
DOD Open|SpeedShop (O|SS) Quick Start Guide n WHAT OPEN|SPEEDSHOP PRODUCES
O|SS monitors a running application from start to finish and gathers performance data (and symbolic information
describing the application), saves it to a SQLite database file and generates a report. The symbolic information
allows the performance data to be viewed on another system without needing the application to be present.

 n PERFORMANCE INFORMATION TYPES
O|SS provides the following options, called experiments, to do specific analyses.

Experiment Description
pcsamp Periodic sampling the program counters gives a low-overhead view of where the time is being
 spent in the user application.

usertime Periodic sampling the call path allows the user to view inclusive and exclusive time spent in
 application routines. It also allows the user to see which routines called which routines. Several
 views are available, including the “hot” path and butterfly view.

hwc Hardware events (including clock cycles, graduated instructions, i- and d-cache and TLB misses,
 floating-point operations) are counted at the machine instruction, source line and function
 levels.

hwcsamp Similar to hwc, except that sampling is based on time, not PAPI event overflows. Also, up to six
 events may be sampled during the same experiment.

hwctime Similar to hwc, except that call path sampling is also included.

io Accumulated wall-clock durations of I/O system calls: read, readv, write, writev, open, close,
 dup, pipe, creat and others.

iop* Same functions as io are profiled in a light weight manner. Less overhead than io, iot.

iot Similar to io, except that per event information is gathered, such as bytes moved, file names,
 etc.

mem* Captures the time spent in and the number of times each memory function was called.

mpi Captures the time spent in and the number of times each MPI function is called.

mpip* Same functions as mpi are profiled in a light weight manner. Less overhead than mpi, mpit.

mpit Like MPI but also records each MPI function call event with specific data for display using a GUI
 or a command line interface (CLI).

mpiotf Write MPI calls trace to Open Trace Format (OTF) files to allow viewing with Vampir or
 converting to formats of other tools.

pthreads* Reports POSIX thread related performance information.

fpe Find where each floating-point exception occurred. A trace collects each with its exception type
 and the call stack contents. These measurements are exact, not statistical.

cuda* Traces all NVIDIA CUDA kernel executions and the data transfers between main memory and
 the GPU. Records the call sites, time spent, and data transfer sizes.

*CBTF Version only

 n SUGGESTED WORKFLOW
We recommend an O|SS workflow consisting of two phases. First, gathering the performance data using the
convenience scripts. Then using the GUI or CLI to view the data.

 n CONVENIENCE SCRIPTS
Users are encouraged to use the convenience scripts (for dynamically linked applications) that hide some of the
underlying options for running experiments. The full command syntax can be found in the User’s Guide. The script
names correspond to the experiment types and are: osspcsamp, ossusertime, osshwc, osshwcsamp,
osshwctime, ossio, ossiot, ossmpi, ossmpit, ossmpiotf, ossfpe plus an osscompare script. The CBTF version of
O|SS adds these additional convenience scripts for the CBTF specific experiments: ossiop, ossmem, osspthreads,
ossmpip, and osscuda. Note: If using offline version, make sure to set OPENSS RAWDATA DIR (See KEY
ENVIRONMENT VARIABLES section for info).

Program counter experiment (pcsamp) usage examples could look like this:
 o IBM iDataPlex: osspcsamp “mpirun –np 32 <full path to application>”
 o Cray: osspcsamp “aprun –n 32 <full path to application>”
 o SGI: osspcsamp “mpiexec_mpt –np 32 <full path to application>”
A full batch script example from a Cray platform (from shepard) follows:
#!/bin/bash
#PBS -q debug
#PBS -l select=3:ncpus=16:mpiprocs=16
#PBS -l walltime=00:12:00
#PBS -j oe
#PBS -l ccm=1
#PBS -N osshwcsamp
#PBS -A <account>
cd /p/home/galarowi/application_test_demos/bin
source ${MODULESHOME}/init/bash
module unload perftools
module use $PET_HOME/modules
module load openspeedshop
osshwcsamp “aprun -n 36 ./mpi-nbody-mpich-cray”

• If on a Cray platform:
 o Use this PBS command: #PBS -l ccm=1
 o Allocate an extra node if your job uses from 1 to 100 nodes, and an additional 1 node for every
 additional 100 node grouping.

Static Application Usage Information
The cbtflink command links the O|SS collectors and runtime libraries into the static executable and manages the
setting the appropriate libraries based on the collector value that is one of the inputs to cbtflink. Here is a section
of a makefile where nbody is linked normally and where cbtflink is used to link the program sampling collectors and
runtimes of O|SS into the static nbody application. Please run the cbtflink --help for more details.

SHELL = /bin/sh
.SUFFIXES: .c .o
MPIcc = cc -DUSE_MPI=1
CC = $(MPIcc)
SOURCES = nbody-mpi.c
OBJECTS = $(SOURCES:.c=.o)
CFLAGS = -g -O3 -I. -static
LDFLAGS = -g -O3 -L /opt/cray/dmapp/7.0.1-1.0502.11080.8.74.gem/lib64 -ldmapp
.c.o: nbody-mpi.c
 @echo “Building $<”
 $(CC) -c $(CFLAGS) -o $@ $<
all: nbody-static nbody-pcsamp nbody-usertime
nbody-static: $(OBJECTS)
 @echo “Linking”
 $(CC) $(OBJECTS) $(LDFLAGS) -lm -o nbody-static
nbody-pcsamp: $(OBJECTS)
 @echo “Linking”
 cbtflink --mode mpi --mpitype mpich -v -c pcsamp $(CC) $(OBJECTS) $(LDFLAGS) -lm -o nbody-pcsamp
nbody-usertime: $(OBJECTS)
 @echo “Linking”
 cbtflink --mode mpi --mpitype mpich -v -c usertime $(CC) $(OBJECTS) $(LDFLAGS) -lm -o nbody-usertime

 n ACCESS INFORMATION
The O|SS Website: http://www.openspeedshop.org
O|SS Documentation, including the O|SS Users Guide: http://www.openspeedshop.org/documentation
CBTF Information: http://sourceforge.net/projects/cbtf

To use O|SS, check with your system administrator to see if a module, dotkit, or softenv file for O|SS exists on your
system. O|SS can be installed in user directories as no root access is needed. Visit the O|SS website and click on Build
Information for install instructions.

Help email: oss-contact@openspeedshop.org. To register for access to forum questions and answers: oss-questions@
openspeedshop.org

O|SS is an open source application performance analysis tool. It gathers performance data while your application
runs and creates a sqlite3 database with performance data and symbol information from your application. O|SS
has a graphical user interface (GUI) tool to view the data, as well as a “gdb-like” command line interface (CLI) tool.
O|SS works on the application binary, so no recompilation is necessary. If your application is compiled with the –g
compiler option, O|SS can give per statement and per loop performance information, otherwise O|SS reports per
function information.

The older version of O|SS, called the offline version, writes raw performance data files to a shared file system and
then reads those files at the point the application is finished running. OS|S is transitioning away from this approach
to make the tool more scalable. The new version of O|SS, sends the raw performance data up a multi-cast network to
tool daemons, where the performance data is reduced/filtered on its way to the tool client.

Note that all statistics/metrics gathered and displayed by O|SS can be mapped back to the application source code
where they occurred.

Platforms running DOD O|SS
• Armstrong.navydsrc.hpc.mil (Cray XC30)
• Conrad.navydsrc.hpc.mil (Cray XC40)
• Copper.ors.hpc.mil (Cray XE6)
• Excalibur.arl.hpc.mil (Cray XC40)
• Garnet.erdc.hpc.mil (Cray XE6)
• Gordon.navydsrc.hpc.mil (Cray XC40)
• Haise.navydsrc.hpc.mil (IBM iDataPlex)
• Kilrain.navydsrc.hpc.mil (IBM iDataPlex)
• Lightning.afrl.hpc.mil (Cray XC30)
• Riptide.mhpcc.hpc.mil (IBM iDataPlex)
• Shepard.navydsrc.hpc.mil (Cray XC30)
• Spirit.afrl.hpc.mil (SGI ICE X)
• Thunder.afrl.hpc.mil (SGI ICE X)
• Topaz.erdc.hpc.mil (SGI ICE X)

DOD O|SS module file locations
The module file for the current version of Open|SpeedShop can be found here:
• $PET_HOME/modules/openpeedshop # new version, has new lighter weight I/O, MPI, and memory
 experiments
• $PET_HOME/modules/openspeedshop-offline # older version, but has base experiments
To see all module files in $PET_HOME/modules upon module avail, please use this command:
 module use $PET_HOME/modules
After executing the “module use” command above, to load the O|SS module file, please use the following command:
 module load openspeedshop

DOD Unique Requirements to use O|SS
• No need to recompile, though –g allows O|SS to show performance information at the statement and loop level.
 Profiling optimized code is not a problem.
• Cray specific requirements (not needed if using offline version)
 o PBS option: -l ccm=1 is needed to make the PBS node and processor value environment variables
 available to O|SS. Examples of the PBS variables used by O|SS are:
 • BC_NODE_ALLOC=2
 • BC_CORES_PER_NODE=32
 • BC_MPI_TASKS_ALLOC=64
 • PBS_NODEFILE=/var/spool/PBS/aux/2880009.pbssrv1-wlm
 o The default version of O|SS on the Cray requires extra nodes for tool daemons, which are used to reduce/
 filter the performance data coming from the application on the way to the O|SS client tools. For this to
 work, O|SS requires extra nodes (that are not part of your aprun count of nodes) for these
 daemons at a rate of one extra node for each 1-100 nodes allocated. This is not required on the IBM
 iDataplex or SGI platforms, it is due to the aprun usage on the Cray platform.

Examples for Submitting Batch Jobs Using O|SS on DOD Platforms
To use O|SS in a batch job, please consider the following:
 • Load the O|SS module file:
 o module use $PET_HOME/modules
 o module load openspeedshop
 • However, you run your application normally, put that in quotes and prefix it with the O|SS convenience script
 corresponding to the performance data you would like to gather and view. For example:
 o osspcsamp: Program counter sampling (where my program is spending time)
 o ossusertime: Call path profiling (Show call paths through program, butterfly view, who calls who)
 o Please refer to the PERFORMANCE INFORMATION TYPES and CONVENIENCE SCRIPT DESCRIPTION sections
 below for more experiment definition and convenience script information.

GENERAL O|SS INFORMATION

default: events(PAPI_TOT_CYC and PAPI_TOT_INS), sampling_rate is 100
<PAPI_event_list>: Comma separated PAPI event list
<sampling_rate>:Integer value sampling rate

n ossio, ossiop*, ossiot: I/O Experiments
ossio “<command>< args>” [default | f_t_list]
Sequential job example: ossio “bonnie++”
Parallel job example:
ossio “mpirun –np 128 IOR”
Additional arguments:
default:trace all I/O functions
ossiop “<command>< args>” [default | f_t_list]
Sequential job example:
ossiop “bonnie++”
Parallel job example:
ossiop “mpirun –np 128 IOR”
Additional arguments:
default:trace all I/O functions
ossiot “<command>< args>” [default | f_t_list]
Sequential job example:
ossiot “bonnie++”
Parallel job example:
ossiot “mpirun –np 128 IOR”
Additional arguments:
default:trace all I/O functions
< f_t_list>: Comma-separated list of I/O functions to trace, one or more of the following: close, creat,
creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, pread64, pwrite, pwrite64, read,
readv, write, and writev

n ossmem*: Memory Analysis Experiments
ossmem “<command><args>” [default | f_t_list]
Sequential job example:
ossmem “smg2000 –n 50 50 50”
Parallel job example:
ossmem “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: trace all memory functions
< f_t_list>: Comma-separated list of memory functions to trace, one or more of the following: malloc,
free, memalign, posix_mem align, calloc and realloc

n osspthreads*: POSIX Thread Analysis Experiments
osspthreads “<command><args>” [default | f_t_list]
Sequential job example:
osspthreads “smg2000 –n 50 50 50”
Parallel job example:
osspthreads “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: trace all POSIX thread functions
< f_t_list>: Comma-separated list of POSIX thread functions to trace, one or more of the following:
pthreads_create, pthreads_mutex_init, pthreads_mutex_destroy, pthreads_mutex_lock,
pthreads_mutex_trylock, pthreads_mutex_unlock, pthreads_cond_init, pthreads_cond_destroy,
pthreads_cond_signal, pthreads_cond_broadcast, pthreads_cond_wait,
and pthreads_cond_timedwait

n ossmpi, ossmpip*, ossmpit, ossmpiotf: MPI Experiments
ossmpi “<mpirun><mpiargs><command><args>” [default|f_t__list]
Parrallel job expample: ossmpi “mpirun–np 128 smg2000–n 50 50 50”
Additional arguments: default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather,....MPI_Waitsome and/or zero or more of the MPI group categories:
ossmpip “<mpirun><mpiargs><command><args>” [default|f_t__list]
Parrallel job expample: ossmpip “mpirun–np 128 smg2000–n 50 50 50”
Additional arguments: default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather,....MPI_Waitsome and/or zero or more of the MPI group categories:
ossmpit “<mpirun><mpiargs><command><args>” [default|f_t__list]
Parrallel job expample: ossmpit “mpirun–np 128 smg2000–n 50 50 50”
Additional arguments: default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather,....MPI_Waitsome and/or zero or more of the MPI group categories:
ossmpiotf “<mpirun><mpiargs><command><args>” [default|f_t__list]
Parrallel job expample: ossmpiotf “mpirun–np 128 smg2000–n 50 50 50”

Additional arguments: default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather, …. MPI_Waitsome and/or zero or more of the MPI group categories:
MPI Category Argument
All MPI Functions all
Collective Communicators collective_com
Persistent Communicators persistent_com
Synchronous Point to Point synchronous_p2p
Asynchronous Point to Point asynchronous_p2p
Process Topologies process_topologies
Groups Contexts Communicators graphs_contexts_comms
Environment environment
Datatypes datatypes
File I/O file_io

n ossfpe: FP Exception Experiment
ossfpe “<command> < args>” [default | f_t_list]
Sequential job example: ossfpe “smg2000 –n 50 50 50”
Parallel job example: ossfpe “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments: default: trace all floating-point exceptions
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or more of: inexact_result, division_
by_zero, underflow, overflow, invalid_operation

n osscuda*: NVIDIA CUDA Experiment
osscuda “<command> < args>”
Sequential job example: osscuda “eigenvalues --matrix-size=4096”
Parallel job example: osscuda “mpirun -np 64 -npernode 1 lmp_linux -sf gpu < in.lj”
*CBTF Version only

n KEY ENVIRONMENT VARIABLES

n OPENSS_RAWDATA_DIR (offline version only)
Used on cluster systems where a /tmp file system is unique on each node. It specifies the location of a shared file
system path which is required for O|SS to save the “raw” data files on distributed systems.
OPENSS_RAWDATA_DIR=”shared file system path”
Example: export OPENSS_RAWDATA_DIR=/lustre4/fsys/userid

n OPENSS_MPI_IMPLEMENTATION
Specifies the MPI implementation in use by the application; only needed for the mpi, mpit, and mpiotf experiments.
These are the currently supported MPI implementations: openmpi, lampi, mpich, mpich2, mpt, lam, mvapich,
mvapich2. For Cray, IBM, Intel MPI implementations, use mpich2. For SGI MPT, use mpich.
OPENSS_MPI_IMPLEMENTATION=”MPI impl. name”
Example: export OPENSS_MPI_IMPLEMENTATION=openmpi
In most cases, O|SS can auto-detect the MPI in use.

n OPENSS_DB_DIR
Specifies the path to where O|SS will build the database file. On a file system without file locking enabled, the
SQLite component cannot create the database file. This variable is used to specify a path to a file system with locking
enabled for the database file creation. This usually occurs on lustre file systems that don’t have locking enabled.
OPENSS_DB_DIR=”file system path”
Example: export OPENSS_DB_DIR=/opt/filesys/userid

n OPENSS_ENABLE_MPI_PCONTROL
Activates the MPI_Pcontrol function recognition, otherwise MPI_Pcontrol function calls will be ignored by O|SS.

 n INTERACTIVE COMMAND LINE USAGE
n Simple Usage to Create, Run, View Data
The CLI can be used to run experiments interactively. To invoke O|SS in interactive mode use: openss –cli
An experiment can be created, run and viewed with three simple commands, e.g.:
expcreate –f “mexe 2000” pcsamp
expgo
expview

n CLI Commands for Other Views
These interactive CLI commands may be used to view the performance data in alternative ways once an experiment
has been run and the database file exists. The command: openss –cli –f <database-filename>
loads the performance experiment. Then, the following commands may be used to view the performance
information:

When running Open|SpeedShop, use the same syntax that is used to run the application/executable outside of O|SS,
but enclosed in quotes; e.g.,
Using an MPI with mpirun: osspcsamp “mpirun -np 512 ./smg2000”
Using SLURM/srun: osspcsamp “srun -N 64 -n 512 ./smg2000 -n 5 5 5”
Redirection to/from files inside quotes can be problematic, see convenience script “man” pages for more info.

 n REPORT AND DATABASE CREATION
Running the pcsamp experiment on the sequential program named mexe: osspcsamp mexe
results in a default report and the creation of a SQLite database file mexe-pcsamp.openss in the current directory;
the report:

CPU time % CPU Time Function
11.650 48.990 f3 (mexe: m.c, 24)
 7.960 33.478 f2 (mexe: m.c,15)
 4.150 17.451 f1 (mexe: m.c,6)
 0.020 0.084 work(mexe:m.c,33)

To access alternative views in the GUI: openss –f mexe-pcsamp.openss loads the database file. Then use the GUI
toolbar to select desired views; or, using the CLI: openss –cli –f mexe-pcsamp.openss to load the database file.
Then use the expview command options for desired views.

 n CONVENIENCE SCRIPT DESCRIPTION
n osscompare: Compare Database Files
Running a convenience script with no arguments lists the accepted arguments. For the hwc scripts the accepted
PAPI counters available are listed.
osscompare “<db_file1>, < db_file2>[,<db_file>…]” [time | percent | <other metrics>] [rows=nn]
[viewtype=functions|statements|linkedobjects]>[oname=<csv filename>]
Example: osscompare “smg-run1.openss,smg-run2.openss”
Additional arguments for comparison metric:
Produces side-by-side comparison. Type “man osscompare” for more details.

n osspcsamp: Program Counter Experiment
osspcsamp “<command> < args>” [high | low | default | <sampling rate>]
Sequential job example:
osspcsamp “smg2000 –n 50 50 50”
Parallel job example:
osspcsamp “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
high: twice the default sampling rate (samples per second) low: half the default sampling rate
default: default sampling rate is 100 <sampling rate>: integer value sampling rate

n ossusertime: Call Path Experiment
ossusertime “<command> < args>” [high | low | default | <sampling rate>]
Sequential job example:
ossusertime “smg2000 –n 50 50 50”
Parallel job example:
ossusertime “mpirun –np 64 smg2000 –n 50 50 50”
Additional arguments:
high: twice the default sampling rate (samples per second) low: half the default sampling rate
default: default sampling rate is 35
<sampling rate>: integer value sampling rate

n osshwc, osshwctime: HWC Experiments
osshwc[time] “<command> < args>” [default | <PAPI_event> | <PAPI threshold> | <PAPI_event>
<PAPI threshold>]
Sequential job example:
osshwc[time] “smg2000 –n 50 50 50”
Parallel job example:
osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: event (PAPI_TOT_CYC), threshold (10000)
<PAPI_event>: PAPI event name
<PAPI threshold>: PAPI integer threshold

n osshwcsamp: HWC Experiment
osshwcsamp “<command>< args>” [default |<PAPI_event_list>|<sampling_rate>]
Sequential job example: osshwcsamp “smg2000”
Parallel job example:
osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:

July 2016

help or help commands : display CLI help text
expview : show the default view
expview –v statements : time-consuming statements
expview –v linkedobjects : time spent in libraries
expview –v calltrees,fullstack : all call paths
expview –m loadbalance : see load balance across ranks/threads/processes
expview –r <rank_num> : see data for specific rank(s)
expcompare –r 1 –r 2 –m time : compare rank 1 to rank 2 for metric equal time
list –v metrics : see optional performance data metrics
list –v src : see source files associated with experiment
list –v obj : see object files associated with experiment
list –v ranks : see ranks associated with experiment
list –v hosts : see machines associated with experiment
list –v savedviews : list the views that have been saved for immediate redisplay
expview –m <metric from above> : see metric specified
expview –v calltrees,fullstack <experiment type> <number> : see expensive call paths.
For example: expview –v calltrees,fullstack usertime2
expview –v statements <experiment-name><number> :shows the top time-consuming
shows the top two call paths in execution time.
expview <experiment-name><number> shows the top time-consuming functions. For example: expview pcsamp2
: shows the two functions taking the most time.
expview –v statements <experiment-name><number>:shows the top time-consuming
statements. For example: expview –v statements pcsamp2 :shows the two statements taking the most time.

Show a chronological list of function calls for tracing experiments: iot,mpit,mem
expview -v trace

iot experiment: Display number of bytes transferred, showing function call start and
 stop time and return value (dependent on function call)
expview -vtrace -m start_time,stop_time,retval

mpit experiment: Show origin rank, source rank, and destination rank of all MPI functions (default)
 or for a list of MPI functions (-f function1, function2,...)
expview -vtrace -m start_time,stop_time,rankid,source,dest [-f comma separated function list]
For hybrid applications, rankid can be replaced with id which shows rank:thread

mem experiment: Find the call path for the largest allocation by using metric max_bytes in the calltree view:
expview -vcalltrees,fullstack -m max_bytes
Show only the top nn call paths showing the largest allocation, mem is the experiment name and nn is the number of
paths
expview -vcalltrees,fullstack -m max_bytes mem[nn]

Tracing output can create extensive output. Directing the output in this
fashion: expview -v trace [optional args] > output_file.txt may be useful.

For more information about the Command Line Interface commands please consult the O|SS Users Guide:
http://www.openspeedshop.org/documentation

n GRAPHICAL USER INTERFACE USAGE
The GUI can be used to run experiments or to view and/or compare previously created performance database files. The
two main commands used to invoke the GUI are:
 openss: Open the GUI in wizard mode.
 openss –f database_file.openss: open a previously created file. These commonly used commands are described in
the sections below.

n GUI Source Panel
The Source Panel displays the source used in creating the program that was run during the O|SS experiment. The source
is annotated with performance information gathered while the experiment was run. Users can focus the source panel to
the point of the performance bottleneck by clicking on the performance information displayed in the Statistics Panel. In
order to see per statement statistics, build the application to be monitored with -g enabled.

n GUI Statistics Panel
The GUI can also be used to directly view performance data from a previous experiment by opening its database file. For
example: openss –f smg2000.pcsamp.openss

The GUI Statistics Panel view relates the performance data to the corresponding application source code. Clicking on
an entry in the performance data panel focuses the source panel on the function or statement corresponding to the
performance item.

The Statistics Panel toolbar icons allow alternative views of the performance data, and also built-in analysis views, e.g.,
load balance and outlier detection using cluster analysis. To aid in the selection of alternative views, a toolbar with icons
corresponding to the views is provided. The icons are colored coded: where light blue icons relate to information about
the experiment, purple for general display options, green for optional view types, and dark blue for analysis view options.

I: Information Show the metadata information such as the experiment type, processes, ranks, threads, hosts
 and other info.

U: Update Update the display with performance information from the database file.

CL: Clear Auxiliary If the user has chosen to view a time segment, a specific rank/process/thread, or a specific
Information function’s data, then when the CL icon is selected, it will clear those settings so that the next
 view is reset to show data with the original, initial settings.

D: Default Show default performance results. First use View and Display Choice buttons to select whether
 data corresponds to functions, statements, or linked objects then click D-icon.

S, down arrow: Show performance results for the source statements for the selected function.
Statement results Highlight a function before clicking this icon.
per Function

C+: Call Path Show all call paths, including duplicates, in their entirety.
Full Stacks

C+, down arrow: Show all call paths for the selected function only. Highlight a function before clicking this
Call Path Full icon. All call paths will be shown in their entirety.
Stacks Per Function

HC: Hot Call Path Show the call path in the application that took the most time.
B: Butterfly View Show a butterfly view: the callers and callees of the selected function. Highlight a function
 before clicking this icon.

TS: Time Segment Show a portion of the performance data results in a selected time segment.
Selection

OV: Optional View Select which performance metrics to show in the new performance data report.
Selection

LB: Load Balance Show the load balance view: min, max and average performance values. Only used with
View threaded or multi-process applications.

CA: Comparative Show the result of a cluster analysis algorithm run against the threaded or multi-process
Analysis View performance analysis results. The purpose is to find outlying threads or processes and report
 groups of like performing threads, processes or ranks.

CC: Custom Allow the user to create custom views of performance analysis results.
Comparison View

n GUI Manage Processes Panel
The Manage Processes panel allows focusing on a specific rank, process, or thread or to create process groups and view a
group’s corresponding data.

n GUI General Panel Info
Each view has a set of panel manipulation icons to split the panel vertically or horizontally or remove the panel from the
GUI. The icon toolbar found on far right of GUI panels is shown below.

 n CONDITIONAL DATA GATHERING
Gather performance data for code sections by bracketing your code with MPI. Pcontrol calls. MPI.Pcontrol (1) enables
gathering. MPI-Pcontrol (0) disables. OPENSS_ENABLE_MPI_PCONTROL must be set.

For more information, please visit
http://www.openspeedshop.org/documentation

