaFons	
like	MPI_Allreduce	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 57	

11/16/2015	
	

pcsamp	Default	View:		NPB:	LU	
v Default	Aggregated	pcsamp	Experiment	View	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 58	

Aggregated Results

Information Displays
Experiment
Metadata

11/16/2015	
	

Load	Balance	View:		NPB:	LU	
v  Load	Balance	View	based	on	func>ons	(pcsamp)	
	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 59	

MPI library showing up
high in the list

Max time in rank 255

With load balance view we are
looking for performance number
out of norm of what is expected,

such as relatively
large differences between min, max

and/or average values.

11/16/2015	
	

Default	Linked	Object	View:		NPB:	LU	
v  Default	Aggregated	View	based	on	Linked	Objects	(libraries)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 60	

NOTE: MPI library
consuming large portion of

application run time

Linked Object View
(library view)

Select “Linked Objects”
Click D-icon

11/16/2015	
	

Parallel	ExecuFon	Analysis	Techniques	
v What	steps	can	we	take	to	analyze	parallel	jobs?	

Ø  If	imbalance	detected,	then	what?			How	do	you	find	
the	cause?	

•  Look	at	library	Fme	distribuFon	across	all	the	ranks,	threads	
–  Is	the	MPI	library	taking	a	disproporFonate	amount	of	Fme?	

•  If	MPI	applicaFon,	use	a	tool	that	provides	per	MPI	funcFon	
call	Fmings		

–  Can	look	at	MPI	funcFon	Fme	distribuFons	
o  In	parFcular,	MPI_Waitall	
o  Then	look	at	the	call	path	to	MPI_Waitall	

–  Also,	can	look	source	code	relaFve	to	
o  MPI	rank	or	parFcular	pthread	that	is	involved.	
o  Is	there	any	special	processing	for	the	parFcular	rank	or	thread	
o  Examine	the	call	paths	and	check	code	along	path	

•  Use	Cluster	Analysis	type	feature,	if	tool	has	this	capability	
–  Cluster	analysis	can	categorize	threads	or	ranks	that	have	similar	
performance	into	groups	idenFfying	the	outlier	rank	or	thread	

	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 61	

11/16/2015	
	

MPI	Tracing	Results:	Default	View	
v Default	Aggregated	MPI	Experiment	View	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 62	

Information Icon
Displays Experiment

Metadata

Aggregated Results

11/16/2015	
	

Hot	Call	Paths	View	(CLI):		NPB:	LU	
v Hot	Call	Paths	for	MPI_Wait	for	rank	255	only	
openss	–cli	–f	lu-mpi-256.openss	

openss>>expview	-r	255	-vcalltrees,fullstack	-f	MPI_Wait		
	
		Exclusive	MPI	Call												%	of	Total							Number	of	Calls		Call	Stack	Func>on	(defining	loca>on)		
												Time(ms)		

	 	 	 	 	 	 	 	>>>>main	(lu.C.256)	

	 	 	 	 	 	 	 	>>>>>	@	140	in	MAIN__	(lu.C.256:	lu.f,46)		

	 	 	 	 	 	 	 	>>>>>>	@	180	in	ssor_	(lu.C.256:	ssor.f,4)		

	 	 	 	 	 	 	 	>>>>>>>	@	213	in	rhs_	(lu.C.256:	rhs.f,5)		

	 	 	 	 	 	 	 	>>>>>>>>	@	224	in	exchange_3_	(lu.C.256:	exchange_3.f,5)		

	 	 	 	 	 	 	 	>>>>>>>>>	@	893	in	mpi_wait_	(mpi-mvapich-rt-offline.so:	wrappers-fortran.c,893)		

	 	 	 	 	 	 	 	>>>>>>>>>>	@	889	in	mpi_wait	(mpi-mvapich-rt-offline.so:	wrappers-fortran.c,885)		
									6010.978000														3.878405																			250	>>>>>>>>>>>	@	51	in	MPI_Wait	(libmpich.so.1.0:	wait.c,51)		
	
	
	 	 	 	 	 	 	>>>>main	(lu.C.256)		

																																																																	 	 		>>>>>	@	140	in	MAIN__	(lu.C.256:	lu.f,46)		

	 	 	 	 	 	 	 	>>>>>>	@	180	in	ssor_	(lu.C.256:	ssor.f,4)		

	 	 	 	 	 	 	 	>>>>>>>	@	64	in	rhs_	(lu.C.256:	rhs.f,5)		

	 	 	 	 	 	 	 	>>>>>>>>	@	88	in	exchange_3_	(lu.C.256:	exchange_3.f,5)		

	 	 	 	 	 	 	 	>>>>>>>>>	@	893	in	mpi_wait_	(mpi-mvapich-rt-offline.so:	wrappers-fortran.c,893)	

	 	 	 	 	 	 	 	>>>>>>>>>>	@	889	in	mpi_wait	(mpi-mvapich-rt-offline.so:	wrappers-fortran.c,885)		
									2798.770000														1.805823																			250	>>>>>>>>>>>	@	51	in	MPI_Wait	(libmpich.so.1.0:	wait.c,51)		

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 63	

Most expensive call
path to MPI_Wait

Show all call paths
involving MPI_Wait

for rank 255 only

11/16/2015	
	

Link.	Obj.	Cluster	Analysis:	NPB:	LU	
v Cluster	Analysis	View	based	on	Linked	Objects	(libraries)	
				

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 64	

In Cluster Analysis results
Rank 255 showing up as an

outlier.

11/16/2015	
	

MPI	Specific	Tracing	Experiments	
v MPI	func>on	tracing	

Ø  Record	all	MPI	call	invocaFons	
Ø  Record	call	Fmes	and	call	paths	(mpi)	

•  Convenience	script:	ossmpi	
Ø  Record	call	Fmes,	call	paths	and	argument	info	(mpit)	

•  Convenience	script:	ossmpit	

v Equal	events	will	be	aggregated	
Ø  Save	space	in	O|SS	database	
Ø  Reduces	overhead	

v Public	format:	
Ø  Full	MPI	traces	in	Open	Trace	Format	(OTF)	
Ø  Experiment	name:	(mpioh)	

•  Convenience	script:	ossmpio]	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 65	

11/16/2015	
	

IdenFfying	Load	Imbalance	With	O|SS	
v Get	overview	of	applica>on		

Ø  Run	one	of	these	lightweight	experiments	
•  pcsamp,	userFme,	hwc	

Ø  Use	this	informaFon	to	verify	performance	expectaFons	

v Use	load	balance	view	on	pcsamp,	user>me,	hwc	
Ø  Look	for	performance	values	outside	of	norm	

•  Somewhat	large	difference	for	the	min,	max,	average	values	

v Get	overview	of	MPI	func>ons	used	in	applica>on	
Ø  If	the	MPI	libraries	are	showing	up	in	the	load	balance	for	
pcsamp,	then	do	a	MPI	specific	experiment	

v Use	load	balance	view	on	MPI	experiment		
Ø  Look	for	performance	values	outside	of	norm	

•  Somewhat	large	difference	for	the	min,	max,	average	values	
Ø  Focus	on	the	MPI_FuncFons	to	find	potenFal	problems	

	 How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 66	

11/16/2015	
	

Link.	Obj.	Load	Balance:	Using	NPB:	LU	
v  Load	Balance	View	based	on	Linked	Objects	(libraries)		
			

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 67	

Rank 255 has maximum
MPI library time value
& minimum LU time

11/16/2015	
	

Using	Cluster	Analysis	in	O|SS	
v Can	use	with	pcsamp,	user>me,	hwc	

Ø Will	group	like	performing	ranks/threads	into	groups	
Ø  Groups	may	idenFfy	outlier	groups	of	ranks/threads	
Ø  Can	examine	the	performance	of	a	member	of	the	outlier	group	
Ø  Can	compare	that	member	with	member	of	acceptable	
performing	group	

v Can	use	with	mpi,	mpit	
Ø  Same	funcFonality	as	above	
Ø  But,	now	focuses	on	the	performance	of	individual	
MPI_FuncFons.	

Ø  Key	funcFons	are	MPI_Wait,	MPI_WaitAll		
Ø  Can	look	at	call	paths	to	the	key	funcFons	to	analyze	why	they	
are	being	called	to	find	performance	issues	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 68	

11/16/2015	
	

Summary	/	Parallel	Boglenecks	
v Open|SpeedShop	supports	MPI	and	threaded	
applica>on			
Ø Works	with	mulFple	MPI	implementaFons	

v Parallel	experiments	
Ø  Apply	the	sequenFal	O|SS	collectors	to	all	nodes	
Ø  Specialized	MPI	tracing	experiments	

v Result	Viewing	
Ø  Results	are	aggregated	across	ranks/processes/threads	
Ø  OpFonally:	select	individual	ranks/threads	or	groups	
Ø  Specialized	views:	

•  Load	balance	view	
•  Cluster	analysis	

v Use	features	to	isolate	sec>ons	of	problem	code	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 69	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	5	
Advanced	analysis:	Hardware	Counter	Experiments	

70	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

IdenFfy	architectural	impact	on	code	inefficiencies			

v Timing	informa>on	shows	where	you	spend	your	>me	
Ø  Hot	funcFons	/	statements	/	libraries	
Ø  Hot	call	paths	

v BUT:	It	doesn’t	show	you	why	
Ø  Are	the	computaFonally	intensive	parts	efficient?	
Ø  Are	the	processor	architectural	components	working	opFmally?		

v Answer	can	be	very	plahorm	dependent	
Ø  Boglenecks	may	differ	
Ø  Cause	of	missing	performance	portability	
Ø  Need	to	tune	to	architectural	parameters	

v Next:	Inves>gate	hardware/applica>on	interac>on	
Ø  Efficient	use	of	hardware	resources	or	Micro-architectural	
tuning	

Ø  Architectural	units	(on/off	chip)	that	are	stressed	
71	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Good	Primary	Focus:	Efficient	movement	of	data	

v Modern	memory	systems	are	complex	
Ø  Deep	hierarchies	
Ø  Explicitly	managed	memory	
Ø  NUMA	behavior	
Ø  Streaming/Prefetching	

v Key	to	performance:	Data	locality	and	Concurrency	
Ø  Accessing	the	same	data	repeatedly(Temporal)	
Ø  Accessing	neighboring	data(SpaFal)	
Ø  EffecFve/parallel	use	of	cores		

v  Informa>on	to	look	for	
Ø  Load/Store	Latencies	
Ø  Prefetch	efficiency	
Ø  Cache	miss	rate	at	all	levels	
Ø  TLB	miss	rates	
Ø  NUMA	overheads	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 72	

Data	Loca>on	 Access	Latency,	ns	(Sandy	Bridge,	2.6GHZ)	

L1	 1.2	

L2	 3.5	

L3	 6.5	

DRAM	 28	

11/16/2015	
	

Another	important	focus:	Efficient	VectorizaFon	
v  Newer	processor	have	wide	vector	registers	

Ø  Intel	Xeon	2670,Sandy	Bridge:	256	bits	floaFng	point	registers,	AVX	(8	
Real	/	4	Double)	

Ø  Intel	Xeon	Phi,Knights	Corner:	512	bits(16	Real	/	8	Double)	
Ø  Intel	Haswell	-	256	bits	Integer	Registers,	AVX2	:	FMA		(2X	the	peak	flops)	

v  Key	to	performance;	Vectoriza>on		
Ø  Compiler	VectorizaFon	
Ø  Use	of	‘intrinsics’	
Ø  Use	of	Pragmas	to	help	the	compiler	
Ø  Assembly	code	

v  Analysis	Op>ons	
Ø  Compiler	vectorizaFon	report	
Ø  Look	at	assembly	code	
Ø  Measure	performance	with	PAPI	counters	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 73	

Going	from	Scalar	to	Intel®	AVX	can	provide	up	to	8x	faster	performance	

11/16/2015	
	

Hardware	Performance	Counters	
v Architectural	Features	

Ø  Typically/Mostly	packaged	inside	the	CPU	
Ø  Count	hardware	events	transparently	without	overhead	

v Newer	plahorms	also	provide	system	counters	
Ø  Network	cards	and	switches	
Ø  Environmental	sensors	

v Drawbacks	
Ø  Availability	differs	between	pla]orm	&	processors	
Ø  Slight	semanFc	differences	between	pla]orms	
Ø  In	some	cases	:	requires	privileged	access	&	kernel	patches	

v Recommended:	Access	through	PAPI	
Ø  API	for	tools	+	simple	runFme	tools	
Ø  AbstracFons	for	system	specific	layers	
Ø More	informaFon:	hgp://icl.cs.utk.edu/papi/	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 74	

11/16/2015	
	

The	O|SS	HWC	Experiments	
v Provides	access	to	hardware	counters	

Ø  Implemented	on	top	of	PAPI	
Ø  Access	to	PAPI	and	naFve	counters	
Ø  Examples:	cache	misses,	TLB	misses,	bus	accesses	

v Basic	model	1:	Timer	Based	Sampling:	HWCsamp	
Ø  Samples	at	set	sampling	rate	for	the	chosen	event	
Ø  Supports	mulFple	counters	
Ø  Lower	staFsFcal	accuracy	
Ø  Can	be	used	to	esFmate	good	threshold	for	hwc/hwcFme	

v Basic	model	2:	Thresholding:	HWC	and	HWC>me	
Ø  User	selects	one	counter	
Ø  Run	unFl	a	fixed	number	of	events	have	been	reached	
Ø  Take	PC	sample	at	that	locaFon	

•  HWCFme	also	records	stacktrace	
Ø  Reset	number	of	events	
Ø  Ideal	number	of	events	(threshold)	depends	on	applicaFon	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 75	

11/16/2015	
	

Examples	of	Typical	Counters	(Xeon	E5-2670)	

Note:	Threshold	indicaFons	are	just	rough	guidance	and	depend	on	the	applicaFon.	

Note:	counters		pla]orm	dependent	(use	papi_avail& papi_native_avail)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 76	

PAPI	Name	 Descrip>on	 Threshold	

PAPI_L1_DCM	 L1	data	cache	misses	 high	

PAPI_L2_DCM	 L2	data	cache	misses	 high/medium	

PAPI_L3_TCM	 L3	cache	misses	 high	

PAPI_TOT_INS	 InstrucFons	completed	 high	

PAPI_STL_ICY	 Cycles	with	no	instrucFon	issue	 high/medium	

PAPI_BR_MSP	 Miss-predicted	branches	 medium/low	

PAPI_DP_OPS	 Number	of	64-Bit	floaFng	point	Vector	OPS	 high	

PAPI_LD_INS		 Number	of	load	instrucFons	 high	

PAPI_VEC_DP		 Number	of	vector/SIMD	instrucFons	–	64Bit	 high	

PAPI_BR_INS		 Number	of	branch	instrucFons	 low	

PAPI_TLB_TL	 Number	of	TLB	misses	 low	

11/16/2015	
	

SuggesFons	to	Manage	Complexity	
v The	number	of	PAPI	counters	and	their	use	can	be	
overwhelming;	Some	guidance	here	with	a	few	“Metric-
Ra>os”.		
Ø  Ra>os	derived	from	a	combina>on	of	hardware	events	can	
some>mes	provide	more	useful	informa>on	than	raw	metrics	

v Develop	the	ability	to	interpret	Metric-Ra>os	with	a	
focus	on	understanding:	
Ø  InstrucFons	per	cycle	or	cycles	per	instrucFon		
Ø  FloaFng	point	/	VectorizaFon	efficiency	
Ø  Cache	behaviors;	Long	latency	instrucFon	impact	
Ø  Branch	mispredicFons		
Ø Memory	and	resource	access	pagerns	
Ø  Pipeline	stalls	

v This	presenta>on	will	illustrate	with	some	examples	of	
the	use	of	Metric-Ra>os	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 77	

11/16/2015	
	

How	to	use	OSS	HWCsamp	experiment	
v  	osshwcsamp	“<command><	args>”	[default	|
<PAPI_event_list>|<sampling_rate>]	
Ø  SequenFal	job	example:		

•  osshwcsamp	“smg2000”	
Ø  Parallel	job	example:		

•  osshwcsamp	“mpirun	–np	128	smg2000	–n	50	50	50”	
PAPI_L1_DCM,PAPI_L1_TCA	50	

v default	events:	PAPI_TOT_CYC	and	PAPI_TOT_INS	
v default	sampling_rate:	100		
v <PAPI_event_list>:	Comma	separated	PAPI	event	list	
(Maximum	of	6	events	that	can	be	combined)		

v <sampling_rate>:Integer	value	sampling	rate	
v Use	event	count	values	to	guide	selecFon	of	thresholds	
for	HWC,	HWCFme	experiments	for	deeper	analysis	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 78	

11/16/2015	
	

SelecFng	the	Counters	&	Sampling	Rate	
v  For	osshwcsamp,	Open|SpeedShop	supports	…	

Ø  Derived	and	Non	derived	PAPI	presets		
•  All	derived	and	non	derived	events	reported	by	“papi_avail”	
•  Also	reported	by	running	“osshwcsamp”	with	no	arguments	
•  Ability	to	sample	up	to	six	(6)	counters	at	one	Fme;		before	use	test	with	

–  papi_event_chooser	PRESET	<list	of	events>	
•  If	a	counter	does	not	appear	in	the	output,	there	may	be	a	conflict	in	the	
hardware	counters	

Ø  All	naFve	events	
•  Architecture	specific	(incl.	naming)	
•  Names	listed	in	the	PAPI	documentaFon	
•  NaFve	events	reported	by	“papi_native_avail”	

v Sampling	rate	depends	on	applica>on	
Ø  Overhead	vs.	Accuracy	

•  Lower	sampling	rate	cause	less	samples	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 79	

11/16/2015	
	

Useful	Metric-RaFo	1:	IPC	
v  Instruc>ons	Per	Cycle(IPC)	also	referred	to	as	

Computa>onal	Intensity		
Ø  IPC=	PAPI_TOT_INS/PAPI_TOT_CYCLES	

v  Data	from	single-core	Xeon	E5-2670,	Sandy	Bridge	
v  In	the	table	below	compiler	op>miza>on		-O1	used	to	

bring	out	differences	in	IPC	based	on	stride	used	with	
different	loop	order;	

v  If	you	use	–O2	for	this	simple	case	compiler	does	the	
right	transforma>ons,	permu>ng	loop	order	and	
vectorizing	to	yield	IPC	=	2.28	(kji	order);	This	
improves	access	to	memory	through	cache.	

v  Importance	of	stride	through	the	data	is	illustrated	
with	this	simple	example;	Compiler	may	not	always	
do	the	needed	op>miza>on.		Use	IPC	values	from	
func>ons	and	loops	to	understand	efficiency	of	data	
access	through	your	data	structures.			

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 80	

Metric	 IJK	 IKJ	 JIK	 JKI	 KIJ	 KJI	 MATMUL	 DGEMM	

PAPI_TOT_INS	 8.012E+09	 9.011E+09	 8.011E+09	 9.01E+09	 9.01E+09	 9.011E+09	 9.016E+09	 7.405E+08	

PAPI_TOT_CYC	 2.42E+10	 5.615E+10	 2.423E+10	 2.507E+09	 5.612E+10	 2.61E+09	 2.601E+09	 2.859E+08	

IPC	 0.331	 0.160	 0.331	 3.594	 0.161	 3.452	 3.466	 2.590	
MFLOPS	 272	 117	 271	 2625	 117	 2525	 2532	 19233	(93%	peak)	

v  Example	matrix	mul>ply;	
Triple	do	loop;	
(n1=n2=n3=1000)	

v  code	for	loop	order	‘ijk’;		All	
vectors	‘double’	
	do	i	=	1,	n1	
				do	j	=	1,	n3	
						do	k	=	1,	n2	
								a(i,j)	=	a(i,j)	+	b(i,k)	*	c(k,j)	
						end	do	
				end	do	
		end	do	
	

11/16/2015	
	

BLAS	OperaFons	Illustrate	impact	of	moving	data		
A,	B,	C	=	nxn	Matrices;						x,y	=	nx1	Vectors;					k	=	Scaler	
	

Level	 Opera>on	 #	Memory	
Refs	or	Ops	

#	Flops	 Flops/Ops	 Comments	
on	Flops/
Ops	

1	 y	=	kx	+	y	 3n	 2n	 2/3	 Achieved	in	
Benchmarks	

2	 y	=	Ax	+	y	 n2	 2n2	 2	 Achieved	in	
Benchmarks	

3	 C	=	AB	+	C	 4n2	 2n3	 n/2	 Exceeds	HW	
MAX	

Use	these	Flops/Ops	to	understand	how	secFons	of	your	code	relate	to	
simple	memory	access	pagerns	as	typified	by	these	BLAS	operaFons	

81	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Useful	Metric-RaFo	2:	FloatOps/Cycle	
v  Tradi>onally	PAPI_FP_INS/PAPI_TOT_CYC	used	to	evaluate	rela>ve	floa>ng	point	density		

Ø  For	a	number	of	reasons	measuring	and	analyzing	floaFng	point	performance	on	Intel	Sandy	Bridge	and	Ivy	bridge	must	be	
done	with	care.	See	PAPI	web	site	for	full	discussion.	The	reasons	are:	instrucFon	mix	-	scalar	instrucFons	+	vector	(AVX,	SSE)	
packed	instrucFons,		hyperthreading,		turbo-mode	and	speculaFve	execuFon.	

Ø  The	floaFng	point	counters	have	been	disabled	in	the	newer	Intel	Haswell	cpu	architecture	
Ø  On	Sandy	Bridge	and	Ivy	Bridge	PAPI_FP_INS	is	no	longer	an	appropriate		counter	if	loops	are	vectorized	
Ø  No	single	PAPI	metric	captures	all	floaFng	point	operaFons	

v  We	provide	some	guidance	with	useful	PAPI	Preset	counters.	Data	from	single-core	Xeon	
E5-2670,	Sandy	Bridge.		Double	precision	array	opera>ons	for	Blas1(daxpy),	Blas2(dgemv)	and	
Blas3(dgemm)	are	benchmarked.	Matrix	size=nxn;	vector	size=nx1	.	Data	array	sizes	are	picked	to	
force	opera>ons	from	DRAM	memory	

v  Table	below	shows	measured	PAPI	counter	data	for	a	few	counters	and	compares	the	measured	
FLOP/Ops	against	theore>cal	expecta>ons.		

v  PAPI_DP_OPS	and	PAPI_VEC_DP	give	similar	values	and	these	counter	values	correlate	well	with	
expected	floa>ng	point	opera>on	counts	for	double	precision.		

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 82	

Blas	OperaFon	 n	

Thererical	
mem	refs	or	

Ops	
TheoreFcal	

FLOP	
TheoreFcal	
FLOP/Ops	

wall	Fme,	
secs	 TOT_CYC	 TOT_INS	 FP_INS	 LD_INS	 SR_INS	 DP_OPS	

PAPI	
GFLOPS	

PAPI	FLOP/
Ops	

daxpy	 2.50E+07	 7.5E+07	 5.0E+07	 0.67	 0.03	 1.04E+08	 5.20E+07	 11.52	 2.50E+07	 1.25E+07	 5.01E+07	 1.56	 0.668	

dgemv	 1.00E+04	 1.0E+08	 2.0E+08	 2	 0.06073	 2.16E+08	 1.69E+08	 29.12	 6.25E+07	 1.25E+07	 2.36E+08	 3.89	 1.57557985	

dgemm	 1.00E+04	 4.00E+08	 2E+12	 5000.00	 80.937	 2.67E+11	 7.33E+11	 7.2	 1.12E+11	 1.38E+09	 2.01E+12	 24.80	 8.83518225	

11/16/2015	
	

For	Intel	Haswell	FloatOps	not	available:	Use	IPC	or	CPI	

v  We	again	provide	some	guidance	with	data	from	a	single-core	of	a	Haswell	
Processor	(Intel(R)	Xeon(R)	CPU	E5-2698	v3	@	2.30GHz)	

v  	Blas1,	Blas2	and	Blas3	kernels	as	in	the	previous	slide	are	benchmarked.	
Matrix	size=nxn;	vector	size=nx1	.	Data	array	sizes	are	picked	to	force	
opera>ons	from	DRAM	memory	

v  Table	below	shows	measured	PAPI	counter	data	for	a	few	counters	and	
metric	ra>o	IPC			

v  When	opera>ng	at	peak	performance,	Haswell	can	re>re	4	micro-ops/cycle	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 83	

n	

Thererical	
mem	refs	
or	Ops	

TheoreFca
l	FLOP	

TheoreFcal	
FLOP/Ops	

wall	
Fme,	
secs	 TOT_CYC	TOT_INS	 IPC	 CPI	 LD_INS	 SR_INS	 GFLOPS	 FLOP/mem-Ops	

2.50E+07	 7.50E+07	 5.00E+07	 0.67	 3.24E-02	1.17E+08	6.25E+07	 0.54	 1.87	3.13E+07	1.25E+07	 1.53932	 0.57	

1.00E+04	 1.00E+08	 2.00E+08	 2	 6.11E-02	 2.2E+08	2.06E+08	 0.94	 1.06	7.81E+07	1.25E+07	 3.272	 1.10	

1.00E+04	 4.00E+08	 2.00E+12	 5000	 41.8546	1.38E+11	4.65E+11	 3.36	 0.30	 1.9E+11	1.23E+09	 47.7655	 5.23	

11/16/2015	
	

hwcsamp	with	miniFE	(see	mantevo.org)	
v  osshwcsamp	“mpiexec	–n	72	miniFE.X	–nx	614	–ny	614	–nz	614”	PAPI_DP_OPS,PAPI_L1_DCM,PAPI_TOT_CYC,PAPI_TOT_INS	

v  openss	–f	miniFE.x-hwcsamp.openss	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 84	

Also have pcsamp
information

Up to six event can be
displayed. Here we have 4.

11/16/2015	
	

Viewing	hwcsamp	Data	in	CLI	
openss	-cli	-f	miniFE.x-hwcsamp.openss		
								

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 85	

11/16/2015	
	

Viewing	Data	in	CLI	
Some	selec>ons	of	the	powerful	CLI	commands	to	
view	the	data	
	

v expview	-v	linkedobjects	
v expview	–m	loadbalance	
v expview	–v	statements	hwcsamp<number>	

Ø Example	to	show	top	10	statements:		
•  expview	–v	statements	hwcsamp10	

v expview	–v	calltrees,fullstack	user>me<number>	
v expcompare	–	r	1	–r	2	–m	>me	(compares	rank	1	to	
rank	2	for	metric	equal	Fme)	
	

	
		

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 86	

11/16/2015	
	

Deeper	Analysis	with	HWC	and	HWCFme	

v  	osshwc[>me]	“<command>	<	args>”	[default	|	
<PAPI_event>	|	<PAPI	threshold>	|	<PAPI_event><PAPI	
threshold>]	
Ø  SequenFal	job	example:		

•  osshwc[Fme]	“smg2000	–n	50	50	50”	PAPI_FP_OPS	50000	
Ø  Parallel	job	example:		

•  osshwc[Fme]	“mpirun	–np	128	smg2000	–n	50	50	50”	

v default:	event	(PAPI_TOT_CYC),	threshold	(10000)	
v <PAPI_event>:	PAPI	event	name	
v <PAPI	threshold>:	PAPI	integer	threshold	
v NOTE:		If	the	output	is	empty,	try	lowering	the	
<threshold>	value.	There	may	not	have	been	enough	PAPI	
event	occurrences	to	record	and	present	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 87	

11/16/2015	
	

Viewing	hwc	Data	
v hwc	default	view:	Counter	=	Instruc>on	Cache	Misses	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 88	

Flat hardware counter profile
of a single hardware counter

event.
Exclusive counts only

11/16/2015	
	

Viewing	hwcFme	Data	
hwc>me	default	view:	Counter	=	L1	Data	Cache	Misses	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 89	

Calling context hardware
counter profile of a single
hardware counter event.

Exclusive/Inclusive counts

11/16/2015	
	

Example	1	on	use	of	PAPI:	LLNL	Sparse	Solver	Benchmark	AMG	

v  On	the	other	hand	L3	Evic>ons	for	1,2,4	PEs	
similarly	decrease	‘near-perfect’	but	
drama>cally	increases	to	100x	at	8PEs	and	
170x	at	16	PEs	

v  L3	evic>ons	are	a	good	measure	of	memory	
bandwidth	limited	performance	botleneck	at	
a	node	

v  General	Memory	BW	limita>on	Remedies	
Ø  Blocking	
Ø  Remove	false	sharing	for	threaded	codes	

0	 0.25	 0.5	 0.75	 1	 1.25	

1	
2	
4	
8	

16	

L3_CACHE_MISSES:ALL	

0	 50	 100	 150	 200	

1	

2	

4	

8	

16	

L3_EVICTIONS:ALL	

Normalized	to	1	PE	count;	Counts	are	Avg.	of	PE	values	

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Sp
ee
du

p	

#	of	Cores	

AMG	Intra	Node	Scaling	

AMG	Weak	

AMG	Strong	

AMG	Ideal	

90	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

v  Major	reasons	on-node	scaling	limita>ons	
Ø  Memory	Bandwidth		
Ø  Shared	L3	Cache		

v  L3	cache	miss	for	1,2,4	Pes	matches	
expecta>on	for	strong	scaling		
Ø  Reduced	data		per	PE	
Ø  L3	misses	decreasing	up	to	4	PEs	linearly.				

11/16/2015	
	

Example	2	on	use	of	PAPI:	False	Cache-line	sharing	in	OpenMP	

!	Cache	line		UnAligned	
real*4,	dimension(100,100)::c,d	
!$OMP	PARALLEL	DO		
do	i=1,100	
		do	j=2,	100	
					c(i,j)	=	c(i,	j-1)	+	d(i,j)	
		enddo	
enddo	
!$OMP	END	PARALLEL	DO	

!	Cache	line		Aligned	
real*4,	dimension(112,100)::c,d	
!$OMP	DO	SCHEDULE(STATIC,	16)	
do	i=1,100	
		do	j=2,	100	
					c(i,j)	=	c(i,	j-1)	+	d(i,j)	
		enddo	
enddo	
!$OMP	END	DO	

Run	Time	 L3_EVICTIONS:ALL		 L3_EVICTIONS:MODIFIED	
	

Aligned	 6.5e-03	 9	 3	

UnAligned	 2.4e-02	 1583	 1422	

Perf.	Penalty	 3.7	 175	 474	

Same	computa>on,	but	careful	aten>on	to	alignment	and	independent	OMP	
parallel	cache-line	chunks	can	have	big	impact;				L3_EVICTIONS	a	good	measure;	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 91	

11/16/2015	
	

Example	3	on	use	of	PAPI:		PAPI_TLB_DM		Sandia’s	CTH	Performance	

0	
2	
4	
6	
8	
10	
12	
14	
16	

0	 2	 4	 6	 8	 10	12	14	16	

Sp
ee
du

p	

#	of	Cores	

CTH	Intra	Node	Scaling	
CTH	Weak	
CTH	Strong	
CTH	Ideal	

0	 20	 40	 60	 80	 100	

2	

4	

8	

16	

%	Wall	Time	

#	
of
	C
O
RE

S/
M
PI
	T
as
ks
	

CTH:	Growth	in	MPI	Time	

MPI	%	

APP	%	

Looking	through	performance	counters	the	average	per	PE	
PAPI	counter	seeing	most	increase	(among	all	the	profiled	
funcFons)	with	scale	is	PAPI_TLB_DM	registered	under	MPI.		
So	relinked	the	executable	with	–lhugetlbfs,		set	
HUGETLB_MORECORE=yes,	and	executed	with	“aprun	-
m500hs	…..”	
16	PE	performance	improvement:		7.35%	
128	PE	performance	improvement:	8.14%	
2048	PE	performance	improvement:	8.23%	

0	 1	 2	 3	 4	

2	

4	

8	

16	

Ra>o	Normalized	to	2	PE	TLB_DM	
#o

f	C
O
RE

S/
M
PI
	T
as
ks
	

MPI:	PAPI_TLB_DM	
Ra>o	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 92	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	6	
Analysis	of	I/O	

11/16/2015	
	

Need	for	Understanding	I/O		
v  I/O	could	be	significant	percentage	of	execu>on	>me	
dependent	upon:	
Ø  Checkpoint,	analysis	output,	visualizaFon	&	I/O	frequencies	
Ø  I/O	pagern	in	the	applicaFon:		
N-to-1,	N-to-N;	simultaneous	writes	or	requests	

Ø  Nature	of	applicaFon:		
data	intensive,	tradiFonal	HPC,	out-of-core	

Ø  File	system	and	Striping:	NFS,	Lustre,	Panasas,	and	#	of	Object	
Storage	Targets	(OSTs)		

Ø  I/O	libraries:	MPI-IO,	hdf5,	PLFS,…	
Ø  Other	jobs	stressing	the	I/O	sub-systems	

v Obvious	candidates	to	explore	first	while	tuning:	
Ø  Use	parallel	file	system	
Ø  OpFmize	for	I/O	pagern	
Ø Match	checkpoint	I/O	frequency	to	MTBI	of	the	system	
Ø  Use	appropriate	libraries	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 94	

11/16/2015	
	

I/O	Performance	Example	
v Applica>on:	OOCORE	benchmark	from	DOD	HPCMO	

Ø  Out-of-core	SCALAPACK	benchmark	from	UTK		
Ø  Can	be	configured	to	be	disk	I/O	intensive		
Ø  Characterizes	a	very	important	class	of	HPC	applicaFon	involving	
the	use	of	Method	of	Moments	(MOM)	formulaFon	for	
invesFgaFng	electromagneFcs	(e.g.	Radar	Cross	SecFon,	Antenna	
design)		

Ø  Solves	dense	matrix	equaFons	by	LU,	QR	or	Cholesky	
factorizaFon		

Ø  “Benchmarking	OOCORE,	an	Out-of-Core	Matrix	Solver,”	Cable,	
S.B.,	D’Avezedo,	E.	SCALAPACK	Team,	University	of	Tennessee	at	
Knoxville/U.S.	Army	Engineering	and	Development	Center		

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 95	

11/16/2015	
	

Why	use	this	example?		

v Used	by	HPCMO	to	evaluate	I/O	system	
scalability		

v Out-of-core	dense	solver	benchmarks	
demonstrate	the		importance	of	the	
following	in	performance	analysis:		
Ø  I/O	overhead	minimizaFon		
Ø Matrix	MulFply	kernel	–	possible	to	achieve	close	to	
peak	performance	of	the	machine	if	tuned	well		

Ø “Blocking”	very	important	to	tune	for	deep	memory	
hierarchies	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 96	

11/16/2015	
	

Use	O|SS	to	measure	and	tune	for	I/O	
INPUT:	testdriver.in		
ScaLAPACK	out-of-core	LU,QR,LL	

factorizaFon	input	file		

testdriver.out		
6	 	 	 	device	out		

1	 	 	 	number	of	factorizaFons		
LU	 	 	 	factorizaFon	methods	--	QR,	LU,	

	 	or	LT		

1	 	 	 	number	of	problem	sizes		
31000	 	values	of	M		
31000	 	values	of	N		

1	 	 	 	values	of	nrhs		
9200000	 	values	of	Asize		

1	 	 	 	number	of	MB's	and	NB's		
16	 	 	 	values	of	MB		
16	 	 	 	values	of	NB		

1	 	 	 	number	of	process	grids		
4	 	 	 	values	of	P		

4	 	 	 	values	of	Q		

Run	on	16	cores	on	an	SNL	Quad-Core,	Quad-Socket	Opteron	
IB	Cluster	

InvesFgate	File	system	impact	with	OpenSpeedShop:		
Compare	Lustre	I/O	with	striping	to	NFS	I/O		

run	cmd:	ossio	“srun	-N	1-n	16	./testzdriver-std”	
Sample	Output	from	Lustre	run:	

TIME	M	N	MB	NB	NRHS	P	Q	Fact/SolveTime	Error	Residual		
----	------	------	---	---	-----	-----	---------------	-----------	--------		

WALL	31000	31000	16	16	1	4	4	1842.20	1611.59	4.51E+15	
1.45E+11		

DEPS	=	1.110223024625157E-016		

sum(xsol_i)	=	(30999.9999999873,0.000000000000000E+000)		
sum	|xsol_i	-	x_i|	=	

(3.332285336962339E-006,0.000000000000000E+000)		
sum	|xsol_i	-	x_i|/M	=	

(1.074930753858819E-010,0.000000000000000E+000)		

sum	|xsol_i	-	x_i|/(M*eps)	=	
(968211.548505533,0.000000000000000E+000)		

From	output	of	two	separate	runs	using	Lustre	and	NFS:	
LU	Fact	Fme	with	Lustre=	1842	secs;		
LU	Fact	Fme	with	NFS	=	2655	secs		
813	sec	penalty	(more	than	30%)	if	you	do	not	use	parallel	file	

system	like	Lustre!	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 97	

11/16/2015	
	

NFS	and	Lustre	O|SS	Analysis	(screen	shot	from	NFS)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 98	

Min	t	(secs)	 Max	t	(secs)	 Avg	t	(secs)	 call	Func>on	

1102.380076	 1360.727283	 1261.310157	
__libc_read(/lib64/
libpthread-2.5.so)	

31.19218	 99.444468	 49.01867	
__libc_write(/lib64/
libpthread-2.5.so)	

Min	t	(secs)	Max	t	(secs)	 Avg	t	(secs)	 call	Func>on	

368.898283	 847.919127	 508.658604	
__libc_read(/lib64/
libpthread-2.5.so)	

6.27036	 7.896153	 6.850897	
__libc_write(/lib64/
libpthread-2.5.so)	

NFS	RUN	 LUSTRE	RUN	

I/O	to	Lustre	instead	of	NFS	reduces	runFme	25%:		(1360	+	99)	–	(847	+	7)	=		605	secs	

11/16/2015	
	

Lustre	file	system	striping	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 99	

Lustre	File	System	(lfs)	commands:		
	
lfs	setstripe	–s	(size	bytes;	k,	M,	G)	–c	(count;	-1	all)	–I	(index;	-1	round	robin)	<file	|	directory>	

	 	Typical	defaults:	-s	1M	-c	4	–i	-1	(usually	good	to	try	first)		
	 	File	striping	is	set	upon	file	crea>on	

	
lfs	getstripe	<file	|	directory>	
										Example:			lfs	getstripe	--verbose	./oss_lfs_stripe_16	|	grep	stripe_count	
		stripe_count:			16	stripe_size:				1048576	stripe_offset:		-1		

1	PE	writes;	BW	limited	 1	file	per	process;	BW	enhanced	

Co
m
pu

te
	

HS
	N
et
w
or
k	

IO
	n
od

es
	

O
ST
s	

Subset	of	PEs	do	I/O;	Could	be	most	opFmal	

11/16/2015	
	

OpenSpeedShop	IO-experiment	used	to	iden>fy	op>mal	lfs	striping		
(from	load	balance	view	(max,	min	&	avg)	for	16	way	parallel	run)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 100	

0	

200	

400	

600	

800	

1000	

1200	

Stripe	count=1	 Stripe	count=4	 Stripe	count=8	 Stripe	count=16	

W
al
l	T
im

e,
	se

cs
	

OOCORE	I/O	performance	
libc_read	>me	from	OpenSpeedShop	

MAX	
MIN	
AVG	

11/16/2015	
	

AddiFonal	I/O	analysis	with	O|SS	

v Extended	I/O	Tracing	(iot	experiment)		
Ø Records	each	event	in	chronological	order		
Ø Collects	AddiFonal	InformaFon		

•  FuncFon	Parameters		
•  FuncFon	Return	Value		

Ø When	to	use	extended	I/O	tracing?		
• When	you	want	to	trace	the	exact	order	of	events		
• When	you	want	to	see	the	return	values	or	bytes	read	or	
wrigen.	

•  when	you	want	to	see	the	parameters	of	the	IO	call	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 101	

11/16/2015	
	

Beware	of	Serial	I/O	in	applicaFons:	Encountered	in	VOSS,	code	LeP:		
Simple	code	here	illustrates	(acknowledgment:	Mike	Davis,	Cray,	Inc.)	
#include	<stdio.h>	
#include	<stdlib.h>	
#include	<mpi.h>	
#define	VARS_PER_CELL	15	
	
	/	*		Write	a	single	restart	file	from	many	MPI	processes		*/	
	int	write_restart	(
		MPI_Comm	comm																		///	MPI	communicator	
		,	int	num_cells																									///	number	of	cells	on	this	process	
		,	double	*cellv)																							///	cell	vector	
	{		
		int	rank;																													//	rank	of	this	process	within	comm	
		int	size;																														//	size	of	comm	
		int	tag;																															//	for	MPI_Send,	MPI_Recv	
		int	baton;																										//	for	serializing	I/O	
		FILE	*f;																															//	file	handle	for	restart	file	
			/	*	Procedure:	Get	MPI	parameters	*/	
			MPI_Comm_rank	(comm,	&rank);	
			MPI_Comm_size	(comm,	&size);	
			tag	=	4747;	
	
			if	(rank	==	0)	{	
				
					/*	Rank	0	create	a	fresh	restart	file,	
							*	and	start	the	serial	I/O;	
							*	write	cell	data,	then	pass	the	baton	to	rank	1	*/	
		
						f	=	fopen	("restart.dat",	"wb");	
						fwrite	(cellv,	num_cells,	VARS_PER_CELL	*	sizeof	(double),	f);	
						fclose	(f);	
						MPI_Send	(&baton,	1,	MPI_INT,	1,	tag,	comm);	
			}	else	{	
		
		

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 102	

			/*	Ranks	1	and	higher	wait	for	previous	rank	to	complete	I/O,	
					*	then	append	its	cell	data	to	the	restart	file,	
					*	then	pass	the	baton	to	the	next	rank		*/	
			MPI_Recv	(&baton,	1,	MPI_INT,	rank	-	1,	tag,	comm,	MPI_STATUS_IGNORE);	
				f	=	fopen	("restart.dat",	"ab");	
				fwrite	(cellv,	num_cells,	VARS_PER_CELL	*	sizeof	(double),	f);	
				fclose	(f);	
				if	(rank	<	size	-	1)	{	
						MPI_Send	(&baton,	1,	MPI_INT,	rank	+	1,	tag,	comm);	
				}	
	}	
		/*	All	ranks	have	posted	to	the	restart	file;	return	to	called		*/	
	return	0;	
}	
	
int	main	(int	argc,	char	*argv[])	{	
			MPI_Comm	comm;	
			int	comm_rank;	
			int	comm_size;	
			int	num_cells;	
			double	*cellv;	
			int	i;	
			MPI_Init	(&argc,	&argv);	
			MPI_Comm_dup	(MPI_COMM_WORLD,	&comm);	
			MPI_Comm_rank	(comm,	&comm_rank);	
			MPI_Comm_size	(comm,	&comm_size);	
				/**	
				*	Make	the	cells	be	distributed	somewhat	evenly	across	ranks	
				*/	
				num_cells	=	5000000	+	2000	*	(comm_size	/	2	-	comm_rank);	
				cellv	=	(double	*)	malloc	(num_cells	*	VARS_PER_CELL	*	sizeof	(double));	
				for	(i	=	0;	i	<	num_cells	*	VARS_PER_CELL;	i++)	{	
							cellv[i]	=	comm_rank;	
					}	
				write_restart	(comm,	num_cells,	cellv);	
				MPI_Finalize	();		
return	0;	
}	
	
	

11/16/2015	
	

IOT	O|SS	Experiment	of	Serial	I/O	Example	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 103	

SHOWS	EVENT	BY	
EVENT	LIST:	
Clicking	on	this	
gives	each	call	to	a	
I/O	funcFon	being	
traced	as	shown.	
	
Below	is	a	
graphical	trace	
view	of	the	same	
data		showing	
serializaFon	of	
fwrite()	(THE	RED	
BARS	for	each	PE)	
with	another	tool.	

11/16/2015	
	

Running	I/O	Experiments	
Offline	io/iop/iot	experiment	on	sweep3d	applica>on	
Convenience	script	basic	syntax:	
ossio[p][t]	“executable”	[default	|	<list	of	I/O	func>]	

Ø  Parameters	
•  I/O	FuncFon	list	to	sample(default	is	all)	
•  	creat,			creat64,		dup,		dup2,		lseek,		lseek64,		open,	open64,		
pipe,		pread,		pread64,		pwrite,		pwrite64,		read,		readv,		
write,		writev		

Examples:	
ossio	“mpirun	–np	256	sweep3d.mpi”		
ossiop	“mpirun	–np	256	sweep3d.mpi”	read,readv,write	
ossiot	“mpirun	–np	256	sweep3d.mpi”	read,readv,write	
	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 104	

11/16/2015	
	

I/O	output	via	GUI	

105	

v  I/O	Default	View	for	IOR	applica>on	“io”	experiment	
	

Shows the aggregated time
spent in the I/O functions

traced during the application.

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

I/O	output	via	GUI	

106	

v  I/O	Call	Path	View	for	IOR	applica>on	“io”	experiment	
	

Shows the call paths to the
I/O functions traced and the
time spent along the paths.

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

I/O	output	via	CLI		(equivalent	of	HC	in	GUI)	
openss>>expview	-vcalltrees,fullstack	iot1	

		I/O	Call	Time(ms)							%	of	Total	Time							Number	of	Calls		Call	Stack	Func>on	(defining	loca>on)	

																																																									_start	(sweep3d.mpi)	

																																																													>	@	470	in	__libc_start_main	(libmonitor.so.0.0.0:	main.c,450)	

																																																														>>__libc_start_main	(libc-2.10.2.so)	

																																																																>>>	@	428	in	monitor_main	(libmonitor.so.0.0.0:	main.c,412)	

																																																																		>>>>main	(sweep3d.mpi)	

																																																																			>>>>>	@	58	in	MAIN__	(sweep3d.mpi:	driver.f,1)	

																																																																				>>>>>>	@	25	in	task_init_	(sweep3d.mpi:	mpi_stuff.f,1)	

																																																																							>>>>>>>_gfortran_@ell_i2_sub	(libgfortran.so.3.0.0)	

																																																																									>>>>>>>>_gfortran_@ell_i2_sub	(libgfortran.so.3.0.0)	

																																																																										….	

																																																																																>>>>>>>>>>>>>_gfortran_st_read	(libgfortran.so.3.0.0)	

							17.902981000										96.220812461																					1	>>>>>>>>>>>>>>__libc_read	(libpthread-2.10.2.so)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 107	

11/16/2015	
	

SecFon	Summary	-	I/O	Tradeoffs	
v  Avoid	wri>ng	to	one	file	from	all	MPI	tasks			

Ø  If	you	need	to,	be	sure	to	disFnguish	offsets	for	each	PE	at	a	stripe	boundary,	
and	use	Buffered	I/O	

v  If	each	process	writes	its	own	file,	then	the	parallel	file	system	
atempts	to	load	balance	the	Object	Storage	Targets	(OSTs),	
taking	advantage	of	the	stripe	characteris>cs	

v  Metadata	server	overhead	can	o@en	create	severe	I/O	problems			
Ø  Minimize	number	of	files	accessed	per	PE	and	minimize	each	PE	doing	

operaFons	like	seek,	open,	close,	stat	that	involve	inode	informaFon	

v  I/O	>me	is	usually	not	measured,	even	in	applica>ons	that	keep	
some	func>on	profile	
Ø  Open|SpeedShop	can	shed	light	on	Fme	spent	in	I/O	using	io,	iot	

experiments	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 108	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	7	
Analysis	of	Memory	Usage	

11/16/2015	
	

	Memory	Hierarchy	

v Memory	Hierarchy	
Ø CPU	registers	and	cache	
Ø System	RAM	
Ø Online	memory,	such	as	disks,	etc.	
Ø Offline	memory	not	physically	connected	to	system	
Ø hgps://en.wikipedia.org/wiki/Memory_hierarchy	

v What	do	we	mean	by	memory?	
Ø Memory	an	applicaFon	requires	from	the	system	RAM	
Ø Memory	allocated	on	the	heap	by	system	calls,	such	as	
malloc	and	friends	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 110	

11/16/2015	
	

	Need	for	Understanding	Memory	Usage	

v Memory	Leaks	
Ø  Is	the	applicaFon	releasing	memory	back	to	the	
system?	

v Memory	Footprint	
Ø How	much	memory	is	the	applicaFon	using?	
Ø Finding	the	High	Water	Mark	(HWM)	of	memory	
allocated	

Ø Out	Of	Memory	(OOM)	potenFal	
Ø Swap	and	paging	issues	

v Memory	alloca>on	paterns	
Ø Memory	allocaFons	longer	than	expected	
Ø AllocaFons	that	consume	large	amounts	of	heap	space	
Ø Short	lived	allocaFons	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 111	

11/16/2015	
	

	Example	Memory	Heap	Analysis	Tools	

v MemP	is	a	parallel	heap	profiling	library	
Ø  Requires	mpi	
Ø  hgp://sourceforge.net/projects/memp	

v ValGrind	provides	two	heap	profilers.	
Ø Massif	is	a	heap	profiler	

•  hgp://valgrind.org/docs/manual/ms-manual.html	
Ø  DHAT	is	a	dynamic	heap	analysis	tool	

•  hgp://valgrind.org/docs/manual/dh-manual.html	

v Dmalloc	-	Debug	Malloc	Library			
Ø  hgp://dmalloc.com/	

v Google	PerfTools	heap	analysis	and	leak	
detec>on.	
Ø  hgps://github.com/gper�ools/gper�ools	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 112	

11/16/2015	
	

O|SS	Memory	Experiment	
v Supports	sequen>al,	mpi	and	threaded	applica>ons.	

Ø  No	instrumentaFon	needed	in	applicaFon.	
Ø  Traces	system	calls	via	wrappers	

•  malloc	
•  calloc	
•  realloc	
•  free	
•  memalign	and	posix_memalign	

v Provides	metrics	for	
Ø  Timeline	of	events	that	set	an	new	highwater	mark	(HWM).	
Ø  List	of	event	allocaFons	(with	calling	context)	to	leaks.	
Ø  Overview	of	all	unique	calltrees	to	traced	memory	calls	that	provides	
max	and	min	allocaFon	and	count	of	calls	on	this	path.	

v Example	Usage	
Ø  ossmem	"./lulesh2.0”	
Ø  ossmem	"srun	-N4	-n	64	./sweep3d.mpi"	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 113	

11/16/2015	
	

O|SS	Memory	Experiment	
v Show	calltree	for	the	alloca>on	event	that	set	the	
high	water	mark	

openss>> expview -v trace,calltrees -m start_time -m hwm -m allocation

Start Time of Event HWM Call Stack Function (defining location)

 _start (lulesh2.0)

 >__libc_start_main (libmonitor.so.0.0.0: main.c,541)

 >>__libc_start_main (libc-2.18.so)

 >>>monitor_main (libmonitor.so.0.0.0: main.c,492)

 >>>>main (lulesh2.0: lulesh.cc,2672)

 >>>>>GOMP_parallel_start (libgomp.so.1.0.0: parallel.c,123)

 >>>>>>gomp_new_team (libgomp.so.1.0.0: team.c,141)

 >>>>>>>gomp_malloc (libgomp.so.1.0.0: alloc.c,35)

2015/09/09 10:11:04.023 27016684 >>>>>>>>__libc_malloc (libc-2.18.so)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 114	

11/16/2015	
	

O|SS	Memory	Experiment	
v Show calltree to one memory leak
expview	-v	trace,calltrees	-m	leak	-m	allocaFon	mem1	

Total							Call	Stack	FuncFon	(defining	locaFon)	

AllocaFon	

																						_start	(lulesh2.0)	

																					>__libc_start_main	(libmonitor.so.0.0.0:	main.c,541)	

																						>>__libc_start_main	(libc-2.18.so)	

																						>>>monitor_main	(libmonitor.so.0.0.0:	main.c,492)	

																						>>>>main	(lulesh2.0:	lulesh.cc,2672)	

																						>>>>>GOMP_parallel_start	(libgomp.so.1.0.0:	parallel.c,123)	

																						>>>>>>gomp_new_team	(libgomp.so.1.0.0:	team.c,141)	

																						>>>>>>>gomp_malloc	(libgomp.so.1.0.0:	alloc.c,35)	

10600684				>>>>>>>>__libc_malloc	(libc-2.18.so)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 115	

11/16/2015	
	

O|SS	Memory	Experiment	
v The	next	slide	shows	an	overview	of	unique		call	
paths	to	memory	calls.		

v In	this	example:		
Ø The	top	free	and	malloc	calls	are	shown	with	number	
of	Fmes	the	path	was	called.		

v For	the	malloc	call:	
Ø The	max	and	min	allocaFon	seen	on	this	path	are	
displayed.	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 116	

11/16/2015	
	

O|SS	Memory	Experiment	
expview	-v	trace,calltrees,fullstack	-mpath_counts	-m	max_alloca>on,min_alloca>on	-m	overview	
Counts								Max								Min									Call	Stack	Func>on	(defining	loca>on)	
		This		Alloca>on		Alloca>on	
		Path	
																																																_start	(lulesh2.0)	
																																																>	@	562	in	__libc_start_main	(libmonitor.so.0.0.0:	main.c,541)	
																																																>>__libc_start_main	(libc-2.18.so)	
																																																>>>	@	517	in	monitor_main	(libmonitor.so.0.0.0:	main.c,492)	
																																																>>>>	@	2392	in	main	(lulesh2.0:	lulesh.cc,2672)	
																																																>>>>>	@	2249	in	EvalEOSForElems(Domain&,	double*,	int,	int*,	int)	
(lulesh2.0:	lulesh.cc,2218)	
	32619																																				>>>>>>__cfree	(libc-2.18.so)	
																																																_start	(lulesh2.0)	
																																																	>	@	562	in	__libc_start_main	(libmonitor.so.0.0.0:	main.c,541)	
																																																	>>__libc_start_main	(libc-2.18.so)	
																																																	>>>	@	517	in	monitor_main	(libmonitor.so.0.0.0:	main.c,492)	
																																																	>>>>	@	2392	in	main	(lulesh2.0:	lulesh.cc,2672)	
																																																	>>>>>	@	2164	in	EvalEOSForElems(Domain&,	double*,	int,	int*,	int)	
(lulesh2.0:	lulesh.cc,2218)	
																																																	>>>>>>	@	125	in	GOMP_parallel_start	(libgomp.so.1.0.0:	parallel.c,123)	
																																																	>>>>>>>	@	156	in	gomp_new_team	(libgomp.so.1.0.0:	team.c,141)	
																																																	>>>>>>>>	@	37	in	gomp_malloc	(libgomp.so.1.0.0:	alloc.c,35)	
	32619							2080							2080					>>>>>>>>>__libc_malloc	(libc-2.18.so)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 117	

11/16/2015	
	

	Summary	and	Conclusions	

v Benefits	of	Memory	Heap	Analysis	
Ø Detect	leaks	
Ø Inefficient	use	of	system	memory	
Ø Find	potenFal	OOM,	paging,	swapping	condiFons	
Ø Determine	memory	footprint	over	lifeFme	of	
applicaFon	run	

v Observa>ons	of	Memory	Analysis	Tools	
Ø Less	concerned	with	the	Fme	spent	in	memory	calls	
Ø Emphasis	is	placed	on	the	relaFonship	of	allocaFon	
calls	to	free	calls.	

Ø Can	generate	large	amounts	of	data	
Ø Can	slow	down	and	impact	applicaFon	while	running	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 118	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	8	
Analysis	of	heterogeneous	codes	

11/16/2015	
	

	Emergence	of	HPC	Heterogeneous	Processing	
v Heterogeneous	compu>ng	refers	to	systems	that	use	
more	than	one	kind	of	processor.	

v What	led	to	increased	heterogeneous	processing	in	HPC?	

Ø  Limits	on	ability	to	conFnue	to	scale	processor	frequencies	
Ø  Power	consumpFon	hi|ng	realisFc	upper	bound	
Ø  Programmability	advances	lead	to	more	wide-spread,	general	
usage	of	graphics	processing	unit	(GPU).	

Ø  Advances	in	manycore,	mulF-core	hardware	technology	(MIC)	

v Heterogeneous	accelerator	processing:	(GPU,	MIC)	
Ø  Data	level	parallelism	

•  Vector	units,	SIMD	execuFon	
•  Single	instrucFon	operates	on	mulFple	data	items	

Ø  Thread	level	parallelism	
•  MulFthreading,	mulF-core,	manycore	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 120	

11/16/2015	
	

Overview:	Most	Notable	Hardware	Accelerators	

v GPU	(Graphics	Processing	Unit)	
Ø  General-purpose	compuFng	on	graphics	processing	units	
(GPGPU)	

Ø  Solve	problems	of	type:	Single-instrucFon,	mulFple	thread	
(SIMT)	model	

Ø  Vectors	of	data	where	each	element	of	the	vector	can	be	
treated	independently	

Ø  Offload	model	–	where	data	is	transferred	into/out-of	the	GPU		
Ø  Program	using	CUDA	language	or	use	direcFve	based	OpenCL	or	
OpenACC	

v Intel	MIC	(Many	Integrated	Cores)	
Ø  Has	a	less	specialized	architecture	than	a	GPU	
Ø  Can	execute	parallel	code	wrigen	for:	

•  TradiFonal	programming	models	including	POSIX	threads,	OpenMP	
Ø  IniFally	offload	based	(transfer	data	to	and	from	co-processor)	
Ø  Now/future:	programs	to	run	naFvely	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 121	

11/16/2015	
	

GPGPU	Accelerator	
GPU	versus	CPU	comparison	
v Different	goals	produce	different	designs	

Ø  GPU	assumes	work	load	is	highly	parallel	
Ø  CPU	must	be	good	at	everything,	parallel	or	not	

v CPU:	minimize	latency	experienced	by	1	thread	
Ø  Big	on-chip	caches	
Ø  SophisFcated	control	logic	

v GPU:	maximize	throughput	of	all	threads	
Ø  #	threads	in	flight	limited	by	resources	=>	lots	of	resources	
(registers,	bandwidth,	etc.)	

Ø MulF-threading	can	hide	latency	=>	skip	the	big	caches	
Ø  Shared	control	logic	across	many	threads	

*based	on	NVIDIA	presenta>on	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 122	

11/16/2015	
	

GPGPU	Accelerator	
Mixing	GPU	and	CPU	usage	in	applica>ons	
	
	
	
	
	
	
	
Data	must	be	transferred	to/from	the	CPU	to	the	GPU	in	order	
for	the	GPU	to	operate	on	it	and	return	the	new	values.	
*NVIDIA	image	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 123	

Mul>core	CPU	 Manycore	GPU	

11/16/2015	
	

	Heterogeneous	Programming	
v  There	are	four	main	ways	to	use	an	accelerator	

Ø  Explicit	programming:	
•  The	programmer	writes	explicit	instrucFons	for	the	accelerator	device	to	
execute	as	well	as	instrucFons	for	transferring	data	to	and	from	the	
device	(e.g.	CUDA-C	for	GPUs	or	OpenMP+Cilk	Plus	for	Phis).	This	method	
requires	to	most	effort	and	knowledge	from	programmers	because	
algorithms	must	be	ported	and	opFmized	on	the	accelerator	device.	

Ø  Accelerator-specific	pragmas/direc>ves:		
•  Accelerator	code	is	automaFcally	generated	from	your	serial	code	by	a	
compiler	(e.g.	OpenACC,	OpenMP	4.0).	For	many	applicaFons,	adding	a	
few	lines	of	code	(pragmas/direcFves)	can	result	in	good	performance	
gains	on	the	accelerator.	

Ø  Accelerator-enabled	libraries:		
•  Only	requires	the	use	of	the	library,	no	explicit	accelerator	programming	
is	necessary	once	the	library	has	been	wrigen.	The	programmer	effort	is	
similar	to	using	a	non-accelerator	enabled	scienFfic	library.	

Ø  Accelerator-aware	applica>ons:		
•  These	so�ware	packages	have	been	programed	by	other	scienFsts/
engineers/so�ware	developers	to	use	accelerators	and	may	require	ligle	
or	no	programming	for	the	end-user.	

	
Credit:	hgp://www.hpc.mcgill.ca/index.php/starthere/81-doc-pages/255-accelerator-overview	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 124	

11/16/2015	
	

Programming	for	GPGPU	
Prominent	models	for	programming	the	GPGPU	
Augment	current	languages	to	access	GPU	strengths	
v  NVIDIA	CUDA		

Ø  Scalable	parallel	programming	model	
Ø  Minimal	extensions	to	familiar	C/C++	environment	
Ø  Heterogeneous	serial-parallel	compuFng	
Ø  Supports	NVIDIA	only	

v  OpenCL	(Open	CompuFng	Language)	
Ø  Open	source,	royalty-free	
Ø  Portable,	can	run	on	different	types	of	devices	
Ø  Runs	on	AMD,	Intel,	and	NVIDIA	

v  OpenACC	
Ø  Provides	direcFves	(hint	commands	inserted	into	source)	
Ø  DirecFves	tell	the	compiler	where	to	create	acceleraFon	(GPU)	code	
without	the	user	modifying	or	adapFng	the	code.	

	 How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 125	

11/16/2015	
	

OpFmal	Heterogeneous	ExecuFon	
GPGPU	considera>ons	for	best	performance?	
v  How	is	the	parallel	scaling	for	the	applicaFon	overall?	

v  Can	you	balance	the	GPU	and	CPU	workload?	
Ø  Keep	both	the	GPU	and	CPU	busy	for	best	performance	

v  Is	profitable	to	send	a	piece	of	work	to	the	GPU?		
Ø  What	is	the	cost	of	the	transfer	of	data	to	and	from	the	GPU?	

v  How	much	work	is	there	to	be	done	inside	the	GPU?	
Ø  Will	the	work	to	be	done	fully	populate	and	keep	the	GPU	processors	busy		
Ø  Are	there	opportuniFes	to	chain	together	operaFons	so	the	data	can	stay	in	the	

GPU	for	mulFple	operaFons?	

v  Is	there	a	vectorizaFon	opportunity?	

Intel	MIC	considera>ons	for	best	performance?	
v  Program	should	be	heavily	threaded	

v  Parallel	scaling	should	be	high	with	an	OpenMP	version	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 126	

11/16/2015	
	

Accelerator	Performance	Monitoring		
How	can	performance	tools	help	op>mize	code?	
v  Is	profitable	to	send	a	piece	of	work	to	the	GPU?	

Ø  Can	tell	you	this	by	measuring	the	costs:	
•  Transferring	data	to	and	from	the	GPU	
•  How	much	Fme	is	spent	in	the	GPU	versus	the	CPU	

v  Is	there	a	vectorizaFon	opportunity?	
Ø  Could	measure	the	mathemaFcal	operaFons	versus	the	vector	
operaFons	occurring	in	the	applicaFon	

Ø  Experiment	with	compiler	opFmizaFon	levels,	re-measure	operaFons	
and	compare	

v  How	is	the	parallel	scaling	for	the	applicaFon	overall?	
Ø  Use	performance	tool	to	get	idea	of	real	performance	versus	expected	
parallel	speed-up	

v  Provide	OpenMP	programming	model	to	source	code	insights	
Ø  Use	OpenMP	performance	analysis	to	map	performance	issues	to	
source	code	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 127	

11/16/2015	
	

Open|SpeedShop	accelerator	support	
What	performance	info	does	Open|SpeedShop	provide?			
v  For	GPGPU	it	reports	informa>on	to	help	understand:	

Ø  Time	spent	in	the	GPU	device		
Ø  Cost	and	size	of	data	transferred	to/from	the	GPU	
Ø  Balance	of	CPU	versus	GPU	uFlizaFon	
Ø  Transfer	of	data	between	the	host	and	device	memory	versus	
the	execuFon	of	computaFonal	kernels	

Ø  Performance	of	the	internal	computaFonal	kernel	code	running	
on	the	GPU	device	

v  Open|SpeedShop	will	be	able	to	monitor	CUDA	scien>fic	libraries	
because	it	operates	on	applica>on	binaries.			

v  Support	for	CUDA	based	applica>ons	is	provided	by	tracing	actual	
CUDA	events	

v  OpenACC	support	is	scheduled		
v  OpenCL	support	is	also	scheduled	(a@er	OpenACC)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 128	

11/16/2015	
	

Open|SpeedShop	accelerator	support	
What	performance	info	does	Open|SpeedShop	provide?			
v  For	Intel	MIC	(non-offload	model):	

Ø  Reports	the	same	range	of	performance	informaFon	that	it	
does	for	CPU	based	applicaFons	

Ø  Open|SpeedShop	will	operate	on	MIC	similar	to	targeted	
pla]orms	where	the	compute	node	processer	is	different	than	
the	front-end	node	processor	

Ø  Only	non-offload	support	is	in	our	current	plans	
Ø  A	specific	OpenMP	experiment	is	coming	soon	

•  Will	help	to	beger	support	analysis	of	MIC	applicaFons	
•  OpenMP	performance	analysis	key	to	understanding	performance	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 129	

11/16/2015	
	

Open|SpeedShop	CUDA	CLI	Views	
>openss	–cli	-f	BlackScholes-cuda-0.openss	

Welcome	to	OpenSpeedShop	2.1	

[openss]:	The	restored	experiment	idenFfier	is:		-x	1	

openss>>expview	

	Exclusive									%	of	Total									Exclusive		FuncFon	(defining	locaFon)	

	Time	(ms)			Exclusive	Time									Count			
170.478194		100.000000								131		BlackScholesGPU(float*,	float*,	float*,	float*,	float*,	float,	float,	int)	(BlackScholes)	

openss>>expview	-v	Exec,Trace	

Start	Time	(d:h:m:s)		Exclusive			%	of	Total			

Grid	Dims		Block	Dims		Call	Stack	FuncFon	(defining	locaFon)	

																																						Time	(ms)		Excl	Time	

2014/12/04	00:47:18.139			1.305890			0.766016		31250,1,1		128,1,1		>BlackScholesGPU(float*,	float*,	float*,	float*,	float*,	float,	float,	int)	(BlackScholes)	

2014/12/04	00:47:18.141			1.297314			0.760985		31250,1,1		128,1,1		>BlackScholesGPU(float*,	float*,	float*,	float*,	float*,	float,	float,	int)	(BlackScholes)	

…	

2014/12/04	00:47:18.805			1.300547			0.762882		31250,1,1		128,1,1		>BlackScholesGPU(float*,	float*,	float*,	float*,	float*,	float,	float,	int)	(BlackScholes)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 130	

11/16/2015	
	

CUDA	CLI	Views	
[openss>>expview	-v	Xfer,Trace	

			Start	Time	(d:h:m:s)		Exclusive							%	of		Total																			Size										Kind		Call	Stack	FuncFon	(defining	locaFon)	

																																								Time	(ms)			Exclusive	Time																											
2014/12/04	00:47:18.127			4.060334		14.766928		16000000		HostToDevice		>>cudart::cudaApiMemcpy(void*,	void	const*,	unsigned	long,	
cudaMemcpyKind)	(BlackScholes)	

2014/12/04	00:47:18.131			3.882354		14.119637		16000000		HostToDevice		>>cudart::cudaApiMemcpy(void*,	void	const*,	unsigned	long,	
cudaMemcpyKind)	(BlackScholes)	

2014/12/04	00:47:18.135			3.893426		14.159904		16000000		HostToDevice		>>cudart::cudaApiMemcpy(void*,	void	const*,	unsigned	long,	
cudaMemcpyKind)	(BlackScholes)	

2014/12/04	00:47:18.817			8.012517		29.140524		16000000		DeviceToHost		>>cudart::cudaApiMemcpy(void*,	void	const*,	unsigned	long,	
cudaMemcpyKind)	(BlackScholes)	

2014/12/04	00:47:18.825			7.647501		27.813007		16000000		DeviceToHost		>>cudart::cudaApiMemcpy(void*,	void	const*,	unsigned	long,	
cudaMemcpyKind)	(BlackScholes)	

openss>>expview	-v	Exec,Trace	-m	Fme,grid,block,rpt	

	

Exclusive		Grid	Dims				Block		Registers		Call	Stack	FuncFon	(defining	locaFon)	

Time	(ms)																Dims								Per			

																																		Thread			

	1.305890		31250,1,1		128,1,1									15		>BlackScholesGPU(float*,	float*,	float*,	float*,	float*,	float,	float,	int)	(BlackScholes)	
	1.304930		31250,1,1		128,1,1									15		>BlackScholesGPU(float*,	float*,	float*,	float*,	float*,	float,	float,	int)	(BlackScholes)	

…	

	1.295267		31250,1,1		128,1,1									15		>BlackScholesGPU(float*,	float*,	float*,	float*,	float*,	float,	float,	int)	(BlackScholes)	

	
How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 131	

11/16/2015	
	

CUDA	Trace	View	(Chronological	order)	
openss>>expview	-v	trace	
			Start	Time(d:h:m:s)								Exclusive						%	of																Call	Stack	FuncFon	(defining	locaFon)	
																																																Call													Total	

																																															Time(ms)	
2013/08/21	18:31:21.611		11.172864		1.061071			copy	64	MB	from	host	to	device	(CUDA)	

2013/08/21	18:31:21.622			0.371616		0.035292				copy	2.1	MB	from	host	to	device	(CUDA)	
2013/08/21	18:31:21.623			0.004608		0.000438				copy	16	KB	from	host	to	device	(CUDA)	
2013/08/21	18:31:21.623			0.003424		0.000325				set	4	KB	on	device	(CUDA)	

2013/08/21	18:31:21.623			0.003392		0.000322				set	137	KB	on	device	(CUDA)	
2013/08/21	18:31:21.623			0.120896		0.011481				compute_degrees(int*,	int*,	int,	int)<<<[256,1,1],	[64,1,1]>>>	
(CUDA)	

2013/08/21	18:31:21.623		13.018784		1.236375			QTC_device(float*,	char*,	char*…,int,	bool)<<<[256,1,1],	
[64,1,1]>>>	(CUDA)	

2013/08/21	18:31:21.636			0.035232		0.003346				reduce_card_device(int*,	int)<<<[1,1,1],	[1,1,1]>>>	(CUDA)	
2013/08/21	18:31:21.636			0.002112		0.000201				copy	8	bytes	from	device	to	host	(CUDA)	
2013/08/21	18:31:21.636			1.375616		0.130640				trim_ungrouped_pnts_indr_array(int,	int*,	float*…,float,	int,	
bool)<<<[1,1,1],	[64,1,1]>>>	(CUDA)	
2013/08/21	18:31:21.638			0.001344		0.000128				copy	260	bytes	from	device	to	host	(CUDA)	

2013/08/21	18:31:21.638			0.025600		0.002431				update_clustered_pnts_mask(char*,	char*,	int)<<<[1,1,1],	
[64,1,1]>>>	(CUDA)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 132	

11/16/2015	
	

Open|SpeedShop	Accelerator	support	
What	is	the	status	of	this	Open|SpeedShop	work?	
v Completed,	but	not	hardened:	

Ø  NVIDIA	GPU	Performance	Data	CollecFon	
Ø  Packaging	the	data	into	the	Open|SpeedShop	database	
Ø  Retrieving	the	performance	data	and	forming	text	based	views	
Ø  Basic	iniFal	support	for	Intel	Phi	(MIC)	based	applicaFons.	

•  Have	gathered	and	displayed	data	on	MIC	test	bed	at	NERSC	and	at	
NASA	on	the	maia	Intel	MIC	pla]orm.	

v On	going	work	(NASA	FY15-FY16	SBIR)	
Ø  Pursue	obtaining	more	informaFon	about	the	code	being	
execuFng	inside	the	GPU	device	

Ø More	research	and	hardening	of	support	for	Intel	MIC	
Ø  Analysis	of	performance	data	and	more	meaningful	views	for	
CUDA/GPU	

Ø  Research	creaFng	GUI	based	views	based	on	iniFal	command	
line	interface	(CLI)	data	views.	

	 How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 133	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	9	
DIY	&	Conclusions	

134	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

How	to	Take	This	Experience	Home?	
v General	ques>ons	should	apply	to	...	

Ø  …	all	systems	
Ø  …	all	applicaFons	

v Prerequisite	
Ø  Know	what	to	expect	from	your	applicaFon	
Ø  Know	the	basic	architecture	of	your	system	

v Ask	the	right	ques>ons	
Ø  Start	with	simple	overview	quesFons	
Ø  Dig	deeper	a�er	that	

v Pick	the	right	tool	for	the	task	
Ø May	need	more	than	one	tool	
Ø Will	depend	on	the	quesFon	you	are	asking	
Ø May	depend	on	what	is	supported	on	your	system	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 135	

11/16/2015	
	

If	You	Want	to	Give	O|SS	a	Try?	
v Available	on	the	these	system	architectures	

Ø  AMD	x86-64	
Ø  Intel	x86,	x86-64,	MIC/Phi	
Ø  IBM	PowerPC	and	PowerPC64	
Ø  ARM:	AArch64/A64	and	AArch32/A32	

v Work	with	these	opera>ng	system	
Ø  Tested	on	Many	Popular	Linux	DistribuFons	

•  SLES,	SUSE	
•  RHEL,	Fedora,	CentOS	
•  Debian,	Ubuntu	

v Tested	on	some	large	scale	plahorms	
Ø  IBM	Blue	Gene	and	Cray	
Ø  GPU	and	Intel	MIC	support	available	
Ø  Available	on	many	DOE/DOD	systems	in	shared	locaFons	
Ø  Ask	you	system	administrator	

136	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

How	to	Install	Open|SpeedShop?	
v Most	tools	are	complex	pieces	of	so@ware	

Ø  Low-level,	pla]orm	specific	pieces	
Ø  Complex	dependencies	
Ø  Need	for	mulFple	versions,	e.g.,	based	on	MPIs	and	compilers	
Ø  Open|SpeedShop	is	no	excepFon	

•  In	many	cases	even	harder	because	of	its	transparency	

v  Installa>on	support	
Ø  Two	parts	of	the	installaFon	

•  Krell	Root	–	base	packages	
•  O|SS	itself	

Ø  Install	script	
Ø  Support	for	“spack”	now	available	

•  hgps://github.com/scalability-llnl/spack	

v When	in	doubt,	don’t	hesitate,	ask	us:	
Ø  oss-contact@openspeedshop.org	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 137	

11/16/2015	
	

Availability	and	Contact	
v Current	version:	2.2	has	been	released	
v Open|SpeedShop	Website	

Ø hgp://www.openspeedshop.org/	

v Open|SpeedShop	help	and	bug	repor>ng	
Ø Direct	email:	oss-contact@openspeedshop.org	
Ø Forum/Group:	oss-quesFons@openspeedshop.org	

v Feedback	
Ø Bug	tracking	available	from	website	
Ø Feel	free	to	contact	presenters	directly	
Ø Support	contracts	and	onsite	training	available	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 138	

11/16/2015	
	

Ge|ng	Open|SpeedShop	
v Download	op>ons:	

Ø Package	with	install	script	(install-tool)	
Ø Source	for	tool	and	base	libraries	

v Sourceforge	Project	Home	
Ø hgp://sourceforge.net/projects/openss	

v CVS	Access		
Ø  hgp://sourceforge.net/scm/?type=cvs&group_id=176777	

v Packages	
Ø Accessible	from	Project	Home	Download	Tab	
Ø Also	accessible	from	www.openspeedshop.org	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 139	

11/16/2015	
	

Open|SpeedShop	DocumentaFon	
v Build	and	Installa>on	Instruc>ons	

Ø hgp://www.openspeedshop.org/documentaFon		
•  Look	for:	Open|SpeedShop	Version	2.2	Build/Install	Guide	

v Open|SpeedShop	User	Guide	Documenta>on	
Ø hgp://www.openspeedshop.org/documentaFon	

•  Look	for	Open|SpeedShop	Version	2.2	Users	Guide		

v Man	pages:	OpenSpeedShop,	osspcsamp,	ossmpi,	
…	

v Quick	start	guide	downloadable	from	web	site	
Ø hgp://www.openspeedshop.org	
Ø Click	on	“Download	Quick	Start	Guide”	bugon	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 140	

11/16/2015	
	

Tutorial	Summary	
v Performance	analysis	cri>cal	on	modern	systems	

Ø  Complex	architectures	vs.	complex	applicaFons	
Ø  Need	to	break	black	box	behavior	at	mulFple	levels	
Ø  Lot’s	of	performance	le�	on	the	table	by	default	

v Performance	tools	can	help	
Ø  Open|SpeedShop	as	one	comprehensive	opFon	
Ø  Scalability	of	tools	is	important	

•  Performance	problems	o�en	appear	only	at	scale	
•  We	will	see	more	and	more	online	aggregaFon	approaches	
•  CBTF	as	one	generic	framework	to	implement	such	tools	

v Cri>cal:		
Ø  Asking	the	right	quesFons	
Ø  Comparing	answers	with	good	baselines	or	intuiFon	
Ø  StarFng	at	a	high	level	and	iteraFvely	digging	deeper	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 141	

11/16/2015	
	

QuesFons	vs.	Experiments	
v Where	do	I	spend	my	>me?	

Ø  Flat	profiles	(pcsamp)	
Ø  Ge|ng	inclusive/exclusive	Fmings	with	callstacks	(userFme)	
Ø  IdenFfying	hot	callpaths	(userFme	+	HP	analysis)	

v How	do	I	analyze	cache	performance?	
Ø Measure	memory	performance	using	hardware	counters	(hwc)	
Ø  Compare	to	flat	profiles	(custom	comparison)	
Ø  Compare	mulFple	hardware	counters	(N	x	hwc,	hwcsamp)	

v How	to	iden>fy	I/O	problems?	
Ø  Study	Fme	spent	in	I/O	rouFnes	(io)	
Ø  Compare	runs	under	different	scenarios	(custom	comparisons)	

v How	do	I	find	parallel	inefficiencies?	
Ø  Study	Fme	spent	in	MPI	rouFnes	(mpi)	
Ø  Look	for	load	imbalance	(LB	view)	and	outliers	(CA	view)	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	 142	

11/16/2015	
	

SC2015	Tutorial	
How	to	Analyze	the	Performance	of	Parallel	Codes	101		

A	case	study	with	Open|SpeedShop	

SecFon	10	
Hands-On	Exercises	

143	How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC'15	

11/16/2015	
	

Let’s	Get	Our	Hands	Dirty	
v Setup	

Ø  Demo	cluster	in	the	room	
Ø  O|SS	pre-installed	
Ø  Exercises	in	central	locaFon	

v More	informa>on	in	hand-outs	
v Dedicated	exercises	

Ø  Addressing	some	of	the	quesFons	in	this	tutorial	

v But:	FEEL	FREE	TO	EXPERIMENT	YOURSELF	
v Sugges>on	

Ø  Let’s	use	the	break	to	make	sure	things	are	setup	
Ø  Let’s	dive	into	hands-on	work	a�er	the	break	

How	to	Analyze	the	Performance	of	Parallel	Codes	101	-	A	Tutorial	at	SC’15	 144	

