_ @ \‘A go !Naw-s

Open | SpeedShop~
Performance with Open [SpeedShop NASA

NASA Open|SpeedShop Update/Training

Jim Galarowicz: Argo Navis, Krell Institute
Greg Schultz, Argo Navis
Don Maghrak, Krell Institute
William Hachfeld, Argo Navis, Krell Institute

e fArgo Navis
N /(Technologies

open| Ss5dshor D

Webinar Preparation Underway

1. Be sure your computer audio volume is high enough to hear

2. Ifthere’s still a problem, use the “Chat Box” facility of Webex
to request a telephone callback. (The Chat box is reachable

from the green tab EErrEs at the top of your
o B TR

2 .sc:reen) e A
‘ -t bE o : .-
'.'I.‘w- w. & . .

WWW.Nasa.gov

,\»’?lrgo Navis
Technologies

Instructions for Participants

How to hear the audio (in order of preference):
1. Use your computer audio to follow the training

e This should work with Windows and Mac, but maybe not with Linux
2. Dial 650-479-3208

Participants not in the meeting room at NAS have been muted
> This should reduce cross-talk and provide everyone with better audio

Questions are welcome during the presentation:
> Ask a question in the Chat facility
* The host will be monitoring and will relay your question to the speaker
> If the question is too complicated to ask in text, call 650-479-3208 and ask
the host to unmute you in order for you to communicate by phone.

open| Ss5dshor D T

Presenters and Extended Team

A, v
1Argo Navis
Technologies

» Jim Galarowicz, Argo Navis, Krell Institute
< Greg Schultz, Argo Navis N\
» Don Maghrak, Krell Institute

< William Hachfeld, Argo Navis, Krell Institute

Open|SpeedShop extended team:

< Patrick Romero: Krell Institute

% Jennifer Green, David Montoya, Mike Mason, David Shrader: LANL
< Martin Schulz, Matt Legendre and Chris Chambreau: LLNL

» Mahesh Rajan, Doug Pase, Anthony Agelastos: SNL

» Dyninst group (Bart Miller: UW & Jeff Hollingsworth: UMD)

< Phil Roth, Mike Brim: ORNL XQ’VgO Navis
< Ciera Jaspan: CMU / - Technologies

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

/\:;qrg() e
u I n e Technologies

Section 1: Introduction to Open |SpeedShop tools
» How to use Open|SpeedShop to gather and display

> Overview of performance experiments
 Sampling Experiments and Tracing Experiments

> How to compare performance data for different application runs

Section 2: New Functionality/Experiments
» Memory (ossmem) experiment
» OpenMP augmentation and OMPTP (ossomptp) experiment
> POSIX threads (osspthreads) experiment
> Lightweight experiments (ossiop, ossmpip)
> NVIDIA CUDA tracing experiment (osscuda)

Section 3: Roadmap / Future Plans

Supplemental Information
» Command Line Interface (CLI) tutorial and examples

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 5

NASA Open|SpeedShop Availability Q e

Pleaides platform:
< module use /home4/jgalarow/privatemodules

< Module names:
> module load openspeedshop (defaults to mpt)
> module load openspeedshop.mpt
> module load openspeedshop.intelmpi
> module load openspeedshop.mvapich?2
> module load openspeedshop.openmpi

KNL cluster platform:
< module use /u/jgalarow/privatemodules

< Module names:
> module load openspeedshop (defaults to mpt)
> module load openspeedshop.mpt
> module load openspeedshop.intelmpi

For mpi* experiments use the module file that corresponds
to the MPIl implementation your application was built with.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

_ @ \‘ﬂ g N ‘w‘s
ogfies

) Open | SpeedShop~
¥y Performance with Open[SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Section 1
Introduction into Tools and Open|SpeedShop

| B | \Q’Vgo Navis
=N /(Technologies

open| Ss5dshor D

Open|SpeedShop Tool Set Q e

< Open Source Performance Analysis Tool Framework
> Most common performance analysis steps all in one tool
> Combines tracing and sampling techniques
> No need to recompile the application being monitored.
> Gathers and displays several types of performance information
> Maps performance data information to application source code

< Flexible and Easy to use
> User access through:
GUI, Command Line, Python Scripting, convenience scripts

< Scalable Data Collection
> Instrumentation of unmodified application binaries
> New option for hierarchical online data aggregation

< Supports a wide range of systems

> Extensively used and tested on a variety of Linux clusters
> Cray, Blue Gene, ARM, Intel MIC, GPU support

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Open|SpeedShop Workflow - default

\’@\rgo Navis

Technologies

mpiexec_mpt—np 4 smg2000—n 65 65 65

osspcsamp “mpiexec_mpt—np 4 smg2000—n 65 65 65”

Eile Tools telp

Open|Speedshap

= pe Sampling [1] |
Process Control

=» i (8 cont

@00 x

W Tern

Statusi[Process Loaded: Click on the "Run’ button to begin the experiment.

= stats panel [1] |

@ (1 3 x || msource Panel [1] | GO0 x
= T playchaics Exclusive CPU time in||/home/]eq/DEMOS/denos/sc2816_demos/mpi/Lu/rhs . F
[' Iei [(3 [oV L [on [g@ Showing Functions Report: ® Functions O statements Q Linked objects || = 2
T 25 integer jsti, jendi
Executables: 1u.C.256 Hosts:(16) heraio.linl.gov ... Pids: 256 Ranks: 256 Threads: 3 ‘ 2 double prectsin 4 e wes]
28 double precision tmp
K of TPy Time T[Exclusive CPU t]% of CPU TindFunction (defining locatid 29 double precision UZii, u3li, udli, uSii
B 0 o 30 double precision u21j, u3li, udlj, usl)
| 925300000 smpi_net_lookup (Libnpich 31 double precision u2ik, u3lk, udlk, uSik
312.020000 5.341720 blts {10.C.250: blts f,4) 32 double precision uziiml, u3limi, udliml, uSlimi
368 440008 D.234537 buts_ (lu.C.256: buts.f.4) a3 double precision u2ijmi, u3ijmi, udijmi, uSijmi
271210000 8119899 jatla (10.C.256: jacld.f, 34 double precision u2ikmi, u3ikmi, udikmi, uSikmi
\-235.250800 7.843266 jacu_ (lu.C.256: jacu.f,S) %
-121.930806 3.656522 ssor_ (1u.C.286: ssor.f,4) 0.610606
-75.380000 2,256839 exchange_3_ (1u.C.256: exc 38
63120000 1.885781 _GI_memcpy (libc-2.5.s0) 0. 000066
-33.640888 1.887165 prhread_spin_lock (libpthr{llll o s5a00e
22.250000 8.666154 MPID_DeviceCheck (libmpich 2.000008
21.410880 8.541085 odu_test_new_connection (1[5 350000
14.160008 8.422147 exchange_1_ (1u.C.256: exc 93.320000
-7.670008 8.220636 MPID_SMP_Check_incoming (1 [44 end do
|-7.150008 8.214067 erhs_ (1u.C.256: erhs.f,4) 45 end do
5.770000 8.172751 exact_ (lu.C.256: exact.f, 46 end do
3.710060 8.111876 MPID_SendContig (libmpich 0.020000
|-3.200008 8.995886 MPID_SMP_Eagerb_send short
\-2.200000 8.865667 MPIR_ToPointer (libmpich.s B
9.341720 -2.060000 8.961675 MPI_Recv (libmpich.so.1.6 direction flu
-1.660000 8.849789 MPID_SBalloc (libmpich,so
9.2345375. 119800 Other -1.316088 8.939221 MPID_VIA eager_send (libmp
-1.240008 8.837125 viadev_post_send (Libmpich
-1.230008 8.936826 viadev_process_send (libmp
1.170088 8.635029 MPI_Send (libmpich.so.1.e:
1.166008 8.834738 pthread_spin_unlock (libpt|
-1.160008 8.834730 MPID_Search_unexpected que
|-1.010088 8.830239 l2norm_ (lu.C.256: l2narm
8.950000 8.828443 MPID_Msg_arrived (Llibmpich[Sll|| 8. 616888
A_RGARAR A_A2AALA iade £1ibno (=
T | PR I
Command Panel | ¥ HanageProcessespanel [1] |
Processes: [Rank | [Threaa Process Sets P> TRank Thread T =
] 1 ALL
16748 1 46912529633216 A1l (258) pi...
16741 2 46912529633216 Disconnected 2 C
16742 3 46912529633216 Disconnected herad. Llnk.gov 16739 O 4612529633216
16743 4 6912529633216 Disconnected ~heraa.1lnl.gov 16740 1 6912529633216
16744 5 46912529633216 Disconnected ~herad.1llnl.gov 16741 2 46912529633216
16745 ® 6912529633216 Disconnected ~heraa.1lnl.gov 16742 3 6912529633216
16746 7 46912529633216 Disconnected = heraa.llnl.gov 16743 a 46912529633216
feren e nineancannas Riccoooociod bocoa 110y non smvar c nizansannis

‘-------

o

Open | SpeedShop*

http://www.openspeedshop.org/

April 27, 2017

Open|SpeedShop Workflow — optional

mpiexec_mpt—np 4 smg2000—n 65 65 65

osspcsamp --offline “mpiexec_mpt —np 4 smg2000—n 65 65 65”

Eile Tools telp

Open|Speedshap

= pe Sampling [1] |

W OO x
~ Process Control
= Rur X B pausc fate m Ter
Statusi[Process Loaded: Click on the "Run" button to begin the experiment.
= stats panel [1] | @ [O x || = seurce Panel [1] | Yulels
chaice 5 e
a7 & (b 5 9 L B Bas T O {Q e e T Exclusive CPU time i hm/]wms/dzmnsis:zl’la_demslwlllu/rhs.f
7 [25 integer jsti, jendl
Executables: 1u.C.256 Hosts:(16) hera1e.llnl.gov ... Pids: 256 Ranks: 256 Threads: 3 : B e Precision 21, ua1, uél]
28 double precision tm
& of CPU Time T[Exclusive CPU C]X of CPU Tind Function (defining locatid 29 double precision u21i, u3li, udli, uSii
B T 9 rhs s 30 double precision u21j, u3li, udlj, usl)
| 725.396060 21.71/808 smpi_net_iookup (libmpich 31 double precision u2ik, u3ik, udik, uSik
312 020800 8.341728 Blts (10.C.256: blts f,4) 32 double precision u2limi, u3limi, udlimi, uSlimi
308.440006 0.234537 buts_ (1u.C.256: buts.f,4) 2 :““ﬂe precision uziimi, uatiml, ustint, uSiimi
oot il Tacid (e 296: Jo0i0.f a jouble precision uzikmi, u3tkmi, udlkmi, uSikmi
|-235.250008 7.843266 jacu_ (1u.C.256: jacu.f,5) 38
-121.930000 3.650522 ssor_ (1u.c.286: ssor.f,4)| Il 5 610000
-75.380000 2.256839 exchange 3_ (1U.C.256: exc 38
63120000 1.885781 _GI_memcpy (libc-2.5.s0) 0. 000066
-33.640080 1.887165 pehread_spin_lock (libpthr{llfl o 550000
22250000 ©.600154 MPID_DeviceCheck (libmpich| | 2 Gasses
21.410880 8.541085 odu_test_new_connection (1[5 350000
11.168888 6422147 exchange_1_ (1u.c.256: exc| || 93. 326000 S—
7.676600 ©.229638 MPID_SMP_Check_incoming (1 [44 end do
7.150088 .214067 erhs_ (1u.C.256: erhs.f,4) a5 end do
5.770000 8.172751 exact_ (lu.C.256: exact.f, 46 end_do
3.716608 8.111676 MPID_SendContig (1ibmpich 0.020099
|-3.200008 8.995886 MPID_SMP_Eagerb_send short
{-2.200000 8.865867 MPIR_ToPointer (libmpich.s
9.341720 -2.066000 0.961675 MPI_Recv (libmpich.s0.1.0:
-1.660000 ©.049700 MPID_SBalloc (libmpich.so.
9.2345375. 119800 Other -1.316088 8.939221 MPID_VIA eager_send (libmp
-1.246008 8.837125 viadev_post_send (Libmpich
|-1.230080 ©.036826 viadev_process_send (Llibmp
1.170080 8.635029 MPI_Send (libmpich.so.1.e:
1.166080 8.83a738 pthread_spin_unlock (Libpt
-1, 100000 ©.634738 MPID_Search_unexpected_gue
|-1.010088 8.830239 l2norm_ (1u.C.256: l2narm
6950000 0.828443 MPID Msg arrived (Libnpich(=llll 6. 610868
A_RGARAR A_A2AALA iade £1ibno (=
I T | PR I I
Command Panel (¥ ManageProcessesPanel [1] | G0 x
Processes: [Rank | [Threaa [Status = [Frocess sets P> TRank Thread T =
o 0. ~ALL ALL
16740 1 46912529633216 0i A1l (258) pi...
16741 2 6912529633216 Disconnected & [
16742 3 6912529633216 Disconnected herad.Llnl.gov 16739 0 6912529633216
16743 4 6912529633216 Disconnected ~heraa.llnl.gov 16740 1 6912529633216
16744 5 46912529633216 Disconnected ~herad.llnl.gov 18741 2 6912529633216
16745 ® 6912529633216 Disconnected ~heraa.1lnl.gov 16742 3 6912529633216
16746 7 6912529633216 Disconnected o heraa.1lnl.gov 16743 4 6912529633216 EJ
snzia o nineancannas Riccoooociod bocoa 110y non smvar = nioanessnie

Open | SpeedShop*

http://

.E\ﬂrgo Navis

Technologies

MPI Application

o

-------J

Post-mortem

www.openspeedshop.or

April 27, 2017

Alternative Interfaces Q e

< Scripting language
> Immediate command interface _
Experiment Commands

> O|SS interactive command line (CLI) expView
e openss -cli expCompare
expStatus

List Commands
< Python module

import openss

my_ Filename=openss.FileList("'myprog.a.out™™)

my exptype=openss.ExpTypeList(*'pcsamp')

my 1d=openss.expCreate(my_ fFfilename,my exptype)

openss.expGo()

My metric_list = openss.MetricList("exclusive™)
my viewtype = openss.ViewTypeList(''pcsamp’)
result = openss.expView(my_id,my viewtype,my metric_list)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 11

A v
1Argo Navis
Technologies

Central Concept: Experiments

<+ Users pick experiments:
» What to measure and from which sources?
» How to select, view, and analyze the resulting data?

< Two main classes:

» Statistical Sampling
« Periodically interrupt execution and record location
« Useful to get an overview
 Low and uniform overhead

» Event Tracing
« Gather and store individual application events
* Provides detailed per event information
e Can lead to huge data volumes

< O|SS can be extended with additional experiments

open| Ss5dsho DT

Sampling Experiments in O|SS Q e

< PC Sampling (pcsamp)
> Record PC repeatedly at user defined time interval
> Low overhead overview of time distribution
> Good first step, lightweight overview

< Call Path Profiling (usertime)

> PC Sampling and Call stacks for each sample
> Provides inclusive and exclusive timing data
> Use to find hot call paths, whom is calling who

<+ Hardware Counters (hwc, hwctime, hwcsamp)

> Provides profile of hardware counter events like cache & TLB misses
> hwcsamp:

e Periodically sample to capture profile of the code against the chosen counter
e Default events are PAPI_TOT _INS and PAPI_TOT_CYC

> hwc, hwctime:

e Sample a hardware counter till a certain number of events (called threshold) is
recorded and get Call Stack

e Default event is PAPI_TOT_CYC overflows

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 13

Tracing Experiments in O|SS O e

< Input/Output Tracing (io, iot, iop)
> Record invocation of all POSIX I/O events
> Provides aggregate and individual timings
» Store function arguments and return code for each call (iot)
> Lightweight /O profiling because not tracking individual call
details (iop)

<+ MPI Tracing (mpi, mpit, mpip)
> Record invocation of all MPI routines
> Provides aggregate and individual timings
» Store function arguments and return code for each call (mpit)
> Lightweight MPI profiling because not tracking individual call
details (mpip)

<+ Memory Tracing (mem)
> Record invocation of key memory related function call events
> Provides aggregate and individual rank, thread, or process
timings

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017
p

Tracing Experiments in O|SS O e

<+ CUDA NVIDIA GPU Event Tracing (cuda)
> Record CUDA events, provides timeline and event timings
> Traces all NVIDIA CUDA kernel executions and the data
transfers between main memory and the GPU.
> Records the call sites, time spent, and data transfer sizes.

< POSIX thread tracing (pthreads)
> Record invocation of all POSIX thread events
> Provides aggregate and individual rank, thread, or process
timings
< OpenMP specific profiling/tracing (omptp)
> Report task idle, barrier, and barrier wait times per OpenMP

thread and attribute those times to the OpenMP parallel
regions.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

How to Run a First Experiment in O|SS? [Ias

1. Picking the experiment
> What do | want to measure?
> We will start with pcsamp to get a first overview

2. Launching the application
» How do | control my application under O|SS?
> Enclose how you normally run your application in quotes
> osspcsamp “mpirun —np 4 smg2000 —n 65 65 65”

3. Storing the results
» O]SS will create a database
> Name: smg2000-pcsamp.openss

4. Exploring the gathered data
> Howdo | interpret the data?
> O[SS will print a default report (offline version only)
> Open the GUI to analyze data in detail (run: “openss”)

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017 16
p

Example Run with Output (1 of2) Q e

< osspcsamp “mpirun —np 4 smg2000 —n 65 65 65”

Bash> osspcsamp "mpirun -np 4 ./smg2000 -n 65 65 65"

[openss]: pcsamp experiment using the pcsamp experiment default sampling rate: "100".
[openss]: Using OPENSS_PREFIX installed in /opt/ossoffv2.1u4

[openss]: Setting up offline raw data directory in /opt/shared/offline-oss

[openss]: Running offline pcsamp experiment using the command:

"mpirun -np 4 /opt/ossoffv2.1u4/bin/ossrun"./smg2000 -n 65 65 65" pcsamp"

Running with these driver parameters:
(nx, ny, nz) =(65,65,65)

<SMG native output>

Final Relative Residual Norm = 1.774415e-07
[openss]: Converting raw data from /opt/shared/offline-oss into temp file X.0.openss

Processing raw data for smg2000

Processing processes and threads ...

Processing performance data ...

Processing functions and statements ...

Resolving symbols for /home/jeg/DEMOS/workshop _demos/mpi/smg2000/test/smg2000

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 17

Example Run with Output (2 of 2) Q o

< osspcsamp “mpirun —np 4 smg2000 —n 65 65 65”

[openss]: Restoring and displaying default view for:
/home/jeg/DEMOS/workshop _demos/mpi/smg2000/test/smg2000-pcsamp.openss
[openss]: The restored experiment identifier is: -x 1

Exclusive CPU time % of CPU Time Function (defining location)
in seconds.
7.870000 43.265531 hypre_SMGResidual (smg2000:smg_residual.c,152)
4.390000 24.134140 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
1.090000 5.992303 mca_btl_vader _check_fboxes (libmpi.so0.1.4.0: btl vader fbox.h,108)
0.510000 2.803738 unpack_predefined_data (libopen-pal.so.6.1.1: opal_datatype_unpack.h,41)
0.380000 2.089060 hypre_Semilnterp (smg2000: semi_interp.c,126)
0.360000 1.979109 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
0.350000 1.924134 _ _memcpy_ssse3 back (libc-2.17.s0)
0.310000 1.704233 pack_predefined_data (libopen-pal.so.6.1.1: opal_datatype_pack.h,38)
0.210000 1.154480 hypre_SMGAXxpy (smg2000:smg_axpy.c,27)
0.140000 0.769654 hypre_StructAxpy (smg2000: struct_axpy.c,25)
0.110000 0.604728 hypre_SMGSetStructVectorConstantValues (smg2000: smg.c,379)

** View with GUI: openss —f smg2000-pcsamp.openss

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 18

Default Output Report View

File Tools Help

(%] pe Sampling [1] |

Toolbar to switch
VIews

@ P S
Performance Data

Default view: by Function
(Data is sum from all
processes and threads)
Select “Functions”, click D-icon ¢ @ & x

Ypen|SpeedShop

=y Rin

"Pm-cess Control

A @@ Showing Functions Report:

’7Q Functions (3 Statements () Linked Objects) Loops

Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4

% of CPU Time Exclusive CPU time in seconds. | % of CPU Time Function (defining location) =
- 7870000 43.265531 hypre_SMGResidual (smg2000: smg_residual.c,152)
24.134140 - 4, 390000 24134140 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
- 1.090000 3.992303 mca_btl_vader check_fboxes (libmpi.so.1.4.0: btl_vader_fbox.h,108)
5.992303 - 0.510000 2.803738 unpack_predefined_data (libopen-pal.so.6.1.1: opal_datatype_unpack.h,41)
5 803738 2.089060 hypre_Semi[nter[? (smg2000: semi__in[erp.-c,125)
1.979109 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
2.089000 1.924134 __memcpy_sssed_back (libc-2.17.50)
1.704233 pack_predefined_data (libopen-pal.s0.6.1.1: opal_datatype_pack.h,38) -
other .. (1 710000 1 154480 hunre SMEAvry feme 000 emr avnu o 3T b
Il []
Command Panel - R [0 0 =
e = Gra hltcatl

Open | SpeedShop*

Performance Analysis with Open|SpeedShop

April 27, 2017

Statement Report Output View

Performance Data
View Choice: Statements

File Tools Help

. s
1Argo Navis
Technologies

(71 pe Sampling [1] Select “statements, click D-icon CWE X
Process Control

’7Q Bim |sp Gont | Pausc ¥ Updaic M Terminate
StatllS:IProcess Loaded: Click on the "Run” button to

(% Source Panel [1] | [¥] Stats Panel B[O x

lay Choice
@ ﬁ E_ I}I Iﬁl & Ee S]lO“"I]]g Statements Rﬁ]}OlT Statements o Linked DbjﬁCTS o LOO]JS ‘I

Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4
% of CPU Time Exclusive CPU time in seconds. | % of CPU Time Statement Location (Line Number) =
t - 6.350000 38.438257 smg_residual.c(291)
8.353511 - 1.380000 8.353511 cyclic_reduction.c(1130)

-+ 0,.920000 5.569007 smg_residual.c(23
5.509007 - 0.890000 5.387400 cyclic_reduction.c(OY)
5.387400 - (0.550000 3.329298 cyclic_reduction.c(9%

- 0,450000 2723971 btl_vader_fbox.h(121)
3.320298 - 0.270000 1.634383 cyclic_reduction.c(1061)

- (. 270000 1.634383 semi_restrict.c(262) E
other .. (1 DAENNNN 1 573850 curlic_raductinn ~f@5 Il

Command Panel

Bz [0 O =

OpEnss= =

Statement in Program that
took the most time

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

A v
1Argo Navis
Technologies

Associate Source & Performance Data

Open|SpeedShop
File Tt

Double click toopen =~ Use window controls to A

Fm source window -~ split/arrange windows
= - M| Terminate

Stal'llS:IPmcess Loaded: Click on the "Run” l"fon to begin the experiment.

[Stats Panel [1] | g [0 O = || I Source Panel [1] g [0 0 =

View/Displa Exclusive CPU t|| /home/jeg/DEMOS/test_workshop_demos/mpi/smg2000/struct_ls/smg_residual.c

0 oL (0 S 6V LB oh Gestow snmmnem--(o uncor

283 A data_box, start, base_stride, Ai,
Executables: smg2000 Host: localhost Pids: 4 Ranks:\§ Threads: 4 284 x_data_box, start, base_stride, xi,
— 285 r_data_box, start, base_stride, ri);
Exclusive CPU ime in seconds. | % of CPU Time tement Location (Line Numbg— 286 #define HYPRE_BOX_SMP_PRIVATE loopk, loopi,loopj, Al,xi i
287 #include "hypre_box_smp_forloop.h”
- 1.380000 8.353511 cyclic_reduction.c(1130) 288
- (.920000 5.569007 smg_residual.c(239) 0.230000
- 0.890000 5.387409 cyclic_reduction.c(910)
- 0.550000 3.320208 cyclic_reduction.c(999) >> 6.350000
- 0,450000 2723971 btl_vader_fbox.h(121)
- 0.270000 1.634383 cyclic_reduction.c(1061) 0220000
- (. 270000 1.634383 semi_restrict.c(262) E
.. (1 PANNN 1 573850 cuclic reduction (8571 Il
| Il I 2]

Command Panel | [ManageProcessesPanel [1]

Processes: |, | Rank | Thread | status | Process Sets) [Rank | Thread |
11531 0 139906099825280 Disconnected < Dynamic [

11532 1 139901680468864 Disconnected L deAl Selected perfor‘mance

11533 2 140051826038752 Disconnected £ Discon

data point

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Library (LinkedObject) View

. s
1Argo Navis
Technologies

Open|SpeedShop

Select LinkedObiject

File Tools Help

[#] pc Sampling [1] = iz [0 0 =
— View type and Click
’7 i [Gont | Pause B Updare On D-Icon W Terminate
Starus:IProcess Loaded: Click on the "Run” button to begin the experiment.
(% Source Panel [1] | [¥ Stats Panel B OO X
. . —View/Display Choice
o el (BA (8@ Showing Linked Objects Report... () Functions (3 Statements @ Linked Objects (3 Loops ‘
Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4
% of CPU Time Exclusive CPU time in seconds. | % of CPU Time LinkedObject
14.230000 78.143877 smg2000
1.960000 10.763317 libmpi.so.1.4.0
10.763317 1.300000 7.138935 libopen-pal.s0.6.1.1
0.700000 3.844042 libc-2.17.50
7.138935 0.010000 0.054915 pesamp-rt-offline.so
----- 0.010000 0.054915 libmonitor.s0.0.0.0
3.844042

Command Panel |

wpens>> Shows time spent in
libraries. Can indicate L o
Imbalance. Libraries in the application ———

Performance Analysis with Open |SpeedShop April 27, 2017

Loop View

. s
1Argo Navis
Technologies

Open|SpeedShop

Select Loops

File Tools Help

= pe Samplng 1 View type and Click & 0o
’7* Riim | Gont | Pause ¥ Update On D-Icon M Terminate

Starus:lecess Loaded: Click on the "Run” button to begin the experiment,

(¥ Source Panel [1] | (¥ Stats Panel B OO x

. : View,/Display Choice
" U 6L (s 16V LB leA Be Showing Loops Report.. (O Functions (3 Statements () Linked Objects @ Loops
Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4
% of CPU Time Exclusive CPU time in seconds. | % of CPU Time Loop Start Location (Line Number| =
- 7870000 28.754110 smg_residual.c(205)
T 672634 - 2,100000 7.672634 cyclic_reduction.c(882)
-+ 1.980000 7.234198 cyelic_reduction.c(1022)
7.234198 --1.050000 3.836317 smg_residual.c(237)
3.836317 -+ 1.050000 3.836317 smg_residual.c(220)
[- 1,050000 3.836317 smg_residual.c(237)
3.836317 - 1.040000 3.799781 smg_residual.c(237)
3.690172 btl_vader_fbox.h(117)
R 1.607600 opal_datatype_unpack.h(65) =
Command Panel | GO0 =x
openss> = .)
Shows time spent in loops.
P P Statement number of start
of loop.
&

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

"‘t . Y :
1Argo Navis
Technologies

< Place the way you run your application normally in quotes
and pass it as an argument to osspcsamp, or any of the other

experiment convenience scripts: ossio, ossmpi, etc.
> osspcsamp “mpiexec_mpt —np 64 ./mpi_application app_args”

<+ Open|SpeedShop sends a summary profile to stdout
<+ Open|SpeedShop creates a database file

< Display alternative views of the data with the GUI via:
> openss —f <database file>

< Display alternative views of the data with the CLI via:
> openss —cli —f <database file>

< On clusters, need to set OPENSS _RAWDATA_DIR

> Should point to a directory in a shared file system
» Usually set/handled in a module or dotkit file.

< Start with pcsamp for overview of performance
< Then, focus on performance issues with other experiments

First Experiment Run: Summary

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

A, v
1Argo Navis
Technologies

ldentifying Critical Regions

Flat Profile Overview

<+ Profiles show computationally intensive code regions
> First views: Time spent per functions or per statements

< Questions:
> Are those functions/statements expected?
> Do they match the computational kernels?
> Any runtime functions taking a lot of time?

<+ ldentify bottleneck components
> View the profile aggregated by shared objects (LinkedObject
view)
» Correct/expected modules?
> Impact of support and runtime libraries

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017 25
p

_ @ \‘ﬂ g N ‘w‘s
ogies

| Open | SpeedShop” NSN
Y Performance with Open [SpeedShop W

NASA Open[SpeedShop
Update/Training

Call Path Profiling (usertime)

KRELL

| B | \@”go Navis
:&n.,_.,*- — /(Technologies

open| Ss5dshor D

Call stack profiling Q@ e

<+ Call Stack Profiling
» Take a sample: address inside a function
» Call stack: series of program counter addresses (PCs)
» Unwinding the stack is walking through those addresses
and recording that information for symbol resolution later.
» Leaf function is at the end of the call stack list

<+ Open|SpeedShop: experiment called usertime
» Time spent inside a routine vs. its children
» Time spent along call paths in the application
» Key view: butterfly

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017
p

,\»’?lrgo Navis
Technologies

< Missing informationin flat

profiles
> Distinguish routines called from
multiple callers
» Understand the call invocation
history
> Context for performance data

Adding Context through Stack Traces

< Critical technique: Stack traces
> Gather stack trace for each
performance sample
> Aggregate only samples with
equal trace

<+ User perspective:
> Butterfly views
(caller/callee relationships)
> Hot call paths

* Paths through application that
take mosttime

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

,f\,@\rgo Navis
Technologies

Inclusive vs. Exclusive Timing

< Stack traces enable
calculation of

inclusive/exclusive times
> Time spent inside a function

only (exclusive)
* See: Function B
> Time spent inside a function and

its children (inclusive)
* See Function C and children

Function
C

< Implementation similar to flat

profiles
> Sample PC information
> Additionally collect call stack
information at every sample

< Tradeoffs
> Pro: Obtain additional context
information
» Con: Higher overhead/lower
sampling rate

Inclusive Time for C

Exclusive Time for B

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

A s
1Argo Navis

Technologies

Interpreting Call Context Data S

<+ Inclusive versus exclusive times
> If similar: child executions are insignificant
* May not be useful to profile below this layer

> If inclusive time significantly greater than exclusive time:
* Focus attention to the execution times of the children

< Hotpath analysis
> Which paths takes the most time?
> Path time might be ok & expected, but could point to a problem

< Butterfly analysis (similar to gprof)

> Could be done on “suspicious” functions
* Functions with large execution time
* Functions with large difference between implicit and explicit time
e Functions of interest
e Functions that “take unexpectedly long”

> Shows split of time in callees and callers

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 30

,\»’?lrgo Navis
Technologies

In/Exclusive Time in O|SS: Usertime

Basic syntax:
ossusertime “how you run your executable normally”

Examples:
ossusertime “smg2000—-n 50 50 50”
ossusertime “smg2000—-n 50 50 50” low

< Parameters
Sampling frequency (samples per second)
Alternative parameter: high (70) | low (18) | default (35)

Recommendation: compile code with —g to get statements!

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 31

,\,»’Elrgo Navis
Technologies

Reading Inclusive/Exclusive Timings

% Default View
> Similar to pcsamp view from first example
> Calculates inclusive versus exclusive times

Eile Tools Help

[#] Custom Experiment [1] | "] User ~ EXC! US ive N I nCI_US ive g [0 H =

Process Control TI I I le = TI me
{ - 3 > _ =
Statuszl Loaded saved data from file /homefjeg/deg¥s/openmpi/hydra-usertime-2.opens;
[W] Stats Panel [2] I [ManageProcessesEgffEl [2] | ¥ Source Panel [2] B OO =

2 . View/Display Choice
ETW E.E‘ E ET = ing gl ’76' Functions ¢ Statements { Linked Objects ‘

Exclusive CPU time in sg : Function (defining location)
B 282.228566 282.228566 72.862728 do_work (hydra: hydra.c,12)

- 51.771428 89.199998 13.365789 opal_progress (libopen-pal.s0.0.0.0)

- 40.257142 40.285713 10.393155 mca_btl_sm_compeonent_progress (mca_btl_sm.so: btl_sm_frag.c.0)

- 10.285714 10.285714 2.655455 mca_pml_obl_progress (mca_pml_obl.so: pml_obl_start.c,0)

- 2.714286 84.514284 0.700745 mca_pml_obl_recv (mca_pml_obl.so: pml_obl_start.c,0)

- 0.028571 0.028571 0.007376 poll {libc-2.10.1.s0)

- 0.028571 2.457143 0.007376 ompi_request_default_wait_all (libmpi.s0.0.0.1)

- 0.028571 0.028571 0.007376 mca_pml_obl_recv_frag_callback_match {(mca_pml_obl.so: pml_obl_stal
| RS | |

Command Panel B [B =

Openss>=>

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Stack Trace Views: Hot Call Path

,Argo Navis
Technologies

Open|SpeedShop
File Tools Help

& User Time [1] | B 00O x

Hot Call Path

Process Control

= Bun (% Gont: »| Pause B Update srminate
StatuS:IProcess Loaded: Click on the "Run" to begin the experiment.
[¥] Stats Panel [1] | #®Mana sesPanel [1] | B OO=x

o oLl Ei@'@ 3 78 [0V [LB lea 6@ Showing Hot Callpath Report:

Executables: sm ost: localhost Pids: 2 Ranks: 2 Threads: 2

econds. | Inclusive CPU time in seconds.| % of Total Exclusive CPU | Call Stack Function (d g location)
_start (smg2000)
@ 556 in __libc_startgain (libmonitor.s0.0.0.0)
__libe_start_main (ljfc-2.14.90.s0)

ain (libmonitor.s0.0.0.0)

g2000: smg2000.c,21)

Exclusive CPU ti

@ 510 in main
@ 65 in HYP
@ 168 in hypf'e SMGSolve (smg2000: smg_solve.c,57)

k _start (smg2000) =

Cre - 1:1 121 H oo oo

Access to call paths: abo~
o All call paths (C+)

« All call paths for
selected function (CW) |

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

. s
1Argo Navis
Technologies

Stack Trace Views: Butterfly View

< Similar to well known “gprof” tool

Open|SpeedShop

File Tools Help Callers of .
 User Time 1] | “hypre_SMGSolve” o«

"Process Control —

= Bun % Gont || Pause 3 Update M| Terminate

Status:IProcess Loaded: Click on the "Run" button to begin the experiment.

¥ Stats Panel [1] I #ManageProcessesPanel [1] | OO =

=" oL (s " &P e [TS o (<5 LB iea ige Showing Butterfly Report:

Executables: smg2000 Host: localhost Pids: 2 Ranks: 2 Threads: 2

Inclusive CPU time in sec1| % of Total Inclusive CPU | Call Stack Function (defining 1 on)
48.971428 98.336202 HYPRE StructSMGSolve (smg2000: HYPRE struct smg.c,64)
~0.828571 1.663798 hypre_SMGRelax (smg2000: smg_relax.c,228)

48.657142 97.705106 K hypre_SMGRelax (smg2000: smg_relax.c,228)
~0.771429 1.549053 hypre_SMGResidual (smg2000: smg_residual.c,152)
~0.114286 0.229489 hypre_Semilnterp (smg2000: semi_interp.c,126)

0.171429 0.344234 hypre_StructInnerProd (sm . struct_innerprod.c,32)

~0.057143 0.114745 hypre_SemiRestrict (smg2000: semi ict.c,125)
0.028571 0.057372 hypre_StructAxpy (smg2000: struct_axpy.c,

Callees of
“hypre_SMGSolve”

Pivot routine
“hypre_SMGSolve”

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 34

Demonstration: Call path profiling

<+ Usertime experiment related application exercise

< Call path profiling exercises can be found in these

directories:
» SHOME/exercises/seq_smg2000
» SHOME/exercises/smg2000
> SHOME/exercises/lulesh2.0.3

Open | SpeedShop~ Performance Analysis with Open|SpeedShop April 27, 2017

_ @ \‘ﬂ g N ‘w‘s
ogfies

) Open | SpeedShop~
¥y Performance with Open[SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Performance Analysis related to accessing
Hardware Counter Information

o ’Navis

KRELL B /(Technologies

open| Ss5dshor D

'y S g
1Argo Navis
Technologies

<+ Timing information shows where you spend your time
> Hot functions / statements / libraries
> Hot call paths

|dentify architectural impact on code inefficiencies

< BUT: It doesn’t show you why
> Are the computationally intensive parts efficient?
> Are the processor architectural components working optimally?

<+ Answer can be very platform dependent
> Bottlenecks may differ
> Cause of missing performance portability
> Need to tune to architectural parameters

< Next: Investigate hardware/application interaction
> Efficient use of hardware resources or Micro-architectural
tuning
» Architectural units (on/off chip) that are stressed

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017
p

The O|SS HWC Experiments O e

<+ Provides access to hardware counters
> Implemented on top of PAPI
» Access to PAPI| and native counters
> Examples: cache misses, TLB misses, bus accesses

<+ Basic model 1: Timer Based Sampling: hwcsamp
> Samples at set sampling rate for the chosen events
> Supports multiple counters
> Lower statistical accuracy
» Can be used to estimate good threshold for hwc/hwctime

< Basic model 2: Thresholding: hwc and hwctime
> User selects one counter
> Run until a fixed number of events have been reached

> Take PC sample at that location
e hwctime also records stacktrace

> Reset number of events
> ldeal number of events (threshold) depends on application

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Examples of Typical Counters . W

PAPI L1 DCM L1 data cache misses high
PAPI L2 _DCM L2 data cache misses high/medium
PAPI L1 DCA L1 data cache accesses high
PAPI_FPU_IDL Cycles in which FPUs are idle high/medium
PAPI_STL_ICY Cycles with no instruction issue high/medium
PAPI_BR_MSP Miss-predicted branches medium/low
PAPI_FP_INS Number of floating point instructions high
PAPI_LD_INS Number of load instructions high
PAPI_VEC_INS Number of vector/SIMD instructions high/medium
PAPI_HW_INT Number of hardware interrupts low
PAPI_TLB TL Number of TLB misses low

Note: Threshold indications are just rough guidance and depend on the application.

Note: counters platform dependent (use papi_avail & papi_native avail)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 39

A s
1Argo Navis

Recommend start with HWCsamp Q e

< osshwcsamp “<command>< args>” [default

|<PAPI_event_list>|<sampling_rate>]

> Sequential job example:
e osshwcsamp “smg2000”

> Parallel job example:
e osshwcsamp “mpirun —np 128 smg2000 —n 50 50 50” PAPI_L1_DCM,PAPI_L1_TCA

50
> Default events: PAPI_TOT_CYCand PAPI_TOT _INS

> Default sampling_rate: 100

> <PAPI_event_list>: Comma separated PAPI event list (Maximum of
6 events that can be combined)

> <sampling_rate>:Integer value sampling rate

<+ Use event count values to guide selection of thresholds for
hwc, hwctime experiments for deeper analysis

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Selecting the Counters & Sampling Rate

A v
1Argo Navis
Technologies

< For osshwcsamp, Open|SpeedShop supports ...

> Derived and Non derived PAPI presets
 All derived and non derived events reported by “papi_avail”

e Ability to sample up to six (6) counters at one time; before use test with
— papi_event_chooser PRESET <list of events>

* If a counter does not appear in the output, there may be a conflict in the
hardware counters

> All native events

e Architecture specific (incl. naming)
 Names listed in the PAPI documentation
* Native events reported by “papi_native_avail”

<+ Sampling rate depends on application

» Overhead vs. Accuracy
 Lower sampling rate cause less samples

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 41

hwcsamp with miniFE (see mantevo.org) frenie

% osshwcsamp “mpiexec—n 72 miniFE.X —nx 614 —ny 614 —nz 614” PAPI_DP_OPS,PAPI_L1_DCM,PAPI_TOT_CYC,PAPI_TOT_INS

< openss —f miniFE.x-hwcsamp.openss

= AnanlisnaedShop (on uno-login1} [—)[e][x]
File Tools Help
< HWCSamp P Also have pcsamp Up to six event can be .
Process Control - 1 f i d 1 I d H h 4
InTormation ISplayed. ere we nave 4.
= Run I%C B Terminate
Status:IPrncess [IGEGE RV EORGERR un" butt n to be, ‘n the experiment|
[Stats Panel [1] | #IManageProcessesPandlf [1] | Bz 00O =
View/Display Ch
" oL [(s 6V [LB oA e Showjllg Functions Rep®g: ’7" Functions -~ f@Btatements -~ Linked Objects -~ Loops
Executables: /gpfs1/mrajan/oss_sc14_mini iniFE-2.0_mkl/src/n - E.x Hosts:(9) uno159 ... Pids: 72 Ranks: 72 TI ds: 1 I
% of CPU Time UEMMmcwmmm%ﬂ%MCHHWe|mi®jm papi_I1_dem papi_tot_cyc |mMﬁUm Fmﬂm@ﬁWMmmm}
-2253.430000 47.873611 2824672149050 291551937219 6989975219262 8952967031967 mkl_spblas_Ip64_desrOng__c__mv
-447.660000 9.510435 87267523822 7738661859 903705759149 1039254165063 __Gl_epoll_wait (lib64/libc-2.12.50
9.510435 -421.040000 8.944300 831606939512 3626363789 1341678035775 2311136732678 void miniFE::perform_element_loop
-374.450000 7.955106 472834291021 30726897002 1094184657537 532891650221 mkl_blas_daxpby (foptintel-12.1/mk
8.944900 241.230000 4361118141 768295120029 1170840620681 itOp=<miniFE::CSRMa
: -230.740000 4.902019 456917366559 1985851369 735787515693 1267123401365 void miniFE::Hex8:diffusionMatrix_
-202.540000 4.302916 1647949388 589250201 645977293841 875225391031 void miniFE:impose_dirichlet<minil
7.955106 —127.260000 2.703610 184233405196 15545928811 400531304861 310351177239 mkI_blas_xddot (foptintel-12.1/mkl/
-78.900000 1.676213 155934713579 713587396 251575572613 432357079682 void miniFE::get_elem_nodes_and_
5.124877 -46.800000 0.994255 8479608341 748205444 94333323140 109592763431 opal_progress (/optiopenmpi-1.6-int
-42.960000 0.912675 8832226710 776687330 87613448245 100107292999 opal_eveni_base_loop (/opt/openm
-37.680000 0.800503 17557210051 477783784 120071360670 194746931361 std::_ Rb_tree decrement(std:_Rb_
jother -32.640000 0.693429 6349358453 564732359 66230897286 76323494900 epoll_dispaich (foptopenmpi-1.6-ini
L24 aannnn n R20R32 24nNing 21RA21QKAQ7 201N7%1 701 et iartnr—dniihla ctd-allaratar—dr kil
=
Command Panel B[00 =

openss>>

Open|SpeedShop

Deeper Analysis with hwc and hwctime

A, v
1Argo Navis
Technologies

» osshwc[time] “<command> < args>” [default | <PAPI_event> |
<PAPI threshold> | <PAPI_event><PAPI threshold>]

> Sequential job example:

e osshwc[time] “smg2000 —n 50 50 50” PAPI_FP_OPS 50000
> Parallel job example:

e osshwc[time] “mpirun —np 128 smg2000 —n 50 50 50”

<+ default: event (PAPI_TOT_CYC), threshold (10000)
< <PAPI|_event>: PAPI event name
<+ <PAPI threshold>: PAPI integer threshold

<+ NOTE: If the outputis empty, try lowering the
<threshold> value. There may not have been enough PAPI
event occurrences to record and present

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 44

,Argo Navis

Technologies

-

Viewing hwc Data

<+ hwc default view: Counter = Total Cycles

(S Open|SpeedShop - + X

File Tools Help

[% HW Counter [1] |

Flat hardware counter profile = *
of a single hardware counter
event.

Exclusive counts only

Run |* Cont *l Pause ’ Update
= P

ate

|'P‘mness Control

Status: IPmn:ess Loaded: Click on the "Run” button to begin the experiment.

[#] Stats Panel [1] I | ManageProcessesPanel [1]

2w oL [[$ 6V LB ien lge Showing Functions Report

Executables: smg2000 Host: localhost.localdomain Processe

e [0 O X%
’r“.fiewf[)isplay Choice |

“* Functions -~ Statements -~ Linked Objects

s/Threads:(2) 0 ...

(-

% of Total PAPL TOT_CYC Counts || gy jysive PAPI_TOT CYC % of Total PAPI_TOT_CY| Function (defining location)

31.045751634 — 760000000 3.104575163 hypre_Semilnterp (smg2000: semi_interp.c,126)

T L 720000000 2.941176471 hypre_SemiRestrict (smg2000: semi_restrict.c,125)

2941176471 — 340000000 1 .3888881&!9 mea_btl_sm_component_progress (libmpi.so.0.0.2: to)

1.388888889 — 340000000 1.388888889 __GI_memcpy (libc-2.10.2.50)

1.388888889 — 320000000 1.307189542 opal_progress (libopen-pal.s0.0.0.0)

1.307189542 L 240000000 0.980392157 hypre_SMGSetStructVectorConstantValues (smg2000: s -

; . | . —

Command Panel R [OOH=X

openss> >

Open | SpeedShop*

Performance Analysis with Open|SpeedShop

-

April 27, 2017

Viewing hwctime Data

. s
1Argo Navis
Technologies

hwctime default view: Counter = L1 Cache Misses

= Open|SpeedShop

File Tools

- % X
Help

(%) HWCTime Panel [1] I

* Run |" Cont *| Pause

Process Control
|7 B update

Status: IPmcess Loaded: Click on the "Run” button to begin the experiment.

[#] Stats Panel [1] I [ManageProcessesPanel [1] |

2" oL [(b (6" (€3 He [s lov LB i ige showing sta

Calling context hardware O x
counter profile of a single
hardware counter event. **
Exclusive/lnclusive counts —

BR[O =
/Display Choice |

++ Functions “* Statements -~ Linked Objects

Executables: smg2000 Host: localhost.localdomain Processes/R;

(-
iy

% of Total Exclusive PAPI_L1_DCM Counts ' [gy o1y sive PAPI L1_DCM (Inclusive PAPI_L1_DCM (% of Total Exclusive PAP| Statement Location (Line Numb.
- 232500000 232500000 36.729857820 smg_residual.c(289)
- 56250000 56250000 X s.886255924 eyelic_reduction.c(1130)
L 51000000 51000000 8.056872038 smg_residual.c(287)
L 45750000 45750000 7.227488152 cyclic_reduction.c(998)
L 45000000 45000000 7.109004739 cyclic_reduction.c(910)
-843601896 23250000 23250000 3.672985782 smg_residual.c(238)
B - 21000000 21000000 3.317535545 evelic reduction.c(753)]
=
Command Panel R O-H=X
openss:> >

Open | SpeedShop*

Performance Analysis with Open|SpeedShop

April 27,

2017

_ @ \‘ﬂ g N ‘w‘s
ogfies

) Open | SpeedShop~
¥y Performance with Open[SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Performance Analysis related to
application 1/O activity

| B | \Q’Vgo Navis
=N /(Technologies

open| Ss5dshor D

/O analysis with O|SS Q e

< 1/0 Tracing (io experiment)
> Records each event in chronological order
» Provides call path and time spent in I/O functions

< 1/0 Profiling (iop experiment)
» Lighter weight I/O tracking experiment
» Trace 1/0O functions but only record individual callpaths not
each individual event with callpath (Like usertime)

< Extended 1/0O Tracing (iot experiment)
> Records each event in chronological order

> Collects Additional Information
e Function Parameters
* Function Return Value

» When to use extended 1/0 tracing?
e When you want to trace the exact order of events
 When you want to see the return values or bytes read or written.
e When you want to see the parameters of the |0 call

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Running I/O Experiments Q

Offline io/iop/iot experiment on sweep3d application

Convenience script basic syntax:

ossio[p][t] “executable” [default | <list of I/0 func>]

> Parameters

* 1/0 Function list to sample(default is all)
e creat, creat64, dup, dup2, Iseek, Iseek64, open, open64, pipe,
pread, pread64, pwrite, pwrite64, read, readv, write, writev

Examples:

0ssio “mpirun—np 256 sweep3d.mpi”
ossiop “mpirun—np 256 sweep3d.mpi” read,readv,write

ossiot “mpirun —np 256 sweep3d.mpi” read,readv,write

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 49

/O output via GUI Q@ e

< 1/O Default View for IOR application “io” experiment

Open|SpeedShop
File Tools Help

Shows the aggregated time

IEIID[lll 10 x

Proces Control spent in the 1/O functions
{"’ il traced during the application. " |

Starus:IPmcess Loaded: Click on the "Run” button to begin the experiment.

() Stats Panel [1] | (wManageProcessesPanel [1] | B OO x

View/Display Choice
2w oL [(6" & He [T 6V LB (6A el Shoving Functions Repor {g Funcions TI

Executables: I0R Host: localhost Pids: 4 Ranks: 4 Threads: 4

% of Total Exclusive [/O Call Time(ms) /| % of Total Number of Calls Function (defining location)
- 186.219902 06.427264 8 open64 (libpthread-2.17.50)
- 5.001180 2.636284 16 __write (libpthread-2.17.50)
- 1.733611 0.897688 16 read (libpthread-2.17.s0)
- 0.047646 0.024672 32 __Iseek64 (libpthread-2.17.50)
.0.027214 0.014002 8 close (libpthread-2.17.s0)

I I [If

Command Panel BB [H =

Openss > >

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

. s
1Argo Navis
Technologies

< 1/O Call Path View for IOR application “io” experiment

/O output via GUI

Open|SpeedShop
File Tools Help

Shows the call paths to the

= 10 [1] - 20 0 =
mcﬂlm] I/0O functions traced and the =~~~
’7 = [| Gont | Danse ¥ Update ti me Spent al Ong the pathsl Terminate
Starus:lprocess Loaded: Click on the "Run" button to begin the experiment.
(¥ Stats Panel [1] | ¥ ManageProcessesPanel [1] | 0O X
T el e el He = 7 5V LB ea e showing Hot Callpath Report:
Executables: IOR Host: localhost Pids: 4 Ranks: 4 Threads: 4
Exclusive I/O Call Time(ms) | % of Total | MNumber of Call Stack Function (defining location) =
: _start (IOR) -
= @ 562 in __libc_start_main (libmonitor.sg0.0.0: main.c,541)
= __libe_start_main (libc-2.17.50)
= @ 517 in monitor_main (libmonitor. .0.0: main.c,492)
5 @ 153 in main (IOR: IOR.c,108)
= @ 2004 in TestloSys (IOR: I0R.c,
=n @ 104 in IOR_Create_POSIX (IQ#" aiori-POSIX.c,74)
- 186.189744 06.411648 4 openbd4 (libpthread-2.17.50) x|
5 start (IOR) -]
[I] [«]»]
Command Panel iz 0B x
OpEnss > >
2

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

/0 “iot” experiment output via GUI (A

< 1/O Default View for IOR application “iot” experiment

Open|SpeedShop (on rzmerl156)

— Shows the min and max values .., .

drn oo e Bupes for bytes read or written.

Status:lpmcess Loaded: Click on the "Run" button to begin the experiment.

M Terminate

=] Stats Panel [1] I [¥/ManageProcessesPanel [1] |

iz 0 O =
o el W &" & He (R T2 [0V EL LB lea @ showing Functions Report: / (WCW/DI'-'-PMY Choice

“* Functions I

Executables: IOR Hosts:(32) rzmerl100 ... Pids: 512 Ranks: 512 Threads: 512

1/0 call Time{ms) | % of Total I/0 Time | Number of Calls | Min_Bytes Count | Min_Bytes Read Written | Max_Bytes Count | Max_Bytes Read Written | Total_Bytes Read Written Function (defining location)
1858436.714506 61.486889 2048 close (libe-2.12.50: syscall-template.5,82)
1055603.730633 34.924939 2048 2048 262144 2048 262144 536870912 __GI___read (libc-2.12.s0: syscall-template.£
108107.666680 3.576772 1024 __libc_open (libe-2.12.50: syscall-template.S|
335.820251 0.011111 3072 512 6 2048 262144 536878080 write (libc-2.12.s0: syscall-template.S,82)
8.756634 0.000290 4096

__GI___libc_lseek (libe-2.12.s0: syscall-temp

e —

Command Panel

OO x
openss>>

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

/0 “iot”experiment output via CLI @ (s

Show the call paths in the application run that allocated the largest number of bytes

Using the min_bytes would show all the paths that allocated the minimum number of bytes.

openss>>expview -vcalltrees,fullstack -m max_bytes
<+ Max_Bytes Call Stack Function (defining location)
<% Read

< Written
> _start (IOR)
> @ 562 in __libc_start_main (libmonitor.so0.0.0.0: main.c,541)
>> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
>>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
>>>> @ 153 in main (IOR: IOR.c,108)
>>>>> @ 2013 in TestloSys (IOR: IOR.c,1848)
>>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562)
>>>>>>> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
>>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so:
wrappers.c,239)

YV V V VYV V V VYV VY

< 262144 >>>>>>>>> @ 82 in write (libc-2.12.s0: syscall-template.S,82)

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017 53
p

_@ \ﬂgwws

) Open | SpeedShop~
¥y Performance with Open|SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Parallel Performance Analysis including
analysis related to application
MPI and/or OpenMP activity

L B __| \2{7”90 - v
. - = /(Bl

open| Ss5dshor D

. s
1Argo Navis
Technologies

How can O|SS help for parallel jobs?

<+ O|SS is designed to work on parallel jobs
> Support for threading and message passing
> Automatically tracks all ranks and threads during execution
» Records/stores performance info per process/rank/thread

<+ All experiments can be used on parallel jobs
> O|SS applies the experiment collector to all ranks or threads on
all nodes

<+ MPI specific tracing experiments
> Tracing of MPI function calls (individual, all, or a specific group)
> Four forms of MPI tracing experiments

<+ OpenMP specific experiment (ossomptp)
» Uses OMPT API to record task time, idleness, barrier, and wait

barrier per OpenMP parallel region
* Shows load balance for time
e expcompare time across all threads

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Analysis of Parallel Codes Q e

<+ Viewing data from parallel codes
> By default all values aggregated (summed) across all ranks

» Manually include/exclude individual ranks/processes/threads
> Ability to compare ranks/threads

<+ Additional analysis options

> Load Balance (min, max, average) across parallel executions
e Across ranks for hybrid OpenMP/MPI codes
* Focus on a single rank to see load balance across OpenMP threads
> Cluster analysis (finding outliers)
e Automatically creates groups of similar performing ranks or threads
e Available from the Stats Panel toolbar or context menu

* Note: can take a long time for large numbers of processors (current
version)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 56

Integration with MPI Q e

< O]SS has been tested with a variety of MPIs
> Including: Open MPI, MVAPICH[2], and MPICH (Intel, Cray), MPT
(SGI)

< Running O|SS experiments on MPI codes
> Just use the convenience script corresponding to the data you
want to gather and put the command you use to run your
application in quotes:
e osspcsamp “mpirun —np 32 sweep3d.mpi”
e 0ssio “srun—N 4 —n 16 sweep3d.mpi”
e osshwctime “mpirun —np 128 sweep3d.mpi”
e ossusertime “srun—N 8 —n 128 sweep3d.mpi”
e osshwc “mpirun—np 128 sweep3d.mpi”

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

MP1/OpenMP Specific Experiments e e

<+ MPI specific experiments
» Record all MPI call invocations — 100 or so that O|SS traces

> MPI functions are profiled (ossmpip)

e Show call paths for each MPI unique call path
— However individual call information is not recorded.
— Less overhead than mpi, mpit.

» MPI functions are traced (ossmpi)
e Record call times and call paths for each event

» MPI functions are traced with details (ossmpit)
* Record call times, call paths and argument info for each event

<+ OpenMP specific experiment (ossomptp)
» Uses OMPT API to record task time, idleness, barrier, and wait

barrier per OpenMP parallel region
e Shows load balance for time
e Can use CLI command: expcompare to compare time across all threads

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 58

Running MPI Specific Experiments Q o

Offline mpi/mpip/mpit experiment
Convenience script basic syntax:

. .)
ossmpi[t][p] “mpi executable syntax [default | <list MPI func> | mpi category]

> Parameters
e Default is all MPI Functions Open|SpeedShop traces
e MPI Function list to trace (comma separated)
— MPI_Send, MPI_Recy,
* mpi_category:
— "all”, "asynchronous_p2p”, "collective_com”, "datatypes”, "environment”,

’

"graphs_contexts_comms”, "persistent_com”, "process_topologies”,
1] V24
synchronous_p2p

Examples:
ossmpi “srun—N 4 —n 32 smg2000 —n 50 50 50”

ossmpi “mpirun —np 4000 nbody” MPI_Send,MPI_Recv

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 59

Identifying Load Imbalance With O|SS [IR

<+ Get overview of application

> Run a lightweight experiment to verify performance expectations
* pcsamp, usertime, hwc

<+ Use load balance view on pcsamp, usertime, hwc

> Look for performance values outside of norm
 Somewhat large difference for the min, max, average values
e If the MPI libraries are showing up in the load balance for pcsamp, then do
an MPI specific experiment

<+ Use load balance view on MPI experiment

> Look for performance values outside of norm
* Somewhat large difference for the min, max, average values

> Focus on the MPI functions to find potential problems

<+ Use load balance view on OpenMP experiment (omptp)
> Can also use expcompare across OpenMP threads

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Load Balance View: NPB: LU Q e

<+ Load Balance View based on functions (pcsamp)

File Tools Help
” pe Sampling [1] MPI library showing up ~— ===+
Pr C 1 . . . ——
{ -!(;:::S olll:t(lI.Znt * Pause JUpdate h I g h In the I ISt [erminate
: : Max time in rank 255 :
Status:|Process Loaded: Click on the "Run" button to begin the experiment.
¥ Stats Panel [1] I =ManageProcessesPanel [1] | -

[r ieL [[s» 5 LB e lee Showing Load Balance (min,max,ave) Repgg

View/Display Choice
(" Functions ~ Statements -~ Linked Objects

Executables: 1u.C.256 Hosts:(16) heral0.llnl.gov BCesses/Ranks/Threads:(256) 0 ...

Max Exclusive lRank of Max | i jl
~4.9800 . 4.0207 p.
4.5500 255 . smpi_net_lookup (libmpich.so0.1.0: mpid_smpi.c,1370)
~1.6000 y 0.8500 254 1.2048 buts_ (1u.C.256: buts.f,4)
~1.5300 17 - 1.2188 blts_ (1u.C.256: blts.f,4)
~1.3900 145 jacld_ (1u.C.256: jacld.f,5)
~1.1900 25 jacu_ (1u.C.256: jacu.f,5)
~0.7500 64 0.1600 ssor_ (1u.C.256: ssor.f,4)
~0.5300 94 0.1100 0 I memcpy (libe-2.5.s0)
~0.4800 189 0.0900 255 0.2945 exchanP®agg(lu.C.256: exchange_3.1,5) |
e With load balance view we are
>> 1
openss looking for performance number
out of norm of what is expected.

Large differences between min,
max and/or average values.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

: : : o . \ar, 0 Navis
Default Linked Object View: NPB: LU [RS
<+ Default Aggregated View based on Linked Objects (libraries)
— Linked Object View S
PrF:ce:sl.nCII:mtig'o[l : (Ilbra‘ry VIeW)
(-!Run I»Cont #Pause 3Update Select “Linked ObJECtS” ® Terminate
Status:IProcess Loaded: Click on the "Run" button to begin the experiment. CI ICk D-icon
= Stats Panel [1] |E|ManagePr0cesse 200 =x
View/Display Choice
el oA e Showing Linked Objects Report... {v Functions ~ Statements © Linked Objects

Executables: 1u.C.256 Hosts:(16) heral0.llnl.gov ... Processes/Ranks/Threads:(256)

% of CPU Time | Exclusive CPU {% of GPU Time LinkedObj
t 23827900 713395 1u.C25
812.4900 24.3255 libmpich.s0.1.0
24.3255 64.2000 1.9248 libe-2.5.50
45.7000 1.3682 libmlx4-rdi¥gv2.s0
1.9248 34.8000 1.0419 libpthread-2.

A NOTE: MPI library

1.0419 consuming large portion of
application run time _

Command Panel - 3 ®

openss>>

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

A s
1Argo Navis

Technologies

MPI Tracing Results: Default View
<+ Default Aggregated MPI Experiment View

— Information Icon =
S— Displays Experiment S
s S Metadata
|7 *Run ause B update M Terminate ‘

wp7Tenel 1] | 2 ManageProcssespanci 1 | Aggregated Results = 0 x
o el L & (&Y He B T 0V LB 'oA |ge showing Functions Repors: -~ Fancions —‘

Executables: smg2000 Hosts:(64) hyperion583.1nl.gov ... Processes/Ranks,/Threads:(512) 0...

Metadata for Experiment 1:
Application command:
Executables: smg2000
Experiment type: mpi
Host(s): hyperion583.[nl.gov hyperion584.lnl.gov hyperion5851nl.gov hyperion586.
Processes, Ranks or Threads: 0-511

gov hyperion587.lInl.gov hyperion588.lnl.gov hyperion589.lnl.gov h
]

I ks
Minimum MPI Call Time(ms) | Maximum MPI Call Time(ms) | Average Time(I Number of Calls Function (defining location)

— 555.306000 1276.275000 755.280027 512 PMPI_Init (libmonitor.50.0.0.0: pmpi.c,84)
— 151.147000 167.504000 163.231004 w 512 PMPI_Finalize (libmonitor.so.0.0.0: pmpi.c,223)
—0.152000 0.474000 0.334205 512 MPI1_allgatherv (libmpich.so.1.0: allgatherv.c,73)
— 0.043000 0.212000 0.133008 512 MPI_Allgather (libmpich.so.1.0: allgather.c, 70}
—0.03 1000 2034000 1.312102 512 MPI_Barrier (libmpich.so.1.0: barrier.c,56)
—0.013000 10.32Z2000 0.717578 6144 MPI_Allreduce (libmpich.so.1.0: allreduce.c,59)
— 0.000001 611.617000 0.977852 4667648 MPI_Waitall (libmpich.so.1.0: waitall.c,57)
— 0.000001 0.600000 0.001156 5403036 MPI_Isend (libmpich.so.1.0: isend.c,58)
L 0.000001 0.062000 0.000665 5403936 MPI_Irecv (libmpich.s0.1.0: irecv.c,48)

A
Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 63

View Results: Show MPI Callstacks

Technologies

@ ,_g\»’?lrgo Navis

= u oL [0 &7 (& He (B S oV LB e e showne

= Open|SpeedShop -

File Tools Help
e Uniique Call Paths View: -
(*"““] Click C+ Icon Unique Call Paths to
Status:| Process Loaded: Clickgln the "Run” button to begin the experiment. MPI_WaIta” a_nd Other
——————— — MPI functions I

Report:

Executables: smg2000 Host: localhost.localdomain Processes/Ranks,/Threads:(2) 0 ...

Exclusive MPI Call Time(ms) | 9 of Total | Number of Calls | Call Stack Function (defining location)
- O OO0 0,000 main (smg2000: smg2000.c,21)
L 106.082304 12.510346 2 @ 94 in PMPI_Init (libmonitor.so.0.0.0: prgfi.c,94)
- 0LO00000 0.000000 main (smg2000: smg2000.c,21)
- 0.000000 0.000000 @ 49 in HYPRE_StructSMGSetup (sm, : HYPRE _struct_smg.c, 48]
- 0.000000 0.000000 @ 335 in hypre SMGSetup (sm, smg_setup.c,28)
- 0.000000 0.000000 @ 405 in hypre_SMGRelaxSetup g2000: smg_relax.c,357)
- 0.000000 0.000000 @ 613 in hypre_SMGRelaxSetu (smg2000: smg_relax.c,540)
- 0.000000 0.000000 @ 335 in hypre_SMGSetup (s : smg_setup.c,28)
- 0000000 0.000000 @ 405 in hypre_ SMGRelax p (smg2000: smg_relax.c,357)
- 0000000 0.000000 @ 619 in hypre_SMGRe tupASol (smg2000: smg_relax.c,540)
- 0.000000 0.000000 @ 549 in hypre_Cycli uctionSetup (smg2000: cyclic_reduction.c,2
- 0.000000 0.000000 @ 491 in hypre_Stru rsen (smg2000: coarsen.c,139)
24321377 2.868234 GO0 @ 39 in MPI_Waitall (libmpiso.0.0.1: pwaitall.c,39) 4
T i =
Command Panel g [0 B =
openss> >
2

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 64

A, v
1Argo Navis
Technologies

Using Cluster Analysis in O|SS

< Can use with pcsamp, usertime, hwc
» Will group like performing ranks/threads into groups
» Groups may identify outlier groups of ranks/threads
> Can examine the performance of a member of the outlier group
> Can compare that member with member of acceptable
performing group

< Can use with mpi, mpit
> Same functionality as above w.r.t. cluster analysis
> But, now focuses on the performance of individual
MPI|_Functions.
> Key functions are MPI_Wait, MPI_WaitAll
> Can look at call paths to the key functions to analyze why they
are being called to find performance issues

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 65

Link. Obj. Cluster Analysis: NPB: LU

< Cluster Analysis View based on Linked Objects (libraries)

Open|SpeedShop

File Tools

“pe Sampling 1 In Cluster Analysis results — 2u-

F’:R e Rank 255 shoyvmg upasan |
un ont »l Pause ate Out ier_. 1ate

Status:lProcess Loaded: Click on the "Run" button to begin the experi

= Stats Panel [1] | ®ManageProcessesPanel [1] @00 =

(7" oL [5 5V LB 'en ee Showing Comparative

Executables: 1u.C.256
View consists of comparison ¢

View/Display Choice
{v Functions ~ Statements * Linked Objects

o300, 29801, 29802, 29803, 29804, 29805, 29806, 29807, 29808 -t 4691.
1Average -v linkedobjects =

Metadata for Experiment 1:
 —

=

-c 2, Average Exclusiv4 -c 3, Average Exclusive Ci -c 4, Average Egfflusive | -c 5, Average Exclusiv4 LinkedObject

F9.3444 8.2474 7.3700 10.4650 1u.C.256
-3.1385 4.1858 4.9400 2.0833 libmpich.s0.1.0
F0.2557 0.2047 0.1600 0.2467 libe-2.5.50
F0.1764 0.2242 0.3500 0.1308 libmlx4-rdmav2.so -
Nn 1nn1 N A0ar N AannAn Nn 1nnn Tl 1 A [l
Command Panel B0
openss>>

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 66

_ @ \‘ﬂ g N ‘w‘s
ogies

| Open | SpeedShop” NSN
Y Performance with Open [SpeedShop W

NASA Open[SpeedShop
Update/Training

Comparing Performance Data

KRELL

| B | \@”go Navis
:&n.,_.,*- — /(Technologies

open| Ss5dshor D

Comparing Performance Data Q oo

<+ Key functionality for any performance analysis
> Absolute numbers often don’t help
» Need some kind of baseline / number to compare against

< Open|SpeedShop has support to line up profiles
> Perform multiple experiments and create multiple databases
> Script to load all experiments and create multiple columns

< Typical Example Comparisons
> Between experiments to study improvements/changes
> Between ranks/threads to understand differences/outliers
> Before/after optimization
> Different configurations or inputs

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 68

Comparing Performance Data in O|SS [IS

< Convenience Script: osscompare

» Compares Open|SpeedShop up to 8 databases to each other

> Syntax: osscompare “dbl.openss,db2.openss,...” [options]
e osscompare man page has more details

> Produces side-by-side comparison listing

> Metric option parameter:
e Compare based on: time, percent, a hwc counter, etc.

> Limit the number of lines by “rows=nn”" option

> Specify the: viewtype=[functions|statements |linkedobjects]
e View granularity: function, statement, or library level.

e Function level is the default.

* |If statements option is specified:
— Comparisons will be made by looking at the performance of each statement
in all the databases that are specified.
— Similar for libraries, if linkedobject is selected as the viewtype parameter.

» Options to write comparison output to comma separated list
(csv) or text files

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 69

\ﬂr o0 Navis

T ‘hnologies

Comparison Reportin O|SS S

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss”

openss]: Legend: -c 2 represents smg2000-pcsamp.openss
[openss]: Legend: -c 4 represents smg2000-pcsamp-1.openss
-c 2, Exclusive CPU -c 4, Exclusive CPU Function (defining location)
timein seconds. time in seconds.
3.870000000 3.630000000 hypre_SMGResidual (smg2000: smg_residual.c,152)
2.610000000 2.860000000 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
2.030000000 0.150000000 opal_progress (libopen-pal.s0.0.0.0)

1.330000000 0.100000000 mca_btl sm_component_progress (libmpi.s0.0.0.2:
topo_unity_component.c,0)

0.280000000 0.210000000 hypre_Semilnterp (smg2000: semi_interp.c,126)

0.280000000 0.040000000 mca_pml_ob1_progress (libmpi.s0.0.0.2:
topo_unity_component.c,0)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 70

_ @ \ﬂ go Nav{s

Open | SpeedShop~
Performance with Open[SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Section 2: Recently added Functionality/Experiments

Technologies

\i{rgo Navis

Open | SpeedShop* Performance Analysis with Open | SpeedShop April 27,2017

Section 1: Introduction to Open|SpeedShop tools
> How to use Open|SpeedShop to gather and display
> Overview of performance experiments
e Sampling Experiments and Tracing Experiments
> How to compare performance data for different application runs

Section 2: New Functionality/Experiments
> Memory (ossmem) experiment

OpenMP augmentation

OMPTP (ossomptp) experiment

POSIX threads (osspthreads) experiment

Lightweight experiments (ossiop, ossmpip)

> NVIDIA CUDA tracing experiment (osscuda)

vV V VYV V

Section 3: Roadmap / Future Plans

Supplemental Information
» Command Line Interface (CLI) tutorial and examples

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 72

_ @ \ﬂ go Nav{s

Open | SpeedShop~
Performance with Open[SpeedShop NASA

NASA Open|[SpeedShop
Update/Training

Performance Analysis related to
application memory function activity

Technologies

\i{rgo Navis

Open | SpeedShop* Performance Analysis with Open | SpeedShop April 27,2017

O | SS Memo ry EX pe riment @ g s

< Supports sequential, mpi and threaded applications.
> No instrumentation needed in application.

> Traces system calls via wrappers
* malloc

calloc

realloc

free

memalign and posix_memalign

< Provides metrics for

> Timeline of events that set an new high-water mark.

> List of event allocations (with calling context) to leaks.

> Overview of all unique callpaths to traced memory calls that provides
max and min allocation and count of calls on this path.

<+ Example Usage
» ossmem "./lulesh2.0”
> ossmem “mpiexec_mpt -np 64 ./sweep3d.mpi“

<+ No GUI support at this time
> Support planned via the new GUI, pending funding.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

O|SS Memory Experiment CLI commands

@ Aargo Navis
$ expview -vunique
> Show times, call counts per path, min,max bytes allocation, total

allocation to all unique paths to memory calls that the mem collector
Saw

» expview -vleaked
» Show function view of allocations that were not released while the
mem collector was active

< expview -vtrace,leaked
> Will show a timeline of any allocation calls that were not released

<+ expview -vfullstack,leaked
> Display a full callpath to each unique leaked allocation

< expview -v trace,highwater
> |Is a timeline of mem calls that set a new high-water
> The last entry is the allocation call that the set the high-water for the
complete run
> Investigate the last calls in the timeline and look at allocations that
have the largest allocation size (sizel,size2,etc) if your application is
consuming lots of system ram

Open | SpeedShop~ Performance Analysis with Open |SpeedShop April 27, 2017

O | SS Memo ry EX pe riment @ g s

<+ Shows the last 8 allocation events that set the high
water mark

openss>>expview -vtrace,highwater

Start Time(d:h:m:s) Event Size Size Ptr ReturnValue New Call Stack Function (defining location)

Ids Argl Arg2 Arg Highwater

*** trimmed all but the last 8 events of 61 ****

2016/11/1009:56:50.824 11877:0 2080 O 0x7760e0 19758988 >>>>>>> GIl___ libc_malloc (libc-
56118672)1/10 09:56:50.826 11877:0 1728000 O 0x11783d0 21484908 >>>>_GI__libc_malloc (libc-
56118672)1/10 09:56:50.827 11877:0 1728000 O 0x131ele0 23212908 >>>> Gl__libc_malloc (libc-
56118672)1/10 09:56:50.827 11877:0 1728000 O 0x14c3ff0 24940908 >>>> Gl__libc_malloc (libc-
56118672)1/10 09:56:50.827 11877:0 2080 0 0x776a90 24942988 >>>>>>>_ Gl__libc_malloc (libc-
56118672)1/10 09:56:50.919 11877:0 1728000 O 0x1654030 25286604 >>>>_GI__libc_malloc (libc-
56118672)1/10 09:56:50.919 11877:0 1728000 O 0x17f9e40 27014604 >>>> GI__libc_malloc (libc-
26}267211/10 09:56:50.919 11877:0 2080 0 Oxabc6a0 27016684 >>>>>>> Gl libc_malloc (libc-
. .SO

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 76

O|SS Memory Experiment Q

< The next slide shows the default view of all unigue memory calls
seen while the mem collector was active. This is an overview of the
memory activity. The default display is aggregated across all
processes and threads. Ability to view specific processes or threads.

J

< For all memory calls the following are displayed:
> The exclusive time and percent of exclusive time

> The number of times this memory function was called.
> The traced memory function name.

< For allocation calls (e.g. malloc) the follow:
> The max and min allocation size seen.

> The number of times the that max or min was seen are displayed.
> The total allocation size of all allocations.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 77

,f\,@\rgo Navis
Technologies

O|SS Memory Experiment (Unique Calls)

openss>>expview -vunique

Exclusive % of Number Min Min Max Max Total Function (defining location)
(ms) Total of Request Requested Request Requested Bytes
Time Calls Count Bytes Count Bytes Requested
0.024847 89.028629 1546 1 192 6 4096 6316416 __Gl___libc_malloc (libc-2.18.s0)
0.002371 8.495467 5 __GI___libc_free (libc-2.18.s0)
0.000369 1.322154 1 1 40 1 40 40 _ realloc (libc-2.18.s0)
0.000322 1.153750 3 1 368 1 368 1104 __ calloc (libc-2.18.s0)

NOTE: Number of Calls means the number of unique paths to the memory function call.
To see the paths use the CLI command: expview —vunique,fullstack

Open | SpeedShop~ Performance Analysis with Open |SpeedShop April 27, 2017

A v
1Argo Navis
Technologies

O|SS Memory Experiment (Leaked Calls)

In this example the sequential OpenMP version of lulesh was run under ossmem.

The initial run detected 69 potential leaks of memory.

Examining the calltrees using the cli command "expview -vfullstack,leaked -mtot_bytes"
revealed that allocations from the Domain::Domain constructor where not later released in the
Domain::*Domain destructor. After adding appropriate delete's in the

destructor and rerunning ossmem, we observed a resolution of the leaks detected

in the Domain class. The remaining leaks where minor and from system libraries.

Using the exprestore command to load in the initial database and the database

from the second run, we can use the expcompare cli command to see the improvements.
Below, database-x1 shows the initial run and -x2 shows the results

from the run with the changes to address the leaks detected in the Domain class.

openss>>exprestore -f lulesh-mem-initial.openss
openss>>exprestore -f lulesh-mem-improved.openss
openss>>expcompare -vleaked -mtot_bytes -mcalls -x1 -x2

-x1, x1, -x2, -x 2, Function (defining location)
Total Number Total Number
Bytes of Bytes of
Requested Calls Requested Calls
10599396 69 3332 8 __Gl___libc_malloc (libc-2.17.s0)
72 1 72 1 _ realloc (libc-2.17.s0)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 79

O|SS Memory Experiment (Highwater Calls) @ g 2aavi

See callstacks associated with the high-water creating allocations
Note the size of the allocation, rank/thread ids, high-water mark,
along with the call path: expView -vtrace,highwater,fullstack

This allows the user to see the call paths to the high water
allocations.

Size Size Call Stack Function (defininglocation)
Arg Arg

_start (lulesh2.0)
>@ 562 in __libc_start_main (libmonitor.so0.0.0.0: main.c,541)
>> libc_start_main (libc-2.17.s0)
>>> @ 768 in main (lulesh2.0: lulesh.cc,2690)

1728000 0 >>>>_ Gl___libc_malloc(libc-2.17.s0)
_start (lulesh2.0)
>@ 562 in __libc_start_main (libmonitor.so0.0.0.0: main.c,541)
>> libc_start_main (libc-2.17.s0)
>>> @ 176 in main (lulesh2.0: lulesh.cc,2690)

1728000 0 >>>> Gl___libc_malloc(libc-2.17.s0)
_start (lulesh2.0)
>@ 562 in __libc_start_main (libmonitor.so0.0.0.0: main.c,541)
>> libc_start_main (libc-2.17.s0)
>>> @ 176 in main (lulesh2.0: lulesh.cc,2690)

1728000 0 >>>>_ Gl___libc_malloc(libc-2.17.s0)
_start (lulesh2.0)
>@ 562 in __libc_start_main (libmonitor.so0.0.0.0: main.c,541)
>> libc_start_main (libc-2.17.s0)
>>> @ 176 in main (lulesh2.0: lulesh.cc,2690)

1728000 0 >>>>_ Gl___libc_malloc(libc-2.17.50)

Open | SpeedShop~ Performance Analysis with Open|SpeedShop April 27, 2017

Summary and Conclusions Q o

<+ Benefits of Memory Heap Analysis
> Detect leaks
> Inefficient use of system memory
> Find potential OOM, paging, swapping conditions
> Determine memory footprint over lifetime of
application run

< Observations of Memory Analysis Tools
> Less concerned with the time spent in memory calls
> Emphasisis placed on the relationship of allocation
calls to free calls.
> Can slow down and impact application while running

Open | SpeedShop~ Performance Analysis with Open |SpeedShop April 27, 2017

Demonstration: Memory Analysis

If timing permits:

<+ Memory experiment related application exercise
> More information provided at the tutorial

< Memory exercises can be found in these

directories:
> SHOME/exercises/matmul
> SHOME/exercises/lulesh2.0.3
> SHOME /exercises/lulesh2.0.3-fixed

< Look for the README file for instructions.

Open | SpeedShop~ Performance Analysis with Open|SpeedShop April 27, 2017

_ @ \ﬂ go Nav{s

Open | SpeedShop~
Performance with Open[SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Performance Analysis related to
application OpenMP activity

Technologies

\i{rgo Navis

Open | SpeedShop* Performance Analysis with Open | SpeedShop April 27,2017

A . P
1Argo Navis

Technologies

O|SS OpenMP augmentation S

<+ 0|SS augments the sampling experiments

> Applies the OMPT API callbacks for:
e ompt_event_thread idle
e ompt_event_thread barrier
e ompt_event_thread wait_barrier
> to samples taken in the OpenMP library that otherwise would be
shown as
e kmp_barrier
e kmp_wait_sleep, etc.
> in the Intel libiomp5 library

< The user can see the sample time per thread for idle, barrier,
and wait_barrier.

< The user can also use the loadbalance metric to see the min,
max, avg of these idle, barrier, and wait barrier events

< Use the expcompare command across all threads to see
individual metrics in comparison to each other

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

. s
1Argo Navis
Technologies

O|SS OpenMP augmentation

<+ With respect to the barrier symbols
> Samples taken when a thread is waiting at a barrier are inclusive
to total barrier time.
> |.e. adding barrier and wait_barrier metrics is equal to the total
barrier time.

<+ Essentially these metrics as used in the O|SS sampling

experiments to:
> Inform the user the time a thread is idle and the time spent at a
barrier (including waiting at a barrier).

< The usertime experiment can give some context to
where specificidle and barrier times are.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 85

O|SS OpenMP augmentation Q

< Using the usertime experiment on an OpenMP application can

L0

help to pinpoint where in the source the wait barrier time is
coming from. For example:

openss>>expview
Exclusive Inclusive % of Function (defining location)
CPU time CPUtime Total
in in Exclusive
seconds. seconds. CPU Time
23.200000 23.200000 38.648263 OMPT_THREAD _IDLE (usertime-collector-monitor-mrnet.so: collector.c,122)
13.142857 13.142857 21.894336 MAIN__.omp_fn.2 (stress_omp: stress_omp.f,179)
12.885714 12.885714 21.465969 MAIN__.omp_fn.5 (stress_omp: stress_omp.f,227)
4.742857 4.742857 7.901000 OMPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mmet.so: collector.c,150)
2.000000 11.771428 3.331747 MAIN__ (stress_omp: stress_omp.f,1)
1.257143 1.257143 2.094241 _ kernel_cosf (libm-2.12.s0: k_cosf.c,45)
1.085714 1.085714 1.808663 __ieee754_rem_pio2f(libm-2.12.s0: e_rem_pio2f.c,108)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 86

O|SS OpenMP augmentation Q

<+ Here we see the call path that points to the source lines that
result in the thread waiting in the barrier.

< openss>>expview -vcalltrees,fullstack -f OMPT_THREAD_WAIT_BARRIER usertimel

Exclusive Inclusive % of Call Stack Function (defining location)
CPU time CPUtime Total
in in Exclusive
seconds. seconds. CPU Time
_start (stress_omp)
> @ 556in __libc_start_main (libmonitor.s0.0.0.0: main.c,541)
>> libc_start_main (libc-2.12.s0)
>>> @ 517 in monitor_main (libmonitor.s0.0.0.0: main.c,492)
>>>>main (stress_omp)
>>>>> @ 227 in MAIN__ (stress_omp: stress_omp.f,1)
>>>>>> @ 557 in __kmp_api_GOMP_parallel_end_10_alias (iibiomps.so: kmp_gsupport.c,490)
>>>>>>> @ 2395in __kmp_join_call (libiomp5.so: kmp_runtime.c,2325)
>>>>>>>> @ 7114 in __kmp_internal_join (libiomp5.so: kmp_runtime.c,7093)
>>>>>>>>> @ 1458 in __kmp_join_barrier(int) (libiomp5.so: kmp_barrier.cpp,1371)
1.742857 1.742857 2.903379 >>>>>>>>>> @ 150 in OMPT_THREAD_WAIT_BARRIER ...

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

. s
1Argo Navis
Technologies

O|SS OpenMP augmentation

<+ Here, in the GUI, we see the call path that points to the source
lines that result in the thread waiting in the barrier.

Open|SpeedShop
File Tools Help
] User Time [1] | mOO x
Process Control
’7 =y Rin [Gone | Darse 5 U M| Tierminate
Smarus:IPrc»cess Loaded: Click on the "Run" burton to begin the experiment.
[¥] Stats Panel [1] | O3 [O x| = Source Panel [1] | % OO =®
=7 o e o [#5 (7 (25 He (& & 6V [$5 LB 6A ige Showing CallTrees FullStack by Function Reporr: /home/jeg/cxercises/openmp_siress/stress_omp.
Executables: stress omp Host: localhost Pids: 1 Threads: 5 0.057143
171 arr_in(i,j,nz+2) = arr_in(i,j,nz+1)
fU time in seconds. |Inclus|ve CPU time in seconds. | % of Total Exclusive CPU Time | Call Stack Function (defining location) 172 enddo

173 enddo
174 1SOMP END PARALLEL DO

_start (stress_omp)
@ 556 in __libc_start_main (libmonitor.s0.0.0.0:

__libe_start main (libe-2.17.50) 1751
) @ 517 in monitor_main (libmonitor.50.0.0.0: ma 176 :
& 260 in main (stre: mp.f,260) 1771

178 ! Main body of (3-d) data:

i 179 1SOMP PARALLEL DO PRIVATE(i,j.k)
& @ 554 in __kmp_api_GOMP_parallel end_10_al 180 do k=2,nz+1

- @ 2343 in __kmp_join_call (libiomp5.so: kmp_nt — 181
B @ 7066 in __kmp_internal_join (libiomp5.s0: km 1.114286
i 1.542857 1.229788 @ 160 in OMPT_THREAD_WAIT BARRIER (usert
_start (stress_omp)
@ 556 in __libc_start_main (libmonitor.so.0.0.0:

do j=2,ny+1

arr_out(i,j,k) = rwght6*arr_in(i,j,k) + wght*(
arr_in(i-1,j,k) + arr_in(i+1,j,k) +
arr_in(i,j-1,k) + arr_in(i,j+1,k) +

__libe_start main (libce-2.17.50) 51.514285
@ 517 in monitor_main (libmonitor.so.0.0.0: maj_
= @ 260 in main (stress_omp: stress_omp.f,260) z
(I} 4|
L3
Command Panel | [¥] ManageProcessesPanel [1] | - BOQ-Ox
Processes: | Starus | [Process Sets [P | Raric | Thread |
11484 Terminate =| | 2- Dynamic Process Set =
- 11484 Terminate All
- 11484 Terminate = =
11484 Terminate = Terminated =
4

mance Analysis with Open |SpeedShop April 27, 2017

|SS OpenMP augmentation

< Here, in the GUI, we see any outliers using the “CA” icon, which

corresponds to running a cluster analysis algorithm.

Open|Speeds \/iew ge.ner.ated
from clicking

File Tools Help

%] User Time [1] | d RO A =
— the CAicon
’7 = Rin | Gont | Pause ¥ Update W Terminate
Stams:lprocess Loaded: Click on the "Run" button to begin the experiment.
[Stats Panel [1] ||jSou:celJanel [11 | BOQO=xR
: View/Display Choice
o U el (D s (€ &3 He (B TS o [$: LB ien lee Showing Comparative Analysis Repore: (Q Functions () Statements () Linked Objects (3 Loops
Executables: stress omp
View consists of comparison columns click on the metadata icon "T" for details.
Comparing: =
Column(s) labeled ¢ 2: Experiment 1 Database Name: stress_omp-usertime-0.openss : Showing Host: localhost 11484:0 =
for performance data type: usertime -v functions using display option: ThreadAverage -v functions
Column(s) labeled -c 3: Experiment 1 Database Name: stress_omp-usertime-0.openss : Showing Host: localhost 11484:1
for performance data type: usertime -v functions using display option: ThreadAverage -v functions
Column(s) labeled ¢ 4: Experiment 1 Database Name: stress_omp-usertime-0.openss : Showing Host: localhost 11484: =
|ﬁ'\r nerformance data nme- neerfime v fietions usine dienlav antion- ThreadAverace -w functinn: | | ‘ bl
1l
%
-¢ 2, Average Exclusive Time Acro| - 3, Average Exclusive Time Acro| ¢ 4, Average Exclusive Time Acro| Function (defining location) .
113.028571 0.000000 13.200000 MAIN__._omp_fn.2 (stress_omp: stress_omp.f,181)
- 12.685714 0.000000 13.266666 MAIN__._omp_fn.5 (stress_omp: stress_omp.f,229)
- 5514286 0.000000 0.000000 __cosf (libm-2.17.s0)
- 2.342857 0.000000 0.000000 OMPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c, 160) =
2.057143 0.000000 0.000000 MAIN__ (stress_omp: stress_omp.f,1)
- 0.057143 0.000000 0.114286 MAIN__._omp_fn.0 (stress_omp: stress_omp.f,158)
- 0.028571 0.000000 0.028571 MAIN__._omp_fn.1 (stress_omp: stress_omp.f,169)
0.028571 0.000000 0.000000 __clone (libe-2.17.50)
- 0.028571 0.000000 0.114286 MAIN__._omp_fn.3 (stress_omp: stress_omp.f,207) —
- (.000000 0.000000 3.200000 OMPT_THREAD IDLE (usertime-collector-monitor-mrnet.so: collector.c,136) =
Command Panel ‘ [#] ManageProcessesPanel [1] | Bg 00 =
Processes: || Status | | _||f Process sers PID Rank Thread £
- 11484 Terminate — Dynamic Process Set
11484 Terminate E-All All
- 11484 Terminate = + -Hosts =
Z

Open | SpeedShop* rmance Analysis with Open |SpeedShop April 27, 2017

. s
1Argo Navis
Technologies

» An interesting view for OpenMP in any of the augmented experiments would be
(for 4 openmp threads):

O|SS OpenMP augmentation

<% openss>>expcompare -t0:4 -mtime -v summary

-t0, -t 2, -t3, -t 4, Function (defining location)
Exclusive Exclusive Exclusive Exclusive
CPU time CPU time CPU time CPU time

in in in in

seconds. seconds. seconds. seconds.
12.771428 8.514286 4.971428 10.257143 compute._ omp_fn.1 (matmult: matmult.c,68)

0.028571 0.057143 0.085714 0.114286 compute_triangular._omp_fn.2 (matmult: matmult.c,95)

0.000000 0.571429 0.142857 1.200000 OMPT_THREAD_IDLE (usertime-collector-monitor-mrnet.so: collector.c,124)
0.000000 0.400000 0.485714 0.800000 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
12.800000 9.542857 5.685714 12.371428 Report Summary

> According to the summary, t0 the master thread had the most sample time. It
should.

% Thread t4 also was used almost to the same amount as t0 but did have 1.2 seconds
of idle.

> The above states that parallel region compute is not balanced in terms or time.
particularly t3.

4

L)

D)

>

L)

)

4

> If this was an mpi hybrid, assume these times as across all ranks. So if each rank
uses 4 threads, the number of ranks*4 is the number of total cores used.

L)

D)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

O|SS OpenMP augmentation

L:?lrgo Navis
Technologies

This display shows the total times for barrier, idle, and barrier wait

openss>>expcompare -mtime -t0:4 -f OMPT*

-t0, -t2, -3, -t4, Function (defining location)
Exclusive Exclusive Exclusive Exclusive
CPU time CPU time CPU time CPU time

in in in in

seconds. seconds. seconds. seconds.
2.514286 0.342857 0.000000 0.228571 OMPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mrnet.so:
collector.c,148)
0.000000 5.285714 2.028571 3.828571 OMPT_THREAD_IDLE (usertime-collector-monitor-mrnet.so:
collector.c,124)

0.000000 0.000000 0.000000 0.028571 OMPT_THREAD_BARRIER (usertime-collector-monitor-mrnet.so:
collector.c,136)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 91

O|SS OpenMP augmentation Q

Here is the CLI view from expcompare of calltrees all due to the calltree difference that was shown

above between the master and worker thread calltrees.
openss>>expcompare -mtime -t0:4 -f OMPT* -v calltrees

-t0, -t2, -t3, -t4, Call Stack Function (defining location)
Exclusive Exclusive Exclusive Exclusive
CPU time CPUtime CPUtime CPU time
in in in in

seconds. seconds. seconds. seconds.
_start (LULESH_OMP)
>__libc_start_main (libmonitor.s0.0.0.0: main.c,541)
>>__libc_start_main (libc-2.18.s0)
>>>monitor_main (libmonitor.s0.0.0.0: main.c,492)
>>>>main (LULESH_OMP: LULESH_OMP.cpp,2961)
>>>>>LagrangelLeapFrog() (LULESH_OMP: LULESH_OMP.cpp,2946)
>>>>>>LagrangeNodal() (LULESH_OMP: LULESH_OMP.cpp,1687)
>>>>>>>CalcForceForNodes() (LULESH_OMP: LULESH_OMP.cpp,1596)
>>>>>>>>CalcVolumeForceForElems() (LULESH_OMP: LULESH_OMP.cpp,1562)
>>>>>>>>>CalcHourglassControlForElems(double*, double) (LULESH_OMP: LULESH_OMP.cpp,1505)
>>>>>>>>>>CalcFBHourglassForceForElems(double*, double*, double*, double*, double*, double*, double*, double)

(LULESH_OMP: LULESH_OMP.cpp,1238)
>>>>>>>>>>> kmp_api_GOMP_parallel_end_10_alias (libiomp5.so: kmp_gsupport.c,492)
>>>>>>>>>>>> kmp_join_call (libiomp5.so: kmp_runtime.c,2273)
>>>>>>>>>>>>>_ kmp_internal_join (libiomp5.so: kmp_runtime.c,7045)
>>>>>>>>>>>>>> kmp_join_barrier(int) (libiomp5.so: kmp_barrier.cpp,1371)

0.485714 >>>>>>>>>>>>>>>0MPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c,148)
>>>>>>LagrangeElements() (LULESH_OMP: LULESH_OMP.cpp,2786)
>>>>>>>CalcQForElems() (LULESH_OMP: LULESH_OMP.cpp,2353)
>>>>>>>>CalcMonotonicQForElems() (LULESH_OMP: LULESH_OMP.cpp,2324)
>>>>>>>>>CalcMonotonicQRegionForElems(double, double, double, double, double, int) (LULESH_OMP: LULESH_OMP.cpp,2192)
>>>>>>>>>> kmp_api_GOMP_parallel_end_10_alias (libiomp5.so: kmp_gsupport.c,492)
>>>>>>>>>>>_ kmp_join_call (libiomp5.so: kmp_runtime.c,2273)
>>>>>>>>>>>> kmp_internal_join (libiomp5.so: kmp_runtime.c,7045)
>>>>>>>>>>>>> kmp_join_barrier(int) (libiomp5.so: kmp_barrier.cpp,1371)

0.257143 >>>>>>>>>>>>>>0MPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c,148)
>>>>>>>CalcLagrangeElements(double) (LULESH_OMP: LULESH_OMP.cpp,2005)
>>>>>>>>CalcKinematicsForElems(int, double) (LULESH_OMP: LULESH_OMP.cpp,1929)
>>>>>>>>>_ kmp_api_GOMP_parallel_end_10_alias (libiomp5.so: kmp_gsupport.c,492)
>>>>>>>>>> kmp_join_call (libiomp5.so: kmp_runtime.c,2273)
>>>>>>>>>>>_ kmp_internal_join (libiomp5.so: kmp_runtime.c,7045)
>>>>>>>>>>>> kmp_join_barrier(int) (libiomp5.so: kmp_barrier.cpp,1371)

0.257143 >>>>>>>>>>>>>0MPT_THREAD_WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c,148)

Open | SpeedShop* formance Analysis with Open |SpeedShop April 27, 2017

Using OMPTP experimentin O|SS g e

The following three CLI examples show the most important ways to
view OMPTP experiment data.

< No GUI support at this time. Support planned via the new GUI,
pending funding.

Default view shows the timing of the parallel regions, idle, barrier,
and wait barrier as an aggregate across all threads

openss -cli -f ./matmult-omptp-0.openss
openss>>expview

Exclusive Inclusive % of Function (defining location)
timesin timesin Total
seconds. seconds. Exclusive
CPU Time
44.638794 45.255843 93.499987 compute._omp_fn.1 (matmult: matmult.c,68)
1.744841 1.775104 3.654726 compute_interchange._omp_fn.3 (matmult: matmuit.c,118)

0.701720
0.652438
0.004206
0.000032
0.000000

0.701726
0.652438
0.009359
0.000032
0.000000

1.469817 compute_triangular._omp_fn.2 (matmult: matmult.c,95)

1.366591 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)

0.008810 initialize._omp_fn.0 (matmult: matmuit.c,32)

0.000068 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)
0.000001 WAIT_BARRIER (omptp-collector-monitor-mrnet.so: collector.c,602)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 93

Using OMPTP experiment in O|SS g e

This example shows the comparison of exclusive time across all
threads for the parallel regions, idle, barrier, and wait barrier

openss>>expcompare -mtime -t0:4

-t0, -t2, -t3, -t4, Function (defininglocation)

Exclusive Exclusive Exclusive Exclusive

timesin timesin timesin timesin

seconds. seconds. seconds. seconds.

11.313892 11.081346 11.313889 10.929668 compute. omp_fn.1 (matmult: matmuit.c,68)

0.443713 0.430553 0.429635 0.440940 compute_interchange._omp_fn.3 (matmult: matmult.c,118)

0.253632 0.213238 0.164875 0.069975 compute_triangular._omp_fn.2 (matmult: matmult.c,95)

0.001047 0.001100 0.001095 0.000964 initialize._omp_fn.0 (matmult: matmuit.c,32)

0.000008 0.000008 0.000006 0.000010 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)
0.000000 0.000000 0.000000 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so.ccctor.s02)
0.000000 0.247592 0.015956 0.388890 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 94

Using OMPTP experiment in O|SS g e

This example shows the load balance of time across all threads for the
parallel regions, idle, barrier, and wait barrier

openss>>expview -mloadbalance

Max OpenMP Min OpenMP Average Function (defining location)
Exclusive Threadld Exclusive Threadld Exclusive
Time Across of Max Time Across of Min Time Across
OpenMP OpenMP
Threadlds(s) Threadids(s) Threadids(s)

11.313892 0 10.929668 4 11.159699 compute._omp_fn.1 (matmult: matmult.c,68)
0.443713 0 0.429635 3 0.436210 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
0.388890 4 0.015956 3 0.217479 IDLE (omptp-collector-monitor-mrnet.so:

collector.c,573)

0.253632 0 0.069975 4 0.175430 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
0.001100 2 0.000964 4 0.001052 initialize._omp_fn.0 (matmult: matmult.c,32)
0.000010 4 0.000006 3 0.000008 BARRIER (omptp-collector-monitor-mrnet.so:

collector.c,587)
0.000000 0 0.000000 0 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so:

collector.c,602)

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017 95
p

Demonstration: OpenMP specific profiling @ L

If timing permits:
<+ OpenMP specific experiment application exercise

< OpenMP profiling exercises can be found in these

directories:
> SHOME /exercises/matmul
» SHOME/exercises/hybrid lulesh2.0.3
> SHOME/exercises/lulesh2.0.3

Open | SpeedShop~ Performance Analysis with Open|SpeedShop April 27, 2017

_ @ \‘ﬂ g N ‘w‘s
ogfies

) Open | SpeedShop~
¥y Performance with Open[SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Performance Analysis related to
application POSIX thread activity

| B | \Q’Vgo Navis
=N /(Technologies

open| Ss5dshor D

OSS/CBTF pthreads experiment Q e

pthreads experiment was created using the CBTF
infrastructure

< Gives opportunity to filter the POSIX thread performance
information to reduce and mine the important/worthwhile

information while the data is transferring to the client tool
> Discussion Topic: What is that worthwhile information?

> ldeas:
» Report statistics about pthread wait
e Report OMP blocking times
e Attribute information to proper threads

Thread numbering improvements
— Use a shorter alias number for the long POSIX pthread numbers

Report synchronization overhead mapped to proper thread

< Slides that follow show what the tool provides currently

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Running the pthreads experiment & e

OSS/CBTF pthreads experiment information and example

Convenience script basic syntax:

osspthreads “executable” [default | <list of POSIX func>]

> Parameters

e POSIX thread function list to sample(default is all)

e pthread_create, pthread _mutex_init, pthread _mutex_destroy,
pthread_mutex_lock, pthread _mutex_trylock, pthread_mutex_unlock,
pthread_cond_init, pthread cond_destroy, pthread_cond_signal,
pthread_cond_broadcast, pthread cond_wait, pthread _cond_timedwait

Examples:

osspthreads “aprun -n 64 -d 8 ./mpithreads_both”

osspthreads “mpirun —np 256 sweep3d.mpi” pthread_mutex_lock

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 99

. s
1Argo Navis
Technologies

Running the pthreads experiment

OSS/CBTF pthreads experiment default GUI view

Open|SpeedShop
File Tools Help

= Thread Analysis [1] Aggregated T|me and OO x

Process Control
{ = Run |% Cont: B Pause 3 Update N u mber Of Cal IS for_ the
POSIX thread functions

W [enminate

Stalus:lProcess Loaded: Click on the "Run” button to begin the experiment.

B OO=x

= Stats Panel [1] I = ManageProcessesPanel [1] |
View/Display Choice
’70 Functions —‘I

' oL [(€Y He [3 o EL LB iea e Showing Fu

. 64 Ranks: 64 Threads: 22

Executables: mpithreads_both Hosts:(32) nid00800 . B

Exclusive Pthreads Call Tl% of Total Number of Calls Function (defining loc gk
422.179468 96.337682 512 pthread_create (libmonitor.so.0.0.0: pthread.c,1008)
8.682528 1.981277 3840 pthread mutex lock (libpthread-2.11.3.s0)
7.147626 1.631026 3840 _pthread mutex_unlock (libpthread-2.11.3.s0)
-0.219180 0.050015 64 _pthread mutex_init_internal (libpthread-2.11.3.s0)
Command Panel OO =x
openss>>

Open | SpeedShop* formance Analysis with Open |SpeedShop April 27, 2017

) - 3
1Argo Navis

Technologies

Running the pthreads experiment

OSS/CBTF pthreads experiment callpath GUI view

Open|SpeedShop

File Tools Help
= Thread Analysis [1] . kOO =
’7100{:?1(:0"“{:) Cont | Pause 3 Update P 8 gllgél ?h?eaa!ld ﬁaahcstito?’]s N lerminate
Stalus:lProcess Loaded: Click on the "Run" button to begin the experiment.
= Stats Panel [1] | = ManageProcessesPanel [1] | R [0 H =
' oL [0 &” (&8 He [s lov EL LB iea B Showing Hot Callpath Report:

Executables: mpithreads_both Hosts:(32) nid00800 ... Pids: 64 Ranks: 64 Threads: 22
| Number of Calls | Call Stack Function (defin

Exclusive Pthreads Call Time(ms) |% of Total

=8 mpithreads_both: mpithreads_both.c,110)
@ 87 in ptl d_create (pthreads-collector-monitor-mrnet-mpi.so: wrappers....
512 @ 1008 in pthread_create (libmonitor.s0.0.0.0: pthread.c,1008)
= __clone (libc-2.11.3.50)
2 start_thread (libpthread-2.11.3.s0)
= @ 942 in monitor_begin_thread (libmonitor.s0.0.0.0: pthread.c,893)
B @ 110 in main (mpithreads_both: mpithreads_both.c,110)
@ 1110 in pthread_exit (libmonitor.so0.0.0.0: pthread.c,1097)

Ox2aaaafdc5e05
_ Gl__ pthread_unwind (libpthread-2.11.3.s0)

= @ 208 in _Unwind_ForcedUnwind (libgcec_s.so.1: unwind.inc,197)
A 1CA in_|lmwind_Carcadl Inwind_Dhaca? flikare e en 1 nmaind ine 1A\ d

+422.179468 96.337682

Command Panel

openss>>

April 27, 2017

Open | SpeedShop* rmance Analysis with Open |SpeedShop

. s
1Argo Navis
Technologies

OSS/CBTF pthreads experiment loadbalance GUI view

Running the pthreads experiment

Open|SpeedShop
File Tools Help

v Thread Analysis [1] Max, Min, Ave across all 00

Process Control h d f I I d
: : . threaas for all trace -
= Run | Cont »| Pause 3 Update POSIX th d f t. H Tenminate
Stalus:lProcess Loaded: Click on the "Run" button to begin the experiment.
¥ Stats Panel [1] | = ManageProcessesPanel [1] | 0z [0 O =
: View/Display Choice
I el & &Y He [TS b6V EL LB ea e Showing Load e (min,max.ave) Report: (g Functions I
Executables: mpithreads_both Hosts:(32) nid00800 ... £j Ranks: 64 Threads: 22 I
Max Exclusive Pthreads c| Rank of Max Min Exclusive Pthreads calRank of Min Average Exclusive Pthrea| Function (defining location)
7.001017 52 6.309287 43 6.596554 pthread_create (libmonitor.s0.0.0.0: pthread.c,1008)
0.025095 16 0.013530 25 0.015961 pthread_mutex_lock (libpthread-2.11.3.s0)
0.018782 32 0.011944 41 0.013139 __pthread_mutex_unlock (libpthread-2.11.3.s0)
~-0.003945 62 0.002835 12 0.003425 __pthread_mutex_init_internal (libpthread-2.11.3.s0)
I} A]r
Command Panel | =
openss==

Open | SpeedShop* formance Analysis with Open |SpeedShop April 27, 2017

) - 3
1Argo Navis

[] []
Running the pthreads experiment
OSS/CBTF pthreads experiment butterfly GUI view
Open|SpeedShop
File Tools Help
Thread Analysis [1 i i e
= Thiead Analysis (1 Caller, Pivot Function, and :
’7 = Run | Cont »| Pause 3 Update Cal Iee |nf0rmat|0n from N Tenminate
Stalus:lProcess Loaded: Click on the "Run" button to begin the experiment. B Utterfly Vi eW
¥ Stats Panel [1] | = ManageProcessesPanel [1] | 0z [0 O =
i el &* Y He [TS 6V EL LB ea e Showing Butterfly Re |
Executables: mpithreads_both Hosts:(32) nid00800 ... Pids: 64 R P64 Threads: 22 |
Inclusive Time |% of Total Function (defining location)
:3.909852 0.000000 itor_begin_thread (libmonitor.s0.0.0.0: pthread.c,893)
h 2.792541 0.000000 pthread_mutex_lock (pthreads-collector-monitor-mrnet-mpi.so: wrappers....
~1.117311 0.000000 pthread mutex_unlock (pthreads-collector-monitor-mrnet-mpi.so: wrappe...
Command Panel [0 0 =
openss==

i
Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 103

}F{’.\

) Open | SpeedShop~
W Performance with Open|SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Lightweight 1/0 and MPI

go Navis

e /(Technologies

open| Ss5dshor D

\'t i ™ o
1Argo Navis
Technologies

OSS/CBTF iop and mpip experiment

Lightweight Experiments

< iop — Gather I/O information like the io experiment, but do
not save the information about each individual I/O call.

< mpip - Gather MPI information like the io experiment, but do
not save the information about each individual MPI call.

<+ Experiments still give a good overview of I/O and MPI, but
reduce the sizes of the Open|SpeedShop database created.

< Size comparison:

> 668K smg2000-mpip-0.openss

e ossmpip "mpirun -np 4 ./smg2000 -n 10 10 10"
» 5.0M smg2000-mpi-0.openss

e ossmpi "mpirun -np 4 ./smg2000 -n 10 10 10"
> 12M smg2000-mpit-0.openss

e ossmpit "mpirun -np 4 ./smg2000 -n 10 10 10"
> 60K smg2000-mpit-1.openss

* Gathered data for only the MPI collective mpi category.
e ossmpit "mpirun -np 4 ./smg2000 -n 10 10 10" collective_com

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

_ @ \‘ﬂ g N ‘w‘s
ogies

. Open | SpeedShop~ NS\
2 Performance with Open|SpeedShop N

NASA Open[SpeedShop
Update/Training

NVIDIA CUDA Performance Analysis

go Navis

e /(Technologies

open| Ss5dshor D

A . P
1Argo Navis

Technologies

OSS/CBTF cuda experiment S

What performance info does O|SS provide?

<+ For GPGPU O|SS reports information to help understand:

> Time spent in the GPU device

» Cost and size of data transferred to/from the GPU

> Balance of CPU versus GPU utilization

> Transfer of data between the host and device memory versus the execution of
computational kernels

> Performance of the internal computational kernel code running on the GPU
device

<+ O]SS is able to monitor CUDA scientific libraries because it
operates on application binaries.

<+ Support for CUDA based applications is provided by tracing actual
CUDA events

< OpenACC support is conditional on the CUDA RT.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Open|SpeedShop: osscuda experimentj- s

Usage:
osscuda "executable" [extra_args]

Where "executable" is defined as the command that you normally
use to execute your program but placed in quotes.

Example: osscuda "mpiexec_mpt -np 8 ./Triad" [extra_args]
The optional "extra_args" are defined as follows:

The following arguments control the periodic sampling of both CPU and GPU
hardware performance counters performed by the cuda collector:

"all" - Periodically sample all instructions.
"branches" - Periodically sample branch instructions.
"integer" - Periodically sample integer instructions.
"single" - Periodically sample single-precision float instructions.
"double" - Periodically sample double-precision float instructions.
"memory" - Periodically sample load/store instructions.

"low" - Periodically sample the requested instructions every 100 ms.
"default" - Periodically sample the requested instructions every 10 ms.
"high" - Periodically sample the requested instructions every 1 ms.

Open | SpeedShop* Performance Analysis With Open |SpeedShop: NASA Hands-On Tutorial April 27, 2017

CUDA GUI View: Default CUDA view (R

Note: The left pane shows the executable and the nodes it ran on. In future, will effect views.
Internal GPU activity is shown in ccn0001 (GPU All) graphic (shaded area)
Red boxes indicate data transfers, Green boxes indication GPU kernel executions
Source panel displays source for metrics clicked on in the Metric pane.

File Help
Currently Loaded Experiment Information =
¥ SHOC-GEMM-cuda-0 &
¥ GPU Compute / Data Transfer Ratio E
¥ [maia13-pid-27496-tid-1 g
GPU All g
¥ & maia13-rank-0-tid-2 [70 140 210 280 350 420 490 560 630
cPU All
¥ [& maia14-pid-78761-tid-3 3
GPU All 4
¥ & maiat4-rank-1-tid-2 £
crPU All]
]
E
[70 140 210 280 350 420 490 560 630
-
]
g
B
3
E
<
E
E
0 70 140 210 280 350 420 490 560 630
o
=
H
<
i
E 1
0 70 140 210 280 350 420 490 560 630
Mode: |Metric 2 Metric: |exec time 2 View: | Functions
Time (msec) 4 % of Time Minimum (Thread) Maximum (Thread) Average (Thread) Function (defining location)
9.820878 51.974640 4.851849 4.969029 4.910439 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (/home4/jgalarow/demos/shoc/src/cuda/level1/gemm/epmg
9.074641 48.025360 4.531018 4.543623 4.537320 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (fhome4/jgalarow/demos/shoc/src/cuda/level1/gemm/epr

15
16 using namespace std; ‘ ‘
17

18 template <class T>
19 void RunTest(string testName, ResultDatabase &resultDB, OptionParser &op);
20

21 template <class T>

22 inline void devGEMM(char transa, char transb, int m, int n, int k, T alpha,
23 const T *A, int lda, const T *B, int ldb, T beta, T *C, int ldc);

24

ael 1

Open | SpeedShop* Performance Analysis With Open |SpeedShop: NASA Hands-On Tutorial April 27, 2017

CUDA GUI View: All Events Trace

Note: This is the “All Events” Details View which shows the chronological list of CUDA kernel
executions and data transfers. Here the Experiment Panel (the left side panel) has been
completely collapsed to maximize the width of the right-side panels.

File Help
]
P
4
3
3
-
2
H
380 400 420 440 460 480 500
o
3
3
H
@
2
]
H
380 400 420 440 460 480 500
-
]
g
B
2
s
4
2
H
380 400 420 440 460 480 500
o
. 3
i H
4
=
]
£ I 1
380 400 420 440 460 480 500 1
Mode: |Details = Metric: View: | All Events =
Type Time (ms) ~ Time Begin (ms) Time End (ms) Duration (ms) Call site Device
Data Transfer 378.214415 378.236515 378.237955 0.001440 0 0 | |
Data Transfer 384.475179 384.490501 384.518789 0.028288 1 0
Data Transfer 384.555658 384.566117 384.593061 0.026944 2 0
Kernel Execution 384.722968 384.761253 384.817381 0.056128 8 0
Kernel Execution 384.866946 384.881157 384.930117 0.048960 9 0
Kernel Execution 384.974861 384.987749 385.039301 0.051552 9 0
Kernel Execution 385.083107 385.095589 385.143301 0.047712 9 0
Kernel Execution 385.186860 385.199333 385.251269 0.051936 9 0
Data Transfer 385.299471 385314597 385.342021 0.027424 3 0
Kernel Execution 385467776 385.484005 385.535621 0.051616 10 0
Kernel Execution 385.579571 385.592485 385.640869 0.048384 11 0
Kernel Execution 385.684797 385.697605 385.747109 0.049504 11 0
Kernel Execution 385.790640 385.803077 385.849701 0.046624 11 0
Kernel Execution 385.893141 385.905893 385.955429 0.049536 11 0
Data Transfer 385.989542 386.001605 386.028357 0.026752 3 0

Open | SpeedShop* April 27, 2017

E\argo Navis
/f Technologies

Section 1: Introduction to Open|SpeedShop tools
» How to use Open|SpeedShop to gather and display

> Overview of performance experiments
e Sampling Experiments and Tracing Experiments

> How to compare performance data for different application runs

Section 2: New Functionality/Experiments
» Memory (ossmem) experiment
> OpenMP augmentation
» OMPTP (ossomptp) experiment
» POSIX threads (osspthreads) experiment
> Lightweight experiments (ossiop, ossmpip)

Section 3: Roadmap / Future Plans

Supplemental Information
» Command Line Interface (CLI) tutorial and examples

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 111

_@ \ﬂngs

) Open | SpeedShop~
¥y Performance with Open|SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Section 3
Road Map / Future Work

go Navis

s /(Technologies

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27,2017

What are the recent changesto O|SS [JRasEes

< Component Based Tool Framework (CBTF)

» New version of O|SS uses tree based network (MRNet)
* Transfer data over the network, does not write files like the
offline version
» Allows the possibility of data reduction (in parallel) as the
data is streamed up the tree

> Six new experiments implemented in this version
 Lightweight I/O profiling (iop)
e Lightweight MPI profiling (mpip)
e Threading experiments (pthreads)
e Memory usage analysis (mem)
GPU/Accelerator support (cuda)
OpenMP specific support (omptp)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 113

What are the recent changesto O|SS [JRasEes

<+ New features and improvementsin O|SS
» OpenMP idle/wait time augmentation to sampling experiments
> Spack build support for clusters — not Cray yet
» Conversion to cmake builds for O|SS, CBTF from GNU auto tools.
> Support for offline like capability in the O|SS CBTF version

e Use osspcsamp --offline “how you run your application normally”
e Same for other experiments: ossusertime, osshwc, etc..

> Fix in Qt3 GUI for better support of function related views when
function name is STL or C++ namespace based.
> Major improvements to NVIDIA CUDA GPU experiment

e |nitial new GUI creation
* Improved performance data collection
e Improved command line interface (CLI) views

> ARM, Power8 support
> Tracing of MPIl asynchronous non-blocking functions in the MPI
experiments.

Open | SpeedShop” Performance Analysis with Open |SpeedShop April 27, 2017 114
p

I - P
1Argo Navis

Technologies

Open |SpeedShop and CBTF ose

New functionality being worked on now or planned

< Creation of an Overview experiment
> Give users an overview of the performance of their application
> Include information in a lightweight manner
» Include MPI, I/O, hardware counters, PC sampling, other
> May not create a database? Still in the planning stages
> Task for Tri-labs listed in development contract

% Continue improving Intel MIC (KNL) support

< Filtering (data reduction, analysis) in the MRNet communication nodes
> Faster views as data is mined in parallel

» Investigate performance analysis by phases and iteration of the phase,
perhaps using LLNL caliper project.

» Spack based OpenSpeedShop builds for Cray platform

* In discussion: replacement/upgrade for mpiotf experiment to write
OTF-2 instead of OTF. OTF == Open Trace Format

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

NASA Open|SpeedShop Availability Q e

Pleaides platform:
< module use /home4/jgalarow/privatemodules

< Module names:
> module load openspeedshop (defaults to mpt)
> module load openspeedshop.mpt
> module load openspeedshop.intelmpi
> module load openspeedshop.mvapich?2
> module load openspeedshop.openmpi

KNL cluster platform:
< module use /u/jgalarow/privatemodules

< Module names:
> module load openspeedshop (defaults to mpt)
> module load openspeedshop.mpt
> module load openspeedshop.intelmpi

For mpi* experiments use the module file that corresponds
to the MPIl implementation your application was built with.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Availability @ e

% Current version: 2.3.1 has been released

< Open|SpeedShop Website
> http://www.openspeedshop.org/

<+ Open|SpeedShop help and bug reporting
> Direct email: oss-contact@openspeedshop.org
» Forum/Group: oss-questions@openspeedshop.org

< Feedback
> Bug tracking available from website
> Feel free to contact presenters directly
> Support contracts and onsite training available

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 118

http://www.openspeedshop.org/
mailto:oss-contact@openspeedshop.org
mailto:oss-questions@openspeedshop.org

Open |SpeedShop Documentation Q

< Build and Installation Instructions

> http://www.openspeedshop.org/documentation
e Look for: Open|SpeedShop Version 2.3 Build/Install Guide

< Open|SpeedShop User Guide Documentation

> http://www.openspeedshop.org/documentation
e Look for Open|SpeedShop Version 2.3 Users Guide

< Man pages: OpenSpeedShop, osspcsamp, ossmpi,

< Quick start guide downloadable from web site

> http://www.openspeedshop.org
> Click on “Download Quick Start Guide” button

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

http://www.openspeedshop.org/documentation
http://www.openspeedshop.org/documentation
http://www.openspeedshop.org

Outline Q e

Section 1: Introduction to Open|SpeedShop tools
» How to use Open|SpeedShop to gather and display

> Overview of performance experiments
e Sampling Experiments and Tracing Experiments

> How to compare performance data for different application runs

Section 2: New Functionality/Experiments
» Memory (ossmem) experiment
> OpenMP augmentation
» OMPTP (ossomptp) experiment
» POSIX threads (osspthreads) experiment
> Lightweight experiments (ossiop, ossmpip)

Section 3: Roadmap / Future Plans

Supplemental Information
» Command Line Interface (CLI) tutorial and examples

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 120

_ @ \ﬂ go Nav{s

Open | SpeedShop~
Performance with Open[SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Supplemental: 1
Command Line Interface Usage

L B __| \@”go Navis
o - /(Technologies

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27,2017

Command Line Interface (CLI) Usage [JRaes

< Command Line Interface Features
> “gdb” like tool for performance data creation and viewing
» Same functional capabilities the graphical user interface (GUI)
» Exception: GUI can focus on the source line corresponding to statistics
> List metadata about your application and the OSS experiment
> Create experiments and run them
> Launch the GUI from the CLI via the “opengui” command

> View performance data from a database file
e openss —cli —f <database filename> to launch
* expview — key command with many options
* list — list many items such as source, object files, metrics to view
* expcompare — Compare ranks, threads, processes to each other, more...
e cviewcluster — Creates groups of like performing entities to outliers.
e cview — Output the columns of data representing groups created by
cviewcluster.
* cviewinfo — Output what ranks, threads, etc., are in each cview group

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 122

Command Line Interface (CLI) Usage [~ JRaEs

<+ Command Line Interface Features (additional)

> Format the performance information view to csv
* expview -F csv
> Selectively only view, compare, analyze by rank, thread, process
e -r<rank number> or rank list or rank ranges
e -t <thread number> or thread list or thread ranges
e -p <process number> or process list or process ranges
> Selectively only view, compare, analyze by specific metrics
e -m <metric name> or list of metrics
* Example metrics for sampling: percent, time
* Example metrics for tracing: time, count, percent
> Selectively only view by specific view type options
e -v <view type> or list of view types

* Example view types: functions, statements, loops, linked objects
* Example metrics for tracing: time, count, percent

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 123

Command Line Interface (CLI) Usage [~ JRaEs

Command Line Interface Examples
<+ openss —cli —f <database file name>

< Commands to get started

> expstatus
* Gives the metadata information about the experiment
> expview
* Displays the default view for the experiment
e Use expview <experiment type>nn to see only nn lines of output
— expview pcsamp20 shows only the top 20 time taking functions
e -v functions : displays data based on function level granularity
e -v statements : displays data based on statement level granularity
e -v linkedobjects : displays data based on library level granularity
e -vloops : displays data based on loop level granularity
e -v calltrees : displays call paths combining like paths
» -v calltrees,fullstack : displays all unique call paths individually
* -m loadbalance : displays the min, max, average values across ranks, ...

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 124

) - 3
1Argo Navis

Technologies

Command Line Interface (CLI) Usage [

Command Line Interface Examples
<+ Openss -cli -f <database file name>

< Commands to get started

> expview (continued from previous page)
e -v trace : for tracing experiments, display chronological list of events
e -m <metric> : only display the metric(s) provided via the —m option
— Where metric can be: time, percent, a hardware counter, (see list -v metrics)
e -r<rank or rank list> : only display data for that rank or ranks
e -t<thread id or list of thread ids> : only display data for that thread (s)
e -h < host id or list of host ids> : only display data for that host or hosts
e -Fcsv : display performance data in a comma separated list

> expcompare : compare data within the same experiment
e -r1-r2—-mtime: compare rank 1 to rank 2 for metric equal time
e -h hostl —h host2 : compare host 1 to host 2 for the default metric

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 125

A s
1Argo Navis

Command Line Interface (CLI) Usage [~ RS

Command Line Interface Examples

<+ openss —cli —f <database file name>

< Commands to get started

> list
e -v metrics : display the data types (metric) that can be displayed via—m
e -vsrc: display source files associated with experiment
e -v obj : display object files associated with experiment
* -vranks : display ranks associated with experiment
e -v hosts : display machines associated with experiment
e -v exp : display the experiment numbers that are currently loaded
e -v savedviews : display the commands that are cached in the database

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 126

,\»’?lrgo Navis
Technologies

Viewing hwcsamp data in CLI

openss -cli -f smg2000-hwcsamp-1.openss

View the default report for this hwcsamp experiment

openss>>[openss]: The restored experiment identifier is: -x 1

openss>>eXpview

Exclusive CPU time % of CPU Time PAPI_TOT_CYC PAPI_FP_OPS Function (defining location)

in seconds.

3.920000000 44.697833523 11772604888 1198486900 hypre_SMGResidual (smg2000:
smg_residual.c,152)

2.510000000 28.620296465 7478131309 812850606 hypre_CyclicReduction (smg2000:
cyclic_reduction.c,757)

0.310000000 3.534777651 915610917 48863259 opal_progress (libopen-pal.s0.0.0.0)

0.300000000 3.420752566 910260309 100529525 hypre_SemiRestrict (smg2000:

semi_restrict.c,125)

0.290000000 3.306727480 874155835 48509938 mca_btl sm_component_progress
(libmpi.so0.0.0.2)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 127

,f\,@\rgo Navis
Technologies

Viewing hwcsamp data in CLI

View the linked object (library) view for this Hardware Counter Sampling experiment

openss>>expview -v linkedobjects
Exclusive CPU time % of CPU Time PAPI_TOT_CYC PAPI_FP_OPS LinkedObject

in seconds.

7.710000000 87.315968290 22748513124 2396367480 smg2000
0.610000000 6.908267271 1789631493 126423208 libmpi.so.0.0.2
0.310000000 3.510758777 915610917 48863259 libopen-pal.s0.0.0.0
0.200000000 2.265005663 521249939 46127342 libc-2.10.2.s0

8.830000000 100.000000000 25975005473 2617781289 Report Summary

openss>>

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 128

Viewing |/O (iot) data in CLI

,\»’?lrgo Navis
Technologies

View the default 1/0O report for this I/O experiment
openss>> openss -cli -f sweep3d.mpi-iot.openss
openss>>[openss]: The restored experiment identifieris: -x 1
openss>>expview
I/O Call % of Number Function (defininglocation)
Time(ms) Total of

Time Calls
1.241909 90.077151 36 __ write (libpthread-2.17.s0)
0.076653 5.559734 2 close (libpthread-2.17.s0)
0.035452 2.571376 2 read (libpthread-2.17.s0)
0.024703 1.791738 2 openb4 (libpthread-2.17.s0)

View the default trace (chronologicallist of I/O functions calls) for this I/O experiment
openss>>expview -v trace
StartTime I/OCall % of Function File/Path Name Event Call Stack Function (defininglocation)
Time(ms) Total Dependent Identifier(s)

Time Return

Value
2014/08/17 09:25:44.368 0.012356 0.896196 13 input 0:140166697882752 >>>>>>>>>>0penb4 (libpthread-2.17.s0)
2014/08/17 09:25:44.368 0.027694 2.008679 input 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.50)

2014/08/17 09:25:44.377 0.053832 3.904500 0 input 0:140166697882752 >>>>>>>>>close (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.012347 0.895543 13 input 0:140166697882752 >>>>>>>>>>0penb4 (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.007758 0.562697 53 input 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.022821 1.655235 0 input 0:140166697882752 >>>>>>>>>close (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.037219 2.699539 62 /dev/pts/1 0:140166697882752 >>>>>>>>>> write (libpthread-2.17.s0)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 129

@ ff\vﬂrgo Navis
| Technologies

Viewing |/O (iot) data in CLI

View the list of metrics (types of performance information) for this I/O experiment

openss>>list -v metrics
iot::average
iot::count
iot::exclusive_details
iot::exclusive_times
iot::inclusive_details
iot::inclusive_times
iot::max

iot::min

iot::nsysarg
iot::;pathname
iot::retval
iot::stddev
iot::syscallno
iot::threadAverage
iot::threadMax
iot::threadMin

jot::time

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 130

Viewing |/O (iot) data in CLI

,\»’?lrgo Navis
Technologies

View in chronological trace order: start_time, time, the rank:thread event occurred in.

openss>>expview -m start_time,time,id -vtrace

Start Time(d:h:m:s) Exclusive Event Call Stack Function (defining location)
I/O Call Identifier(s)
Time(ms)

2014/08/17 09:25:44.368 0.012356 0:140166697882752 >>>>>>>>>>0pen64 (libpthread-2.17.s0)
2014/08/17 09:25:44.368 0.027694 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.s0)
2014/08/17 09:25:44.377 0.053832 0:140166697882752 >>>>>>>>>close (libpthread-2.17.s0)
014/08/17 09:25:44.378 0.012347 0:140166697882752 >>>>>>>>>>0pen64 (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.007758 0:140166697882752 >>>>>>>>>>>>>read (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.022821 0:140166697882752 >>>>>>>>>close (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.037219 0:140166697882752 >>>>>>>>>> write (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.018545 0:140166697882752 >>>>>>>>>> write (libpthread-2.17.s0)
2014/08/17 09:25:44.378 0.019837 0:140166697882752 >>>>>>>>>> write (libpthread-2.17.s0)
2014/08/17 09:25:44.379 0.035047 0:140166697882752 >>>>>>>>>> write (libpthread-2.17.s0)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 131

,\,»’Elrgo Navis
Technologies

Viewing |/O (iot) data in CLI

View the load balance (max, min, and average values) across all ranks, threads, or processes.

openss>>expview -m loadbalance
Max I/O Rank Min I/O Rank Average Function (defining location)
Call of Call of I/OCall
Time Max Time Min Time
Across Across Across
Ranks(ms) Ranks(ms) Ranks(ms)
1.241909 0 1.241909 0 1.241909 _ write (libpthread-2.17.s0)
0.076653 0 0.076653 0 0.076653 close (libpthread-2.17.s0)
0.035452 0 0.035452 0 0.035452 read (libpthread-2.17.s0)
0.024703 0 0.024703 0 0.024703 openb4 (libpthread-2.17.s0)

View data for only rank nn, in this case rank O
openss>>expview -r 0

I/OCall % of Number Function (defining location)
Time(ms) Total of

Time Calls
1.241909 90.077151 36 _ write (libpthread-2.17.s0)
0.076653 5.559734 2 close (libpthread-2.17.s0)
0.035452 2.571376 2 read (libpthread-2.17.s0)
0.024703 1.791738 2 openb4 (libpthread-2.17.s0)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 132

Viewing |/O (iot) data in CLI

,\,»’Elrgo Navis
Technologies

View the top time taking call tree in this application run. iotl indicates see only one callstack. iot<number> shows
“number” of calltrees.

openss>>expview -v calltrees,fullstack iotl
I/O Call % of Number Call Stack Function (defining location)
Time(ms) Total of
Time Calls
_start (sweep3d.mpi)
> @ 562 in _libc_start_main (libmonitor.s0.0.0.0: main.c,541)
>> libc_start_main (libc-2.17.s0)
>>> @ 517 in monitor_main (libmonitor.s0.0.0.0: main.c,492)
>>>>0x4026a2
>>>>> @ 185in MAIN__ (sweep3d.mpi: driver.f,1)
>>>>>> @ 41 in inner_auto_ (sweep3d.mpi: inner_auto.f,2)
>>>>>>> @ 128 in inner_ (sweep3d.mpi: inner.f,2)
>>>>>>>> gfortran_st_write_done (libgfortran.so.3.0.0)
>>>>>>>>>0x30fb8db56f
>>>>>>>>>>0x30fb8e65af
>>>>>>>>>>>0x30fb8df8c8
0.871600 63.218195 12 >>>>>>>>>>>> write (libpthread-2.17.s0)

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 133

Command Line Interface (CLI) Usage [~ JRaEs

Open|SpeedShop CLI output into csv form for spreadsheet
use.

< Create an experiment database
EXE=./a.out
export
OPENSS_HWCSAMP_EVENTS="PAPI_VEC_DP,FP_COMP_OPS_EXE:SSE_FP_PACKED _
DOUBLE"
osshwcsamp "/usr/bin/srun-N1-n1 SEXE ”

< Open the database file and use expview —F csv to create a csv file
openss —cli —f a.out-hwcsamp.openss
>expview -F csv > mydata.csv

< Create csv file using a script method
echo "exprestore -f a.out-hwcsamp.openss" > ./cmd_file
echo "expview -F csv > mydata.csv" >> ./cmd_file
echo "exit" >> ./cmd_file
H
Run openss utility to output CSV rows.
#
openss -batch < ./cmd_file

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 134

GUI export of data to csv form Qe

Getting Open|SpeedShop output into csv form for spreadsheet use.

openss —f stream.x-hwcsamp-1.openss

Go to Stats Panel Menu

Select the "Report Export Data (csv)" option

In the Dialog Box provide a meaningful name such as stream.x-hwcsamp-1.csv

File will be saved to a file you specified above

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 135

Command Line Interface (CLI) Usage [~ JRaEs

Storing csv information into spreadsheet

< Open your spreadsheet.

< Either
> Select open from pulldown menu
> import stream.x-hwcsamp-1.csv
> Cut and paste the contents of stream.x-hwcsamp-1.csv
into the spreadsheet

<+ Use "Data" operation and then "Text to columns”,
< Select "comma" to separate the columns.

< Save the spreadsheet file

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 136

Command Line Interface (CLI) Usage [~ JRaEs

Plotting the performance info from the
spreadsheet (Libre office instructions)

< Open your spreadsheet.

< Select Insert, then choose Chart

< Choose a chart type

<+ Choose data range choices (data series in columns)

<+ Choose data series (nothing to do here)

< Chart is created. Views can be changed.

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017 137

_@ \ﬂngs

) Open | SpeedShop~
¥y Performance with Open|SpeedShop NASA

NASA Open[SpeedShop
Update/Training

Supplemental: 2
Preferences

go Navis

s /(Technologies

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27,2017

Argo Navis
Technologies

Changing Preferences in O|SS

Y Jim Galarov

A Open|SpeedShop

o Select Preferences from
the File menu

B0OO=x
Open Saved Experiment... Cul+A

Save Experiment Data... Cul+S
3 Experiments »
3 Wizards ,

i~ General

Source Panel n
Exit Font: Bitstream Charter
— ManageProcessesPanel [—] I

Remote Shell Command: [/ust/bin/rsh

[Show splash screen on startup

[Show graphics when available

Please select one of the following to begin analyzing your application or your previously saved pe View field size: I 10

for performance issues:

View Precision: [6

® ‘GENERATE NEW PERFORMANCE DATA: I would like to load or attach to an application/exec

A series of wizard panels will guide you through the process of creating a performance experil i e I 100

X History Default: [24
LOAD SAVED PERFORMANCE DATA: I have a saved performance experiment data file that 1 v

& Open| SpeedShop saved performance experiment filenames have the prefix ".openss' Max Async Commands: IZD

‘COMPARE SAVED PERFORMANCE DATA: I have two saved performance experiment dara files Help Level Default: |2

2 Open| SpeedShop saved performance experiment filenames have the prefix ".openss'

[View Full Path

e M [Save Experiment Database | = I I N I I =]
erl liza e Hack > Next 1ish
4 On Rerun Allow Changing Application Arguments

[On Rerun Ask About Saving The Experiment Database
[On Rerun Save Copy of Experiment Database from previous run|
[J View Mangled Names

[Allow Python Commands

Command Panel = =T TT» |L B 0O %
openss> >
pesae) (_smy) [o)) [[ome
Z
Open the Preferences Panel to set persistent preferences. A

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

Changing Preferences in O|SS

Enabling the new Command Line Interface (CLI)
save/reuse views feature. Looking for friendly user
evaluation. S ————

Source Panel History Limit: Il{}O _‘ ‘

angeProcesand wvoen: - ClICK here to enable the
wosmeommns [SAVE AN reuse (cache)
Help Levl Detaute [} CLI views

[View Full Path

[Save Experiment Database

[On Rerun Allow Changing Application Arguments
[On Rerun Ask About Saving The Experiment
[On Rerun Save Copy of Experiment Da from previous run

[View Mangled Names

[Allow Python Commands
[Instrumentor Is Offli
[Less Restrictive parisons
[] Use Bla Comparison Qutput

11y Adjust View Field Size To Data Size

4 Save Views for Reuse in CLI and GUI

Save Views if Time Exceeds this value: IO

=
Start/End Time view field size extension: [3 =

Il 1]

Help [Cpefaurs] [avy] [ok)| [ceneet]

Open | SpeedShop* Performance Analysis with Open |SpeedShop April 27, 2017

	Slide Number 1
	Webinar Preparation Underway
	Instructions for Participants
	Presenters and Extended Team
	Outline
	NASA Open|SpeedShop Availability
	Section 1�Introduction into Tools and Open|SpeedShop
	Open|SpeedShop Tool Set
	
	
	Alternative Interfaces
	Central Concept: Experiments
	Sampling Experiments in O|SS
	Tracing Experiments in O|SS
	Tracing Experiments in O|SS
	How to Run a First Experiment in O|SS?
	Example Run with Output (1 of 2)
	Example Run with Output (2 of 2)
	Default Output Report View
	Statement Report Output View
	Associate Source & Performance Data
	Library (LinkedObject) View
	Loop View
	First Experiment Run: Summary
	Identifying Critical Regions
	�Call Path Profiling (usertime)�
	Call stack profiling
	Adding Context through Stack Traces
	Inclusive vs. Exclusive Timing
	Interpreting Call Context Data
	In/Exclusive Time in O|SS: Usertime
	Reading Inclusive/Exclusive Timings
	Stack Trace Views: Hot Call Path
	Stack Trace Views: Butterfly View
	Demonstration: Call path profiling
	Performance Analysis related to accessing �Hardware Counter Information
	Identify architectural impact on code inefficiencies
	The O|SS HWC Experiments
	Examples of Typical Counters
	Recommend start with HWCsamp
	Selecting the Counters & Sampling Rate
	hwcsamp with miniFE (see mantevo.org)
	Deeper Analysis with hwc and hwctime
	Viewing hwc Data
	Viewing hwctime Data
	Performance Analysis related to �application I/O activity
	 I/O analysis with O|SS
	Running I/O Experiments
	I/O output via GUI
	I/O output via GUI
	I/O “iot” experiment output via GUI
	I/O “iot”experiment output via CLI
	Parallel Performance Analysis including�analysis related to application �MPI and/or OpenMP activity
	How can O|SS help for parallel jobs?
	Analysis of Parallel Codes
	Integration with MPI
	MPI/OpenMP Specific Experiments
	Running MPI Specific Experiments
	Identifying Load Imbalance With O|SS
	Load Balance View: NPB: LU
	Default Linked Object View: NPB: LU
	MPI Tracing Results: Default View
	View Results: Show MPI Callstacks
	Using Cluster Analysis in O|SS
	Link. Obj. Cluster Analysis: NPB: LU
	�Comparing Performance Data�
	Comparing Performance Data
	Comparing Performance Data in O|SS
	Comparison Report in O|SS
	Section 2: Recently added Functionality/Experiments
	Outline
	�Performance Analysis related to �application memory function activity�
	O|SS Memory Experiment
	O|SS Memory Experiment CLI commands
	O|SS Memory Experiment
	O|SS Memory Experiment
	O|SS Memory Experiment (Unique Calls)
	O|SS Memory Experiment (Leaked Calls)
	O|SS Memory Experiment (Highwater Calls)
	 Summary and Conclusions
	Demonstration: Memory Analysis
	Performance Analysis related to �application OpenMP activity
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	O|SS OpenMP augmentation
	Using OMPTP experiment in O|SS
	Using OMPTP experiment in O|SS
	Using OMPTP experiment in O|SS
	Demonstration: OpenMP specific profiling
	�Performance Analysis related to �application POSIX thread activity�
	OSS/CBTF pthreads experiment
	Running the pthreads experiment
	Running the pthreads experiment
	Running the pthreads experiment
	Running the pthreads experiment
	Running the pthreads experiment
	�Lightweight I/O and MPI
	OSS/CBTF iop and mpip experiment
	�NVIDIA CUDA Performance Analysis
	OSS/CBTF cuda experiment
	Open|SpeedShop: osscuda experiment
	CUDA GUI View: Default CUDA view
	CUDA GUI View: All Events Trace
	Outline
	Section 3�Road Map / Future Work
	What are the recent changes to O|SS
	What are the recent changes to O|SS
	Open|SpeedShop and CBTF
	NASA Open|SpeedShop Availability
	Availability
	Open|SpeedShop Documentation
	Outline
	Supplemental: 1�Command Line Interface Usage
	Command Line Interface (CLI) Usage
	Command Line Interface (CLI) Usage
	Command Line Interface (CLI) Usage
	Command Line Interface (CLI) Usage
	Command Line Interface (CLI) Usage
	Viewing hwcsamp data in CLI
	Viewing hwcsamp data in CLI
	Viewing I/O (iot) data in CLI
	Viewing I/O (iot) data in CLI
	Viewing I/O (iot) data in CLI
	Viewing I/O (iot) data in CLI
	Viewing I/O (iot) data in CLI
	Command Line Interface (CLI) Usage
	GUI export of data to csv form
	Command Line Interface (CLI) Usage
	Command Line Interface (CLI) Usage
	Supplemental: 2�Preferences
	Changing Preferences in O|SS
	Changing Preferences in O|SS

