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About this Manual 
 
Open|SpeedShop is an open-source multi-platform Linux performance tool to 
support performance analysis of applications running on both single-node and 
large-scale Intel, AMD, ARM, Intel Phi, PPC, Power and GPU processor-based systems 
and on Cray and IBM Blue Gene platforms. 
  
This reference guide provides basic O|SS information.  It’s designed to help users 
understand the general O|SS experiments available to analyze application code. 
Extensive information is provided about how to employ these experiments and view 
performance information in practical ways, arming users to optimize and analyze 
their codes. 
 
O|SS is a community effort with direct support from the Department of Energy 
National Nuclear Security Administration (DOE NNSA).  It builds on a broad list of 
community infrastructures, most notably Dyninst and MRNet (Multicast Reduction 
Network) from the University of Wisconsin at Madison, the Libmonitor profiling tool 
from Rice University, and the Performance Application Programming Interface 
(PAPI) from the University of Tennessee at Knoxville.    
  
O|SS is designed with usability in mind and is for application developers and 
computer scientists. The base functionality includes: 

 High level Overview/Summary 
 Program Counter Sampling 
 Support for Call Stack Analysis 
 Hardware Performance Counter Sampling and Threshold based 
 MPI Lightweight Profiling and Tracing 
 I/O Lightweight Profiling and Tracing 
 Memory Trace Analysis  
 OpenMP Profiling and Analysis 
 POSIX Thread Trace Analysis 
 NVIDIA CUDA Event Tracing and Hardware Counter Information 

 
O|SS also is modular and extensible. It supports several levels of plugins, letting 
users add their own performance experiments. 
 
The O|SS infrastructure and base components are released as open-source code 
primarily under LGPL.  Highlights include: 

 No need to recompile the user’s application to get performance data at 
the function and library level.   The debug option “-g” needed for 
statement, loop, and vector instruction level information. 

 Comprehensive performance analysis for sequential, multithreaded 
and MPI applications 
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 Intel Only AVX512: Detection and display of vector instructions with 
512 bit operands, showing address, opcode, time spent, and hardware 
maximum operand size for the vector instruction. 

 Support for both first analysis steps and deeper analysis options for 
performance experts 

 Easy-to-use GUI and fully scriptable through a command line interface 
and Python 

 Supports Linux Systems and Clusters with Intel, AMD, ARM, and 
Power processors 

 Extensible through new performance-analysis plugins, ensuring 
consistent look and feel 

 In production use on all major cluster platforms at Los Alamos, 
Lawrence Livermore and Sandia national laboratories and at other 
sites around the world 

 
Features include: 

 Four user interface options: batch, command line, GUI and Python 
scripting API 

 Supports multi-platform single-system image (SSI) and traditional 
clusters 

 See the performance data in several levels of granularity: 
o Per library, per function, per loop, per statement and per 

vector instruction (only on Intel platforms – helps in AVX512 
detection) 

 Scales to large numbers of processes, threads and ranks 
 Performance data viewable using multiple customizable means 
 Performance experiment data and symbol information can be saved 

and restored for post-experiment analysis 
 Performance data viewable for all of an application’s lifetime or for 

smaller time slices 
 Performance results comparable for processes, threads or ranks 

between a previous experiment and the current experiment 
 GUI context-sensitive help. 
 Interactive CLI help facility, which lists the CLI commands, syntax and 

typical usage 
 Option to automatically group like-performing processes, threads or 

ranks 
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1   Introduction to Open|SpeedShop 
 
Open|SpeedShop (O|SS) is an open-source performance analysis tool framework.  It 
provides all the most common performance analysis steps in one tool via a common 
shared interface.  It’s easily extendable by writing plugins to collect and display 
performance data.  It also comes with built-in experiments to gather and display 
several types of performance information. 
 
The existing O|SS experiments all work on unmodified application binaries.  It has 
been tested on a variety of Linux clusters and supports Cray and IBM Blue Gene 
systems. 
 

1.1 Basic Concepts, Interface, Workflow 
 
Users can examine the results of O|SS 
performance tests, called experiments, in three 
ways: a GUI, a command line interface, or 
through Python libraries.  Users also can apply 
these options to start experiments or start 
them by launching convenience scripts via the 
command line.  For example, to commence a convenience script for the pcsamp 
experiment (Program Counter Sampling), the user executes the command:      
      osspcsamp “<application>” 
where <application> is the executable under study along with any arguments.  The 
convenience scripts then will create a database of results from that experiment. 

 
The user can examine any database 
in the GUI with the command: 
         openss –f <db file>   
The GUI will provide simple 
graphics to help users understand 
the results and will relate the data 
back to the source code when 
possible.  
 
 

 
 
1.1.1 Common Terminology 
 
Technical terms can have multiple and/or context-sensitive meanings. This section 
explains and clarifies terms used in this document, especially with respect to O|SS 
tools.  
 

Experiment:  A set of collectors and an executable or executables joined to 
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generate performance information that viewable in human-readable 
form. 

Focused Experiment:  The current experiment that commands operate on. 
Users may run or view multiple experiments simultaneously, and unless 
a particular experiment is specified, the focused experiment will be 
used.  Experiments are given enumerations, called experiment IDs, for 
identification. 

Component(s):  A component is a somewhat self-contained code section in 
the O|SS performance tool.  This section does a set of specifically related 
tasks for the tool.  For example, the GUI component does all the tasks 
related to displaying O|SS wizards, experiment creation, and results 
using a graphical user interface.  The CLI component does similar 
functions but uses the interactive command-line delivery method. 

Collector:  The portion of the tool containing logic that gathers the 
performance metric.  The collector part of the code is included in the 
experiment plugin. 

Metric:  The measurement the collector/experiment gathers.  A metric could 
be a time, an occurrence counter or other property that reflects in some 
way on the application’s performance and that a collector directly 
gathers during a performance experiment at application runtime. 

Offline:  An O|SS operating mode.  This mode of operation uses a link 
override mechanism that lets performance data-gathering via 
libmonitor link O|SS performance data-gathering software components 
into the user application.  For this operating mode, the application must 
be run from start-up to completion.  The performance results may be 
viewed after the application terminates normally. 

Param:  User-set values that control the way each collector behaves. The 
parameter or param may cause the collector to perform various 
operations at certain time intervals or it may cause a collector to 
measure certain types of data.  Although O|SS provides a standard way 
to set a parameter, it is up to the individual collector to decide what to 
do with that information. Documentation for each collector includes 
details about the available parameters.  

Framework:  The set of API functions that lets the user interface manage 
performance experiment creation and viewing. It connects the user 
interface and the cluster support and dynamic instrumentation 
components. 

Plugin:  A portion (library) of the performance tool that can be loaded and 
included in the tool at startup.  Plugin development requires a tool-
specific interface (API) so that it and the tool it’s to go into can 
interact.  Plugins normally are placed in a specific directory so tools 
know where to find them.  

Target:  The application or part of the application O|SS is running the 
experiment on. O|SS gives options that describe file names, host names, 
thread identifiers, rank identifiers and process identifiers, letting the 
user fine-tune what is targeted. 
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Granularity:  O|SS gathers and displays data at five levels.   The first four 
levels are most common and apply across all platforms.   Those base 
levels are: per function, per statement, per loop, and per library.  
Recently, the vector instruction level was added for Intel platforms only.  
This allows users to tell what statements in their programs were 
vectorized, what the vector instructions are, the address of the vector 
instructions and the time spent executing the vector instruction. 

 

1.1.2 Concept of an Experiment 
 
In an O|SS experiment, a performance data collector gathers performance 
measurement data for a particular area of interest.  The collector, which is a small 
dynamic or static object library, also contains functions that can interpret the 
gathered data into a human-understandable form.   The experiment definition also 
includes the application under examination and how often the data will be collected 
(the sampling rate).   The application’s symbol information is saved into the 
experiment output file so that users can generate reports from the performance 
data file alone.  The application itself need not be present to view the performance 
data at a later time. 

 
1.2 Performance Experiments Overview 
 
O|SS refers to the different performance measurements as experiments.  Each 
experiment can measure and analyze different aspects of a code’s performance.  The 
user chooses the experiment type or type of data gathered. Any experiment may be 
applied to any application, except for applying MPI-specific experiments to non-MPI 
applications. 
 
Each experiment consists of collectors and views.  The collectors define specific 
performance data sources, such as program counter samples, call stack samples, 
hardware counters or library routine tracings.  Views specify how the performance 
data is aggregated and presented to the user.  It is possible to implement multiple 
collectors per experiment. 
 
1.2.1 Individual Experiment Descriptions 
 
The following table provides a quick overview of the experiment types that come 
with O|SS. 
 

Experiment  Experiment Description 
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summary Creates comma separated list (csv) files containing application level 
overview performance information on MPI, OpenMP, I/O, Memory usage, 
and hardware performance counters.    Currently, this experiment is 
accessed via the cbtfsummary command. 

pcsamp Periodically samples the program counters, providing a low-overhead view 
of where time is spent in the user application. 

usertime Periodically samples the call path, letting the user view inclusive and 
exclusive time spent in application routines.  It also lets the user see which 
routines called specific routines.  Several views are available, including the 
“hot” path. 

hwc Counts hardware events (including clock cycles, graduated instructions, 
instruction and data cache, TLB misses and floating-point operations) at the 
machine instruction, source line and function levels. 

hwcsamp Similar to hwc, except sampling is based on time, not PAPI event overflows.  
Up to six events may be sampled during the same experiment. 

hwctime Similar to hwc, except it also includes call path sampling.   

io Accumulated wall-clock durations of input/output (I/O) system calls: read, 
readv, write, writev, open, close, dup, pipe, creat and others.   Shows call 
paths for each unique I/O call path. 

iop Lightweight I/O profiling: Accumulated wall-clock durations of I/O system 
calls, including read, readv, write, writev, open, close, dup, pipe, creat and 
others, but doesn’t record individual call information. 

iot Similar to io, except it gathers more information, such as bytes moved, file 
names, etc. 

mpi Captures the time spent in and the number of times each MPI function is 
called.  Shows call paths for each MPI unique call path. 

mpip Lightweight MPI profiling: Captures the time spent in and the number of 
times each MPI function is called.  Shows call paths for each MPI unique call 
path, but doesn’t record individual call information. 

mpit Records each MPI function call event with specific data for display via a 
graphical user interface (GUI) or a command line interface (CLI).  Trace 
format option displays the data for each call, showing its start and end times. 

mem** Tracks a potential memory allocation call that is not later destroyed (i.e., a 
leak). Records any memory allocation event that sets a new high-water mark 
for allocated memory current thread or process.  Creates an event for each 
unique call path to a traced memory call and records the total number of 
times this call path was followed; the maximum allocation size, the minimum 
allocation size, and the total allocation; the total time spent in the call path; 
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and the start time for the first call. 

pthreads Captures the time spent in each POSIX thread function and the number of 
times each is called.  Shows call paths for each POSIX thread function’s 
unique call path. 

omptp Reports task idle, barrier, and barrier wait times per OpenMP thread and 
attributes those times to the OpenMP parallel regions. 

cuda* Captures the NVIDIA CUDA events that occur during the application 
execution and reports times spent for each event, along with the arguments 
for each event, in an event-by-event trace.  

* Not presently available in O|SS offline mode. 

**If run in offline mode, the memory experiment performance data is not reduced in 
the manner it is in the default mode because the filters are not called during offline 
mode. 
 
1.2.2 Synopsis of the Summary Experiment 
 
Currently, the summary experiment is accessed through a CBTF driver script 
named: cbtfsummary.   The arguments to this script are similar to that of the O|SS 
convenience scripts, but the underlying infrastructure is somewhat different.   This 
is explained in more detail in section 2.1.   
 
The summary experiment gathers high-level information for a number of 
performance metrics, such as: MPI, OpenMP, Hardware counters, I/O, and Memory 
information.   In the future, CUDA and sampling information may be added.   
 
The summary experiment produces comma separated list (CSV) files of information 
for each thread of execution whose contents include application meta-data and 
performance information like timing and counts for the above mentioned metrics.   
The CBTF_CSVDATA_DIR environment variable can be used to set the directory path 
location for the cbtfsummary experiment csv files. 
 
1.2.3 Synopsis of the Sampling Experiments 
 
The program counter sampling (pcsamp), call path profiling (usertime), and 
hardware counter experiments (hwc, hwctime, hwcsamp) all use a form of 
sampling-based performance information-gathering techniques. 
 
Program counter sampling (pcsamp) records the program counter (PC) in the 
specified user application by interrupting it at a user-defined time interval (with a 
default setting of 100 times a second at). This experiment provides a low-overhead 
overview of the application’s time distribution. Its lightweight overview provides a 
good first step for analyzing an application’s performance.  
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The call path profiling (usertime experiment) gathers the PC sampling information 
and records call stacks for each sample.  This allows later display of application call 
path information and inclusive and exclusive timing data (see section 4.2).  Use this 
experiment to find hot call paths (call paths that take the most time) and see who is 
calling whom. 
 
The hardware counter experiments (hwc, hwctime, hwcsamp) access data like cache 
and TLB misses.  The hwc and hwctime experiments sample hardware counter 
events based on an event threshold.  The default event is PAPI_TOT_CYC overflows.  
(See chapter 5 for more information on PAPI and hardware counter-related 
experiments.)  Instead of using a threshold, the hwcsamp experiment samples up to 
six events based on a sample time, similar to the usertime and pcsamp experiments.  
The hwcsamp experiment default events are PAPI_FP_OPS and PAPI_TOT_CYC. 
 
1.2.4 Synopsis of the Tracing Experiments 
 
Input/output tracing and profiling (io, iot, iop), MPI tracing (mpi, mpip, mpit), 
memory tracing (mem) and POSIX thread tracing (pthread) all use a form of tracing 
or wrapping of function names to record performance information.  Tracing 
experiments do not use timers or thresholds to interrupt the application.  Instead 
they intercept function calls of interest with a wrapper function that records timing 
and function argument information, calls the original function, and records this 
information for later viewing with O|SS’s user interface tools. 
 
The I/O tracing experiments (io, iot) record all POSIX I/O event invocations.  They 
both provide aggregated and individual timings, while the iot experiment also 
provides argument information for each call.  Use the I/O profiling experiment (iop) 
to get a more lightweight overview of application I/O usage.  It records the 
invocation of all POSIX I/O events and accumulates the information, but does not 
save individual call information as the io and iot experiments do.  That makes the 
iop experiment database smaller and the iop experiment faster than with the io and 
iot experiments. 
 
The memory tracing experiment (mem) records invocation of all tracked memory 
function calls, also referred to as events.  It provides aggregated and individual 
timings along with argument information for each call.   
 
The MPI tracing experiments (mpi, mpit) record invocation of all MPI routines along 
with aggregated and individual timings.  The mpit experiment also provides 
argument information for each call.  Use the MPI profiling experiment (mpip) to get 
a more lightweight overview of application MPI usage.  It records and accumulates 
the invocation of all MPI function call events, but does not save individual call 
information as the mpi and mpit experiments do.  That makes the mpip experiment 
database smaller and the mpip experiment faster than with the mpi and mpit 
experiments. 
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The POSIX thread tracing experiment (pthreads) records invocation of all tracked 
POSIX thread-related function calls, also referred to as events.  The pthreads 
experiment provides aggregated and individual timings and argument information 
for each call.   
 
1.2.5 Parallel Experiment Support 
 
O|SS supports MPI and threaded codes and it has been tested with various MPI 
implementations. Thread support is based on POSIX threads and OpenMP is 
supported in numerous ways, including via POSIX threads, OpenMP wait time 
sampling experiment augmentation and the omptp OpenMP profiling experiment.   
 
Any O|SS experiment can be applied to any parallel application.  This means you can 
run the program counter sampling experiment on a non-parallel application as well 
as an MPI or threaded application. Experiment data collectors are automatically 
applied to all tasks/threads. Default views aggregate (sum performance data) across 
all tasks/threads but data from individual tasks/threads are available. MPI calls are 
wrapped and MPI function elapsed time and parameter information is displayed. 
 
1.2.6 Vector instruction detection (AVX512 instruction detection) 
 
O|SS version 2.4.0 supports vector instruction detection to allow users to find what 
portions of their application are being executed with vector instructions.  This 
feature is only supported on Intel processors. 
 
The original effort was to detect Intel instructions that have 512 vector length 
arguments, i.e. AVX512 instructions.   O|SS has broadened the original objective and 
now detects vector instructions in general and can report vector instructions of 
various vector lengths, where AVX512 is a special case of the general detection.   
This gives the O|SS tool flexibility to handle possible future architectural changes 
and report more categories for existing systems.  
 
This functionality was implemented by using the gathered/sampled addresses to 
search through the executable during post processing the executable using the 
Dyninst API.    The sampled addresses, which were gathered during the application 
execution, are matched with instruction at that address.  The instruction must be 
one that Dyninst identifies as being in the vector category.   The operands are 
examined for their size and the largest size is recorded and subsequently reporting 
in the O|SS command line interface tool (CLI).  See section 1.5   Description of the 
Granularity of views available in O|SS for the view command information and section 
3.1.3.1 Vector Instruction view example (Intel based platforms only) for additional 
information. 
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A convenience script option is required to gather this information, as statically 
scanning the application is necessary to detect the vector instruction information.   
The vector instructions will be detected if they are present on Intel based platforms.  
 
 

1.3 Running an O|SS Experiment  
 
First, consider what parameters you want to measure, then choose the appropriate 
experiment to run.  You may want to start with the pcsamp experiment since it is 
lightweight and will give an overview of timing for the entire application. Once you 
have selected the experiment to run, you can launch it with either the wizard in the 
GUI or with command-line convenience scripts.   
 
For example, say the user decides to run the pcsamp experiment on SMG2000, a 
semi-coarsening multigrid solver MPI application.  On the command line, issue the 
command: 
 
> osspcsamp “mpirun –np 256 smg2000 –n 60 60 60” 
 

Where “mpirun –np 256 smg2000 –n 60 60 60” is a typical MPI command normally 
used to launch the smg2000 application.  The MPI driver script or executable, 
mpirun, is used to launch SMG2000 on 256 processors and “-n 60 60 60” is passed 
as an argument to SMG2000.   
 
Here’s an example of an MPI SMG2000 pcsamp experiment run from a SLURM-
based system using “srun” as the MPI driver, along with the application and 
experiment output:  
 
> osspcsamp "srun -n 256 ./smg2000 -n 60 60 60"                        

 
 
[openss]: pcsamp experiment using the pcsamp experiment default sampling rate: "100". 
[openss]: pcsamp experiment calling openss. 
[openss]: Setting up offline raw data directory in /p/lscratchrzb/fred/offline-oss 
[openss]: Running offline pcsamp experiment using the command: 
"srun -ppdebug -n 256 /collab/usr/global/tools/openspeedshop/oss-
dev/x8664/oss_offline_v2.1u6/bin/ossrun -c pcsamp ./smg2000 -n 60 60 60" 
 
Running with these driver parameters: 
 (nx, ny, nz)    = (60, 60, 60) 
 (Px, Py, Pz)    = (256, 1, 1) 
 (bx, by, bz)    = (1, 1, 1) 
 (cx, cy, cz)    = (1.000000, 1.000000, 1.000000) 
 (n_pre, n_post) = (1, 1) 
 dim             = 3 
 solver ID       = 0 
============================================= 
Struct Interface: 
============================================= 
Struct Interface: 
 wall clock time = 0.020830 seconds 
 cpu clock time  = 0.030000 seconds 
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============================================= 
Setup phase times: 
============================================= 
SMG Setup: 
 wall clock time = 0.451188 seconds 
 cpu clock time  = 0.460000 seconds 
============================================= 
Solve phase times: 
============================================= 
SMG Solve: 
 wall clock time = 2.707334 seconds 
 cpu clock time  = 2.720000 seconds 
Iterations = 7 
Final Relative Residual Norm = 1.446921e-07 
[openss]: Converting raw data from /p/lscratchrzb/fred/offline-oss into temp file X.0.openss 
Processing raw data for smg2000 ... 
Processing processes and threads ... 
Processing performance data ... 
Processing symbols ... 
Resolving symbols for /g/g24/fred/demos/workshop_demos/mpi/smg2000/test/smg2000 
Resolving symbols for /lib64/ld-2.12.so 
Resolving symbols for /collab/usr/global/tools/openspeedshop/oss-
dev/x8664/oss_offline_v2.1u6/lib64/openspeedshop/pcsamp-rt-offline.so 
Resolving symbols for /collab/usr/global/tools/openspeedshop/oss-
dev/x8664/krellroot_v2.1u6/lib64/libmonitor.so.0.0.0 
Resolving symbols for /usr/local/tools/mvapich-gnu-1.2/lib/shared/libmpich.so.1.0 
Resolving symbols for /lib64/libc-2.12.so 
Resolving symbols for /lib64/libpthread-2.12.so 
Resolving symbols for /usr/lib64/libpsm_infinipath.so.1.14 
Resolving symbols for /usr/lib64/libinfinipath.so.4.0 
Updating database with symbols ... 
Finished ... 
 
[openss]: Restoring and displaying default view for: 
/g/g24/fred/demos/workshop_demos/mpi/smg2000/test/smg2000-pcsamp.openss 
[openss]: The restored experiment identifier is:  -x 1 
 
Exclusive   % of CPU  Function (defining location) 
 CPU time       Time 
       in 
 seconds. 
272.1200  34.202  hypre_SMGResidual (smg2000: smg_residual.c,152) 
195.0000  24.509  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757) 
  80.0100  10.056  psm_mq_ipeek (libpsm_infinipath.so.1.14) 
  70.7600    8.893  ips_ptl_poll (libpsm_infinipath.so.1.14) 
  16.1300    2.027  hypre_SemiInterp (smg2000: semi_interp.c,126) 
  15.5600    1.955  __psmi_poll_internal (libpsm_infinipath.so.1.14) 
  14.2300    1.788  hypre_SemiRestrict (smg2000: semi_restrict.c,125) 
    6.5700     0.825  hypre_SMGAxpy (smg2000: smg_axpy.c,27) 
    6.0600     0.761  MPIR_Pack_Hvector (libmpich.so.1.0: dmpipk.c,31) 
    5.9500     0.747  ipath_dwordcpy (libinfinipath.so.4.0) 
    5.7900     0.727  MPID_DeviceCheck (libmpich.so.1.0: psmcheck.c,35) 
 … 
 … 
 

 

When the application completes, a default report will be printed on screen. 
Performance information gathered during experiment execution will be stored in a 
database called smg2000-pcsamp.openss.  Users can use the O|SS GUI to analyze the 
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data in detail.  Run the openss command to load that database file or open the file 
directly using the “-f” option:   

> openss –f smg2000-pcsamp.openss 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here are basic examples of how to use the GUI to view the output database file 
created by the convenience script.  
  



 19 

 
 
 

 
 

 
 
 
 
Users can choose to view data at Function, Statement, Linked Object, or Loop 
granularity levels.  To switch from one view type to another, first select the view 
granularity (Function, Statement, Linked Object, or Loop), and then select the 
type of view.  For the default views, select the “D” icon.  
  

View Type Choices (D for Default 
selected and shown)  
LB: Load Balance, CA: Cluster Analysis, 
and others available. 

View Granularity Choices (Function 
level selected) 

Statement, Library, and Loop 
level are available. 
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Users can manipulate the windows within the GUI and double-click functions or 
statements to see the source code directly: 
 
 
 
 

Statement Level Granularity 
Selected 

Statement in program that took the 
most time. 
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Use window controls to split/arrange 
windows. 
Vertical split was used here. 

Double Click to open Source 
View and focus on source line 

(291) 
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1.4   How to Gather and Understand Profiles 
 
A profile is the aggregated measurements collected during an experiment.  Profiles 
examine code sections over time.  They are advantageous because they reduce the 
size of performance data, which typically are collected with low overhead, providing 
a good overview of an application’s operations.  

 
The disadvantage of using a profile is that users must know beforehand how to 
aggregate the collected data. Since they provide more of an overview, profiles also 
omit performance details for individual events.  There also could be an issue in 
which selecting an inappropriate sampling frequency skews profile results.  
 
Statistical performance analysis is a standard profiling technique. It involves 
interrupting execution of the application at periodic intervals to record the 
execution (program counter value) location.   It also can be used to collect additional 
data such as stack traces or hardware counters.  Again, the advantage of this method 
is its low overhead.  It is useful for getting an overview of the program and finding 
hotspots (time-intensive areas) within the program. 
 
The sampling experiments available in O|SS include program counter sampling, call 
path profiling and hardware counter.  The program counter sampling experiment 
(osspcsamp) provides approximate CPU time for each line and function in the 
program.  The call path profiling experiment (ossusertime) provides inclusive vs. 
exclusive CPU time (see section 4.2) and includes call stacks.  There are a number of 
Hardware Counter experiments (osshwc, osshwctime) that sample hardware 
counter overflows, plus osshwcsamp that can periodically sample up to six 
hardware counter events. 
 

1.5   Description of the Granularity of views available in O|SS 
 
Several base views are available for viewing of O|SS performance data through the 
command line interface (CLI) tool.    The sampling experiments data lends itself to 
be viewed in more granularity than the tracing experiments due to the type of data 
metrics collected by O|SS.   With sampling data, O|SS can display the performance 
information by library, by function, by loop, and by statement.   Additionally, O|SS 
will gather information about vector instructions on Intel platforms only.  That data 
is display per vector instruction.    
 
Performance information gathered using tracing techniques is function based and 
therefore is only shown in per function granularity. 
 
A summary of what to expect in O|SS performance views is as follows: 

 Per library (linked object) (expview -vlinkedobjects in CLI) 
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o Counts, time spent are displayed on a per library or executable basis.  
This can give a good overview of the balance of MPI library time to 
base application time 

 Per function (expview -vfunctions in CLI) 
o Counts, time spent, percentages are displayed on a per function basis.  

This allows the user to know which functions in the program are 
taking the most time, have the hardware counter hits, etc. 

 Per loop (expview -vloops in CLI) 
o Display performance information based on loop granularity.    Loops 

are determined via static binary analysis during the post process and 
performance information is attributed to the loop statements. 

 Per statement (expview –vstatements in CLI) 
o Display performance information for each statement where O|SS 

collected information.  This allows the user to know which statements 
in their program took the most time. 

 Per vector instruction (expview -vvectorinstrs in CLI) 
o Intel platforms only 
o Display performance information based on vector instruction, 

showing the address, instruction opcode, and maximum hardware 
operand size. 
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2.1 Overview/Summary (cbtfsummary) Experiment 
 
The summary experiment gathers high-level information for a number of 
performance metrics, such as:  

 Time spent in MPI routines 
 Time spent in OpenMP 

o Idle time 
o Barrier wait time 
o Barrier time 
o Implicit task time 
o Serial time 

 Hardware counters 
o Cycles through a number of hardware counters and multiplexes  

 Time spent in I/O 
 Memory information 

o Dynamic memory size 
o Dynamic memory resident size 
o Dynamic memory high water mark 
o Dynamic memory shared size 
o Dynamic memory heap size 

 In the future, CUDA, kokkos, and sampling information may be added. 
 
Currently, the summary experiment is accessed through a CBTF driver script 
named: cbtfsummary.   The arguments to this script are similar to that of the O|SS 
convenience scripts, but the underlying infrastructure is somewhat different.   The 
cbtfsummary convenience script does not create a database files like the 
oss<experiment name> convenience script.   cbtfsummary is intended to be highly 
scalable, therefore it produces comma separated list (CSV) files of information for 
each thread of execution whose contents include application meta-data and 
performance information like timing and counts for the above mentioned metrics. 
 
The format of the csv files is described in section 2.1.2 and is subject to change as it 
is under development. 
 
2.1.1 Summary (cbtfsummary) experiment performance data gathering 
 
The summary experiment convenience script is “cbtfsummary”.   Here’s how to use 
it to gather overview information about your application run. 
 
cbtfsummary “how you normally run your application”  

 
An example of a summary experiment run on the nbody application is as follows: 
 
> setenv CBTF_CSVDATA_DIR ./sierra_csvdata 
> cbtfsummary “jsrun –n 16 ./nbody” 
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The first line defines where the csv files will be written.  The second line runs the 
application, nbody in this case.   cbtfsummary gathers the performance information 
and writes the csv files, one for each thread of execution to the directory specified 
by CBTF_CSVDATA_DIR.   If CBTF_CSVDATA_DIR is not specified, then the files are 
written to /tmp. 
 
2.1.2 Summary/Overview CSV directory structure and CSV file format definitions 
 
Currently, the cbtfsummary experiment provides high level performance information 

related to MPI, OpenMP, POSIX I/O, POSIX memory, and hardware counters.  See 

Appendix A for a detailed of the description of the cvs file contents for the cbtfsummary 

experiment.   As cbtfsummary is in active development there are possible changes 
are coming for the cbtfsummary functionality.   User feedback is appreciated. 
 
There is a debug option that is recognized by the cbtfsummary which causes the tool 
to show what the summary collector is writing to the csv files.   For illustration, the 
example run below shows what is available. 
 
Example run: 
 
$ CBTF_SHOW_CSVDATA=1 cbtfsummary "mpirun -np 2 ./nbody-openmpi"  
Iteration 50 of 50...  
[17018,0] host,pid,rank,tid,posix_tid,executable,total_time_seconds  
[17018,0] localhost.localdomain,17018,1,0,140353435236160,nbody-openmpi,3.650807  
[17018,0] maxrss_bytes,utime_seconds,stime_seconds  
[17018,0] 8348,3.377000,0.083000  
[17018,0] dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap  
[17018,0] 127356,7844,8348,4516,76136  
[17018,0] allocation_time,allocation_calls,allocation_bytes  
[17018,0] 0.000050,65,181172  
[17018,0] free_time,free_calls  
[17018,0] 0.000036,61  
[17018,0] total_mpi_time  
[17018,0] 0.368264  
[17018,0] 
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL  
[17018,0] 
17533265404,38594596124,16423184578,161232,816220,2925356,26860,649765196,915336617
8,6696100928  
[17017,0] host,pid,rank,tid,posix_tid,executable,total_time_seconds  
[17017,0] localhost.localdomain,17017,0,0,140684808259392,nbody-openmpi,3.651217  
[17017,0] maxrss_bytes,utime_seconds,stime_seconds  
[17017,0] 8316,3.375000,0.082000  
[17017,0] dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap  
[17017,0] 127356,7840,8316,4520,76136  
[17017,0] allocation_time,allocation_calls,allocation_bytes  
[17017,0] 0.000037,67,341172  
[17017,0] free_time,free_calls  
[17017,0] 0.000027,63  
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[17017,0] total_mpi_time  
[17017,0] 0.340121  
[17017,0] 
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL  
[17017,0] 
17532945468,38099297260,16219346728,129228,1072288,2938000,23824,649522092,90207017
90,6668198566  
All Threads are finished.  

 
cbtfsummary creates these named folders in the directory specified by 
CBTF_CSVDATA_DIR or in the default /tmp location.   Each time cbtfsummary is run 
a new directory is created with an increasing integer appended so that the previous 
runs data is not destroyed. 
 
$ ls -ld ./nbody-openmpi-overview-csvdata-*  
drwxrwxr-x. 4 fred fred 4096 Jun 13 16:51 ./nbody-openmpi-overview-csvdata-0  
drwxrwxr-x. 4 fred fred 4096 Jun 13 23:14 ./nbody-openmpi-overview-csvdata-1  
drwxrwxr-x. 4 fred fred 4096 Jun 13 23:30 ./nbody-openmpi-overview-csvdata-2  
drwxrwxr-x. 4 fred fred 4096 Jun 13 23:30 ./nbody-openmpi-overview-csvdata-3  
drwxrwxr-x. 4 fred fred 4096 Jun 14 13:16 ./nbody-openmpi-overview-csvdata-4  
 
Each of the above directories represents one run of cbtfsummary.   To view the cvs 
files from one run, examine the directory of interest. 
 
$ ls -latr nbody-openmpi-overview-csvdata-4  
total 48  
drwxrwxr-x.  2 fred fred  4096 Jun 14 13:16 localhost.localdomain-1  
drwxrwxr-x.  2 fred fred  4096 Jun 14 13:16 localhost.localdomain-0  
drwxrwxr-x.  4 fred fred  4096 Jun 14 13:16 .  
drwxrwxr-x. 24 fred fred 32768 Jun 14 13:22 ..  

 
$ ls -latr nbody-openmpi-overview-csvdata-4/*  
nbody-openmpi-overview-csvdata-4/localhost.localdomain-1:  
total 12  
-rw-rw-r--. 1 fred fred  635 Jun 14 13:16 nbody-openmpi-1-0.csv  
nbody-openmpi-overview-csvdata-4/localhost.localdomain-0:  
total 12  
-rw-rw-r--. 1 fred fred  636 Jun 14 13:16 nbody-openmpi-0-0.csv  

 
A cat of csv files shows the contents of the csv files. 
$ cat nbody-openmpi-overview-csvdata-4/*/*csv  
host,pid,rank,tid,posix_tid,executable,total_time_seconds  
localhost.localdomain,17017,0,0,140684808259392,nbody-openmpi,3.651217  
maxrss_bytes,utime_seconds,stime_seconds  
8316,3.375000,0.082000  
dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap  
127356,7840,8316,4520,76136  
allocation_time,allocation_calls,allocation_bytes  
0.000037,67,341172  
free_time,free_calls  
0.000027,63  



 27 

total_mpi_time  
0.340121  
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL  
17532945468,38099297260,16219346728,129228,1072288,2938000,23824,649522092,90207017
90,6668198566  
host,pid,rank,tid,posix_tid,executable,total_time_seconds  
localhost.localdomain,17018,1,0,140353435236160,nbody-openmpi,3.650807  
maxrss_bytes,utime_seconds,stime_seconds  
8348,3.377000,0.083000  
dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap  
127356,7844,8348,4516,76136  
allocation_time,allocation_calls,allocation_bytes  
0.000050,65,181172  
free_time,free_calls  
0.000036,61  
total_mpi_time  
0.368264  
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL  
17533265404,38594596124,16423184578,161232,816220,2925356,26860,649765196,915336617
8,6696100928 
 
2.1.3 Summary/Overview Report Generation 
 
After cbtfsummary experiment completes, a human readable, formatted report is 
created containing the minimum, maximum, and average values for the data metrics 
described above, in section 2.1.2.    The report will be displayed to standard out 
(stdout) and a file will be created with the identical information and file will be 
placed in the directory from which the cbtfsummary experiment was run. 
 
The following example and report is from a cbtfsummary experiment on the nbody 
application using 72 ranks.  The commands used were: 

export CBTF_CSVDATA_DIR=/lustre/scratchb/Fredrick 
cbtsummary “mpirun –np 72 ./nbody” 

 
The cbtfsummary experiment created csv files for each of the rank and wrote the 
files into the directory path: /lustre/scratchb/fredrick.   This directory structure 
and csv files can be mined by other tools, if desired.    
 
The cbtfsummary report from the example run is shown below. 
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Metrics for 0 72 
metric name                                        max                        min                       avg                       
dmem_high_water_mark             41832                   43680                  43779                          
dmem_resident                              19588                   12992                   13452                        
dmem_size                                    224712                 294248                306507                      
dmem_shared                                   7188                      7240                     7548                           
dmem_heap                                    78508                    71836                  71989                          
read_time                                  0.000000              0.000000             0.000000                     
read_bytes                                                0                             0                              0                              
io_total_time                             0.000051             0.000011             0.000021                       
write_bytes                                              0                             0                              0                        
write_time                                0.000000             0.000000              0.000000                    
allocation_calls                                   173                          93                         125                              
allocation_time                        0.000138             0.000042              0.000067                    
allocation_bytes                       1056651                   12803                    60898                          
free_calls                                                 98                          74                            76                              
free_time                                   0.000011             0.000005              0.000009                       
total_mpi_time                         9.929802             9.620426              9.748008                    
PAPI_DP_OPS                       152486080          146049884       1268564188                    
PAPI_TOT_INS                   1097995836       1083669158          557419126                    
PAPI_VEC_DP                       152486080          146049884         149964029                
PAPI_TOT_CYC                    878111892           869962518         876642689                    
PAPI_LD_INS                        503700340           491832406         149964029                  
maxrss_bytes                                 44104                     37516                   43779                    
stime_seconds                         1.184613               0.111020             1.354460                    
utime_seconds                        0.372336               0.377667             0.363017                       
total_time_seconds                9.996704             10.016452            9.885804                   

 

3.1 Program Counter Sampling (pcsamp) Experiment 
 
A flat profile will answer the basic question, “Where does my code spend its time?”  
O|SS displays this as a list of code elements of varying granularity – statements, 
functions and libraries (linked objects) – with the time spent at each function.  Flat 
profiling can be done through sampling, letting the user avoid the overhead of direct 
measurements.  But users must request a sufficient number of samples (sampling 
rate) to get an accurate result. 
 
The profile displays the time spent per function or per statement, helping identify 
critical, computationally intensive code regions. While viewing this, the user must 
ask: 

 Are those the functions/statements that were expected relative to 
consuming the most time? 

 Does this match the computational kernels?  
 Are any runtime functions consuming a lot of time? 

 
The goal is to identify components that are bottlenecks.  To do this, view the profile 
aggregated by shared (linked) objects, ensuring the correct or expected modules are 
present, then analyze the impact of those support and/or runtime libraries. 
 



 29 

3.1.1 Program Counter Sampling (pcsamp) experiment performance data gathering 
 
The program counter sampling experiment convenience script is “osspcsamp”.   
Here’s how to use it to gather address values in which O|SS periodically interrupted 
the application and took an address sample:  
 

osspcsamp “how you normally run your application” < sampling rate> 

 
An example of flat profiling would be to run the program counter sampling in O|SS.  
We will run the convenience script on our test program, SMG2000: 
 
> osspcsamp “mpirun –np 256 smg2000 –n 50 50 50” 

 
It is recommended that users compile their code with the –g option to see the 
statements in the sampling.  Sampling frequency is an optional parameter, with 
settings of high (200 samples per second), low (50 samples per second) and default 
(100 samples per second). To run the same experiment with the high sampling rate, 
issue the command: 
 
> osspcsamp “mpirun –np 256 smg2000 –n 50 50 50” high 
 

3.1.1.1 Program Counter Sampling (pcsamp) experiment parameters 
 
The pcsamp experiment is timer-based: A timer periodically interrupts the 
processor and the address in the program counter is read and saved each time.  This 
allows O|SS to map those address values back to the source when a user views the 
pcsamp performance information via the CLI or GUI tool. 
 
In the next example, the user chooses to sample only 45 times a second instead of 
the default 100. One reason for this would be to save database size; a lower 
sampling rate may still give an accurate portrayal of application behavior.  

osspcsamp “how you normally run your application” 45 
 
3.1.2 Viewing Program Counter Sampling (pcsamp) experiment performance data via 
GUI 
 
To view results of this flat profile in the O|SS GUI, use the “openss –f <database 
filename>” command. 
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3.1.3 Viewing Program Counter Sampling (pcsamp) experiment performance data via 
CLI 
 
After running a program counter experiment via the command: 

osspcsamp “mpirun –np 4 ./smg2000 –n 65 65 65” 
the user can use the following command to open the newly created database file and 
view the data in the CLI:  

openss –cli –f smg2000-pcsamp-0.openss 
Once inside the CLI, several commands can be used to view this performance 
information.   Here are some examples: 
 
For the default view, use the expview command with no arguments. 
 
openss>>expview 
 
Exclusive   % of CPU  Function (defining location) 
 CPU time       Time 
       in 
 seconds. 
 7.640000  41.657579  hypre_SMGResidual (smg2000: smg_residual.c,152) 
 4.840000  26.390403  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757) 
 0.800000   4.362050  mca_btl_vader_check_fboxes (libmpi.so.12.0.2: btl_vader_fbox.h,184) 
 0.450000   2.453653  unpack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_unpack.h,34) 
 0.400000   2.181025  hypre_SemiInterp (smg2000: semi_interp.c,126) 
 0.370000   2.017448  __memcpy_ssse3_back (libc-2.17.so) 
 0.350000   1.908397  pack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_pack.h,35) 
 0.330000   1.799346  hypre_SemiRestrict (smg2000: semi_restrict.c,125) 
 0.310000   1.690294  opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151) 
 0.180000   0.981461  opal_sys_timer_get_cycles (libopen-pal.so.13.0.2: timer.h,43) 
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… 
… 
 
To view performance information by statement granularity, use the –v statements 
argument to expview.  The top of the resulting list shows the statement in the 
application that took the most time for this particular SMG2000 run.  Results may 
vary when running on other platforms and/or with different SMG2000 arguments 
or different compiler options. 
 
openss>>expview -v statements 
 
Exclusive   % of CPU  Statement Location (Line Number) 
 CPU time       Time 
       in 
 seconds. 
 5.790000  35.304878  smg_residual.c(289) 
 1.410000   8.597561  cyclic_reduction.c(1130) 
 1.080000   6.585366  smg_residual.c(238) 
 0.830000   5.060976  cyclic_reduction.c(910) 
 0.690000   4.207317  cyclic_reduction.c(999) 
 0.420000   2.560976  cyclic_reduction.c(1061) 
 0.410000   2.500000  smg_residual.c(287) 
 0.330000   2.012195  cyclic_reduction.c(853) 
 0.260000   1.585366  opal_datatype_unpack.h(59) 
 0.260000   1.585366  cyclic_reduction.c(1000) 
 0.240000   1.463415  btl_vader_fbox.h(197) 
 0.230000   1.402439  semi_restrict.c(262) 
 0.200000   1.219512  opal_datatype_pack.h(60) 
 0.180000   1.097561  cyclic_reduction.c(1131) 
 0.150000   0.914634  semi_interp.c(294) 
… 
… 
 

Use the –v linkedobjects argument to expview to see performance data for SMG2000 
at the library (linked object) granularity.  This tells how much time was spent in 
each of the libraries from which O|SS took program counter samples.   
 
This view gives strictly an overview of where time was spent from the library 
perspective.  If the MPI library time is very high, it may indicate that this run was 
using MPI ineffectively.  This may indicate load imbalance. 
 
openss>>expview -v linkedobjects 
 
Exclusive   % of CPU  LinkedObject 
 CPU time       Time 
       in 
 seconds. 
14.180000  76.981542  smg2000 
 1.860000  10.097720  libmpi.so.12.0.2 
 1.630000   8.849077  libopen-pal.so.13.0.2 
 0.740000   4.017372  libc-2.17.so 
 0.010000   0.054289  ld-2.17.so 
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openss>> 

 
Users also can apply –v loops as an argument to view time spent at the loop level of 
granularity.  For example, the first line in the display shows that a loop starting at 
line 204 in smg_residual.c was the one consuming the most time.  O|SS cannot 
accurately determine the loops end statement, so only the starting line number is 
displayed. 
  
openss>>expview -v loops 
 
Exclusive   % of CPU  Loop Start Location (Line Number) 
 CPU time       Time 
       in 
 seconds. 
 7.640000  32.345470  smg_residual.c(204) 
 2.240000   9.483489  cyclic_reduction.c(1022) 
 2.140000   9.060119  cyclic_reduction.c(882) 
 0.790000   3.344623  btl_vader_fbox.h(188) 
 0.550000   2.328535  cyclic_reduction.c(1034) 
 0.430000   1.820491  cyclic_reduction.c(851) 
 0.430000   1.820491  cyclic_reduction.c(851) 
 0.430000   1.820491  cyclic_reduction.c(851) 
 0.430000   1.820491  cyclic_reduction.c(835) 
 0.410000   1.735817  opal_datatype_unpack.h(58) 
… 
… 
 

Another useful CLI command is expstatus, which provides a summary of metadata 
for the O|SS experiment.   This command displays the experiment’s metadata.   What 
host it was run on, the time of the experiment, number and details about the MPI 
ranks, threads, and/or processes involved in the experiment. 
 
openss>>expstatus 
 
  Experiment definition 
{ # ExpId is 1, Status is Terminated, Saved database is smg2000-pcsamp-0.openss 
    Performance data spans 4.773728 seconds from 2016/11/22 07:43:30 to 2016/11/22 07:43:35 
  Executables Involved: 
                smg2000 
  Currently Specified Components: 
    -h localhost -p 8090 -t 0 -r 1 (smg2000) 
    -h localhost -p 8091 -t 0 -r 2 (smg2000) 
    -h localhost -p 8092 -t 0 -r 3 (smg2000) 
    -h localhost -p 8089 -t 0 -r 0 (smg2000) 
  Previously Used Data Collectors: 
                 pcsamp 
               Metrics: 
        pcsamp::percent 
    pcsamp::threadAverage 
      pcsamp::threadMax 
      pcsamp::threadMin 
           pcsamp::time 
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      Parameter Values: 
    pcsamp::sampling_rate =  100 
       Available Views: 
                 pcsamp 

 
 

3.1.3.1 Vector Instruction view example (Intel based platforms only) 
 
Show the vector instruction detection data gathered by O|SS in a CLI optional view. 
The performance data below overlaps due to the length of the line needed to show 
the complete output.   
 
O|SS will gather information about the vector instructions that were executed in the 
application run, provided that a sample was taken at the address that corresponds 
to a vector instruction.   There are three options that will enable this feature: 

 --vinstr128 Find vector instructions with operand sizes that are 128 bits or greater 

 --vinstr256 Find vector instructions with operand sizes that are 256 bits or greater 

 --vinstr512 Find vector instructions with operand sizes that are 512 bits or greater 

For example:  osspcsamp –vinstr512 “mpirun -np 256 ./smg2000 -n 5 5 5” 
 
This example was generated with --vinstr128 and the view shows the time spent, 
percentage of time attributed to the instruction, name of the library or executable, 
vector instruction opcode and operands, and the maximum operand size for this 
instruction.  The maximum operand size is the physical machine operand size, not 
the actual vector size at runtime.  That is an extension that is not available at this 
time. 
 
openss>>expview -vvectorinstr -f test_HPCCG  
 
Exclusive CPU     % of CPU  Vector Instr Location (Line Number/Addr : OpCode  : Max Operand Size (bits))  
      time in         Time  
     seconds.  
2394.11000000  21.84626194  0x20007000 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm7 : 128  
2374.39000000  21.66631687  0x2000703a (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm11 : 128  
2333.83000000  21.29620674  0x2000701d (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm9 : 128  
 450.93000000   4.11473779  0x20006ffa (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vfmadd231pd %xmm6,0x0(%rdx,%rbx,8),%xmm4 : 128  
 427.65000000   3.90230771  0x20007b8e (waxpby : test_HPCCG) : waxpby.cpp(57) : movsd %xmm0,0x0(%rax,%rbx,8) : 128  
 414.81000000   3.78514267  0x20007033 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vfmadd231pd %xmm10,0x20(%rdx,%rbx,8),%xmm2 : 128  
 387.50000000   3.53593883  0x20006fe4 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm5 : 128  
 382.54000000   3.49067881  0x20007016 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vfmadd231pd %xmm8,0x10(%rdx,%rbx,8),%xmm3 : 128  
 330.18000000   3.01289363  0x20007b88 (waxpby : test_HPCCG) : waxpby.cpp(57) : 
vfmadd213sd %xmm2,0x0(%rcx,%rbx,8),%xmm0 : 128  
 167.85000000   1.53163182  0x2000707d (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vmovsd %xmm0,0x0(%rsi,%rbx,8),%xmm2 : 128  
 163.58000000   1.49266806  0x2000704b (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vfmadd231pd %xmm12,0x30(%rdx,%rbx,8),%xmm1 : 128  
 133.74000000   1.22037796  0x20007067 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) : 
vunpckhpd %xmm2,%xmm2,%xmm4 : 128  



 34 

  98.77000000   0.90127659  0x20007082 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : 
vmulsd %xmm2,0x0(%rdx,%rbp,8),%xmm3 : 128  
  95.85000000   0.87463158  0x20007063 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) : 
vaddpd %xmm3,%xmm1,%xmm2 : 128  
  59.83000000   0.54594895  0x20007ba2 (waxpby : test_HPCCG) : waxpby.cpp(57) : movsd %xmm1,0x8(%rax,%rbx,8) : 128  
  55.69000000   0.50817144  0x20006f42 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) : 
vxorpd %xmm1,%xmm1,%xmm1 : 128  
  43.98000000   0.40131765  0x2000700b (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : vmovhpd 
0x0(%rsi,%rdi,8),%xmm7,%xmm8 : 128  
  42.12000000   0.38434514  0x20007045 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : vmovhpd 
0x0(%rsi,%rdi,8),%xmm11,%xmm12 : 128  
  40.88000000   0.37303014  0x2000706b (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) : 
vaddsd %xmm2,%xmm4,%xmm1 : 128  
  37.10000000   0.33853763  0x20006fef (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : vmovhpd 
0x0(%rsi,%rdi,8),%xmm5,%xmm6 : 128  
  35.36000000   0.32266012  0x200089e6 (ddot : test_HPCCG) : ddot.cpp(56) : 
vfmadd231pd %ymm6,0x40(%rax,%rdx,8),%ymm1 : 256  
  32.86000000   0.29984761  0x20007b94 (waxpby : test_HPCCG) : waxpby.cpp(57) : 
vmovsd %xmm0,0x8(%rdx,%rbx,8),%xmm1 : 128  
  32.50000000   0.29656261  0x200089ed (ddot : test_HPCCG) : ddot.cpp(56) : 
vfmadd231pd %ymm7,0x60(%rax,%rdx,8),%ymm0 : 256  
  32.10000000   0.29291261  0x200089d9 (ddot : test_HPCCG) : ddot.cpp(56) : 
vfmadd231pd %ymm4,0x0(%rax,%rdx,8),%ymm3 : 256  
  31.34000000   0.28597761  0x200089df (ddot : test_HPCCG) : ddot.cpp(56) : 
vfmadd231pd %ymm5,0x20(%rax,%rdx,8),%ymm2 : 256  
  30.28000000   0.27630510  0x20007b82 (waxpby : test_HPCCG) : waxpby.cpp(57) : 
… 
… 
   8.54000000   0.07792753  0x20006fd2 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) : 
vmovdqa %xmm0,%xmm0,%xmm2 : 128  
   8.53000000   0.07783628  0x2000870e (ddot : test_HPCCG) : ddot.cpp(51) : vmovupd %ymm0,0x40(%rax,%rdi,8),%ymm6 : 
256  
   8.41000000   0.07674128  0x2000871c (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm4,%ymm4,%ymm3 : 256  
   7.92000000   0.07227003  0x20008707 (ddot : test_HPCCG) : ddot.cpp(51) : vmovupd %ymm0,0x20(%rax,%rdi,8),%ymm5 : 
256  
   7.72000000   0.07044503  0x20007b08 (waxpby : test_HPCCG) : waxpby.cpp(57) : 
vfmadd213pd %ymm0,0x0(%rcx,%rcx,8),%ymm1 : 256  
   3.52000000   0.03212001  0x2000606c (generate_matrix : test_HPCCG) : generate_matrix.cpp(121) : 
movsd %xmm0,(%edx) : 128  
   2.80000000   0.02555001  0x20008726 (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm6,%ymm6,%ymm1 : 256  
   2.73000000   0.02491126  0x20007b0e (waxpby : test_HPCCG) : waxpby.cpp(57) : movupd %ymm1,0x0(%rdx,%rcx,8) : 256  
   2.63000000   0.02399876  0x2000872b (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm7,%ymm7,%ymm0 : 256  
   2.30000000   0.02098751  0x20008721 (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm5,%ymm5,%ymm2 : 256  
   1.40000000   0.01277500  0x20007b9b (waxpby : test_HPCCG) : waxpby.cpp(57) : 
vfmadd213sd %xmm2,0x8(%rcx,%rbx,8),%xmm1 : 128  
… 
… 
   0.01000000   0.00009125  0x20006123 (generate_matrix : test_HPCCG) : generate_matrix.cpp(136) : 
vcvtsi2sd %xmm3,%xmm1 : 128  
   0.01000000   0.00009125  0x20008a66 (ddot : test_HPCCG) : ddot.cpp(56) : vmulpd %ymm1,0x0(%rax,%rdx,8),%ymm2 : 
256  
openss>>   
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4.1 Call Path Profiling (usertime) Experiment 
 

The call path profiling (usertime) experiment can add 
information that is missing from the flat profiles.  It can 
distinguish routines called from multiple callers and 
understand the call invocation history, providing context for 
the performance data.  It also gathers stack traces for each 
performance sample and only aggregates samples with equal 
stack traces. This simplifies the user’s view by showing the 
caller/callee relationship.  It also can highlight the hot call 
paths, the routes through the application that take the most 
time. 
 

The call path profiling experiment also provides inclusive 
and exclusive time.  Exclusive time is spent inside a function 
only, for example, in the graphic shown at the right, function 
B (blue box).   Inclusive time is spent inside a function and its 
children, for example, the full chain of function C, D and E 
(yellow box). 
 
The call path profiling experiment is similar to the program 
counter sampling experiment in that it collects program 
counter information. The difference is the call path profiling 
experiment collects call stack information at every sample.  
There are, of course, tradeoffs: The user gets additional context information from 
the call stacks but incurs higher overhead with a necessarily lower sampling rate. 
 
 
4.1.1 Call Path Profiling (usertime) experiment performance data gathering 
 
We can use the O|SS convenience script to run the call path profiling experiment on 
our test program, SMG2000: 
 
> ossusertime “mpirun –np 256 smg2000 –n 50 50 50” 
 
Again, we recommend that users compile their code with the –g option to see the 
statements in the sampling.  Sampling frequency also is an optional parameter in the 
usertime experiment, with settings of high (70 samples per second), low (18 
samples per second) and default (35 samples per second).  Note that these sample 
rates are lower than the pcsamp experiment because more data are collected. To 
run the same experiment with the low sampling rate, simply issue the command: 
 
> ossusertime “mpirun –np 256 smg2000 –n 50 50 50” low 
 

Here is an example run of a usertime experiment with full output: 
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ossusertime "mpirun -np 4 ./smg2000 -n 65 65 65"  
[openss]: usertime experiment using the default sampling rate: "35".  
Creating topology file for frontend host localhost  
Generated topology file: ./cbtfAutoTopology  
Running usertime collector.  
Program: mpirun -np 4 ./smg2000 -n 65 65 65  
Number of mrnet backends: 4  
Topology file used: ./cbtfAutoTopology  
executing mpi program: mpirun -np 4  cbtfrun  --mpi  --mrnet  -c usertime ./smg2000 -n 65 65 65  
Running with these driver parameters:  
  (nx, ny, nz)    = (65, 65, 65)  
  (Px, Py, Pz)    = (4, 1, 1)  
  (bx, by, bz)    = (1, 1, 1)  
  (cx, cy, cz)    = (1.000000, 1.000000, 1.000000)  
  (n_pre, n_post) = (1, 1)  
  dim             = 3  
  solver ID       = 0  
=============================================  
Struct Interface:  
=============================================  
Struct Interface:  
  wall clock time = 0.023957 seconds  
  cpu clock time  = 0.030000 seconds  
=============================================  
Setup phase times:  
=============================================  
SMG Setup:  
  wall clock time = 0.594738 seconds  
  cpu clock time  = 0.590000 seconds  
=============================================  
Solve phase times:  
=============================================  
SMG Solve:  
  wall clock time = 4.306247 seconds  
  cpu clock time  = 4.280000 seconds  
 
Iterations = 7  
Final Relative Residual Norm = 1.760588e-07  
 
All Threads are finished.  
default view for ./smg2000-usertime-14.openss  
[openss]: The restored experiment identifier is:  -x 1  
Performance data spans 5.271756 seconds  from 2016/11/11 08:06:12 to 2016/11/11 08:06:17  
 
Exclusive  Inclusive       % of  Function (defining location)  
 CPU time   CPU time      Total  
       in         in  Exclusive  
 seconds.   seconds.   CPU Time  
 9.000000   9.800000  45.718433  hypre_SMGResidual (smg2000: smg_residual.c,152)  
 4.171428   7.057143  21.190131  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)  
 0.542857   0.571429   2.757620  hypre_SemiInterp (smg2000: semi_interp.c,126)  
 0.514286   1.542857   2.612482  mca_btl_vader_check_fboxes (libmpi.so.12.0.2: btl_vader_fbox.h,184)  
 0.514286   0.942857   2.612482  pack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_pack.h,35)  
 0.485714   0.485714   2.467344  __memcpy_ssse3_back (libc-2.17.so)  
 0.457143   0.514286   2.322206  unpack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_unpack.h,34)  
 0.314286   2.314286   1.596517  opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)  
 0.285714   0.314286   1.451379  hypre_SemiRestrict (smg2000: semi_restrict.c,125)  
 0.257143   0.257143   1.306241  hypre_StructAxpy (smg2000: struct_axpy.c,25)  
 0.228571   0.228571   1.161103  hypre_SMGAxpy (smg2000: smg_axpy.c,27)  
 0.171429   0.171429   0.870827 hypre_SMGSetStructVectorConstantValues (smg2000: smg.c,379) 

 
 
4.1.2 Viewing Call Path Profiling (usertime) experiment performance data via GUI 
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Users can view results of this experiment in the O|SS GUI.  The view is similar to that 
in pcsamp but in this case the inclusive CPU time also is shown. 
 

 
 
Below, the Exclusive CPU time is shown on highlighted lines that indicate relatively 
high CPU times. 
 

 
 
While performance tools will highlight potential bottlenecks and hot areas, it is still 
up to the user to interpret most data in the correct context and to note code areas 
they may want to probe further.  If the inclusive and exclusive times are similar, it 
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means the child executions are insignificant (with respect to CPU time) and profiling 
below this layer may not be useful.  If the inclusive time is significantly greater than 
the exclusive time, then users should focus their attention on execution times for the 
children. 
 

 
   
 
The stack trace views in O|SS are similar to the well-known Unix profiling tool gprof. 
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4.1.3 Viewing Call Path Profiling (usertime) experiment performance data via CLI 
 
This table describes information included in the usertime experiment default view. 
 

Column Name   Column Definition 

Exclusive CPU Time Aggregated total exclusive time spent in the application function 
corresponding to this row of data. 

% of CPU Time Percentage of exclusive time spent in the function corresponding 
to this row of data relative to the total application exclusive time 
for all the application functions. 

Inclusive CPU Time Aggregated total inclusive time spent in the application function 
corresponding to this row of data. 

 

 
To load a database file into the CLI, use this form of the openss client: 

$ openss -cli -f ./smg2000-usertime-14.openss 
 
This is a default CLI view for the usertime experiment, restricted to the top 10 time-
consuming functions.  Using the experiment name and the number of items to be 
displayed limits the output to those items. 
 
openss>>expview usertime10  
 
Exclusive  Inclusive       % of  Function (defining location)  
 CPU time   CPU time      Total  
       in         in  Exclusive  
 seconds.   seconds.   CPU Time  
 9.000000   9.800000  45.718433  hypre_SMGResidual (smg2000: smg_residual.c,152)  
 4.171428   7.057143  21.190131  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)  
 0.542857   0.571429   2.757620  hypre_SemiInterp (smg2000: semi_interp.c,126)  
 0.514286   1.542857   2.612482  mca_btl_vader_check_fboxes (libmpi.so.12.0.2: 
btl_vader_fbox.h,184)  
 0.514286   0.942857   2.612482  pack_predefined_data (libopen-pal.so.13.0.2: 
opal_datatype_pack.h,35)  
 0.485714   0.485714   2.467344  __memcpy_ssse3_back (libc-2.17.so)  
 0.457143   0.514286   2.322206  unpack_predefined_data (libopen-pal.so.13.0.2: 
opal_datatype_unpack.h,34)  
 0.314286   2.314286   1.596517  opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)  
 0.285714   0.314286   1.451379  hypre_SemiRestrict (smg2000: semi_restrict.c,125)  
 0.257143   0.257143   1.306241  hypre_StructAxpy (smg2000: struct_axpy.c,25) 
 

 
The display below shows the top 10 time-consuming statements in the program: 
 
openss>>expview -v statements usertime10  
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Exclusive  Inclusive       % of  Statement Location (Line Number)  
 CPU time   CPU time      Total  
       in         in  Exclusive  
 seconds.   seconds.   CPU Time  
 7.085714   7.085714  41.471572  smg_residual.c(289)  
 1.371429   1.371429   8.026756  cyclic_reduction.c(1130)  
 1.314286   1.314286   7.692308  smg_residual.c(238)  
 0.828571   0.828571   4.849498  cyclic_reduction.c(910)  
 0.485714   0.485714   2.842809  cyclic_reduction.c(999)  
 0.285714   0.285714   1.672241  smg_residual.c(287)  
 0.285714   0.285714   1.672241  cyclic_reduction.c(853)  
 0.285714   0.285714   1.672241  cyclic_reduction.c(1000)  
 0.257143   0.257143   1.505017  semi_interp.c(294)  
 0.228571   0.228571   1.337793  opal_datatype_unpack.h(59)  
 

The top 10 time-consuming loops in the application are shown below.  The line 
number (for example: 204 in first entry) is for the line in which the loop begins.  The 
static analysis does not provide the loop’s ending-line number, but it is the line that 
corresponds to the end of the logical loop construct. 
 
openss>>expview -v loops usertime10  
 
Exclusive  Inclusive       % of  Loop Start Location (Line Number)  
 CPU time   CPU time      Total  
       in         in  Exclusive  
 seconds.   seconds.   CPU Time  
 8.971428   9.771428  37.649880  smg_residual.c(204)  
 1.914286   3.257143   8.033573  cyclic_reduction.c(1022)  
 1.885714   3.400000   7.913669  cyclic_reduction.c(882)  
 0.857143   0.885714   3.597122  cyclic_reduction.c(889)  
 0.485714   1.514286   2.038369  btl_vader_fbox.h(188)  
 0.400000   0.828571   1.678657  opal_datatype_pack.h(59)  
 0.371429   0.428571   1.558753  opal_datatype_unpack.h(58)  
 0.371429   0.400000   1.558753  semi_interp.c(238)  
 0.371429   0.400000   1.558753  cyclic_reduction.c(835)  
 0.371429   0.400000   1.558753  semi_interp.c(258)  
openss>> 

 
 
This shows time spent in the application libraries: 
 

openss>>expview -v linkedobjects  
 
Exclusive  Inclusive       % of  LinkedObject  
 CPU time   CPU time      Total  
       in         in  Exclusive  
 seconds.   seconds.   CPU Time  
15.514285  19.742857  78.581766  smg2000  
 1.800000   3.400000   9.117221  libopen-pal.so.13.0.2  
 1.400000   3.885714   7.091172  libmpi.so.12.0.2  
 1.028571  19.742857   5.209841  libc-2.17.so 
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This shows the application’s top three time-consuming call paths: 
 
openss>>expview -v fullstack usertime3  
 
Exclusive  Inclusive       % of  Call Stack Function (defining location)  
 CPU time   CPU time      Total  
       in         in  Exclusive  
 seconds.   seconds.   CPU Time  
                                 _start (smg2000)  
                                 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)  
                                 >>__libc_start_main (libc-2.17.so)  
                                 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)  
                                 >>>> @ 510 in main (smg2000: smg2000.c,21)  
                                 >>>>> @ 65 in HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)  
                                 >>>>>> @ 224 in hypre_SMGSolve (smg2000: smg_solve.c,57)  
 0.800000   0.800000   4.052098  >>>>>>> @ 289 in hypre_SMGResidual (smg2000: 
smg_residual.c,152)  
                                 _start (smg2000)  
                                 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)  
                                 >>__libc_start_main (libc-2.17.so)  
                                 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)  
                                 >>>> @ 510 in main (smg2000: smg2000.c,21)  
                                 >>>>> @ 65 in HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)  
                                 >>>>>> @ 168 in hypre_SMGSolve (smg2000: smg_solve.c,57)  
 0.400000   0.400000   2.026049  >>>>>>> @ 289 in hypre_SMGResidual (smg2000: 
smg_residual.c,152)  
                                 _start (smg2000)  
                                 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)  
                                 >>__libc_start_main (libc-2.17.so)  
                                 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)  
                                 >>>> @ 510 in main (smg2000: smg2000.c,21)  
                                 >>>>> @ 65 in HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)  
                                 >>>>>> @ 164 in hypre_SMGSolve (smg2000: smg_solve.c,57)  
                                 >>>>>>> @ 325 in hypre_SMGRelax (smg2000: smg_relax.c,228)  
                                 >>>>>>>> @ 224 in hypre_SMGSolve (smg2000: smg_solve.c,57)  
 0.400000   0.400000   2.026049 >>>>>>>>> @ 289 in hypre_SMGResidual (smg2000: 
smg_residual.c,152) 
 

This butterfly view shows the functions calling hypre_SMGSolve along with the 
functions hypre_SMGSolve calls.  Hypre_SMGSolve is the pivot point in this view. 
 
openss>>expview -vbutterfly -f hypre_SMGSolve  
 
Inclusive  % of Total  Call Stack Function (defining location)  
 CPU time   Inclusive  
       in    CPU Time  
 seconds.  
17.200000   94.654088  <HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)  
 0.971429    5.345912     <hypre_SMGRelax (smg2000: smg_relax.c,228)  
18.171428  100.000000       hypre_SMGSolve (smg2000: smg_solve.c,57)  
16.285714   89.622642  >hypre_SMGRelax (smg2000: smg_relax.c,228)  
 1.428571    7.861635     >hypre_SMGResidual (smg2000: smg_residual.c,152)  
 0.171429    0.943396     >hypre_SemiInterp (smg2000: semi_interp.c,126)  
 0.114286    0.628931     >hypre_SemiRestrict (smg2000: semi_restrict.c,125)  
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 0.114286    0.628931     >hypre_StructAxpy (smg2000: struct_axpy.c,25)  
 0.057143    0.314465    >hypre_StructInnerProd (smg2000: struct_innerprod.c,32)  
 

This displays only the percentage performance information because the user gave 
the metric “percent” to the expview command: 
 
 
openss>>expview -m percent usertime9  
 
     % of  Function (defining location)  
    Total  
Exclusive  
     Time  
45.718433  hypre_SMGResidual (smg2000: smg_residual.c,152)  
21.190131  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)  
 2.757620  hypre_SemiInterp (smg2000: semi_interp.c,126)  
 2.612482  mca_btl_vader_check_fboxes (libmpi.so.12.0.2: btl_vader_fbox.h,184)  
 2.612482  pack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_pack.h,35)  
 2.467344  __memcpy_ssse3_back (libc-2.17.so)  
 2.322206  unpack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_unpack.h,34)  
 1.596517  opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)  
 1.451379  hypre_SemiRestrict (smg2000: semi_restrict.c,125)  
 
 
 

4.1.4 Call Path Profiling (usertime) experiment function inline display 
 
As of O|SS version 2.4.0, O|SS now displays the actual path to the point where the 
inline functions were inlined, thus giving a more complete picture of the call paths 
for C++.  
 
The example call-stack below is from lulesh2.0.3 and was run on snow at SNL.  This 
call-stack, which shows the number of calls metric, illustrates the relationship 
between the function doing the inlining and the inlined functions.  The call-stack 
below chains together the inlined functions as they occurred in the execution of the 
program based on sampling information collected by O|SS. 
 
This call-stack is one of the many that were collected and displayed by the usertime 
experiment: 
 
           _start (lulesh2.0) 
           > @ 556 in __libc_start_main (libmonitor.so.0.0.0) 
           >> @ 274 in __libc_start_main (libc-2.17.so) 
           >>> @ 517 in monitor_main (libmonitor.so.0.0.0) 
           >>>> @ 1609 inline CalcKinematicsForElems (/home/fred/src/lulesh2.0.3/lulesh.cc) 
           >>>> @ 2458 inline CalcLagrangeElements (/home/fred/src/lulesh2.0.3/lulesh.cc) 
           >>>> @ 2656 inline LagrangeElements (/home/fred/src/lulesh2.0.3/lulesh.cc) 
           >>>> @ 2774 inline LagrangeLeapFrog (/home/fred/src/lulesh2.0.3/lulesh.cc) 
           >>>> @  NN inlined main (lulesh2.0: lulesh.cc,2690) 
           >>>>> @ 2374 in __kmp_join_call (libomp.so) 
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           >>>>>> @ 7165 in __kmp_internal_join (libomp.so) 
           >>>>>>> @ 334 in __kmp_join_barrier(int) (libomp.so) 
  169  >>>>>>>> @ 167 in OMPT_THREAD_WAIT_BARRIER (collector.c,167) 

 
 
The chain of events that are illustrated above: 
 

 At line 2774 of lulesh.cc,  LagrangeLeapFrog was inlined. 
 At line 2656 in LagrangeLeapFrog,  LagrangeElements was inlined 
 At line 2458 in  LagrangeElements, CalcLagrangeElements was inlined 
 At line 1609 in CalcLagrangeElements, CalcKinematicsForElems was inlined 

 
Source excerpts from lulesh.cc from lulesh2.0.3 that display the inline points 
of interest: 
 
  1598 /******************************************/ 
  1599  
  1600 static inline 
  1601 void CalcLagrangeElements(Domain& domain, Real_t* vnew) 
  1602 { 
  1603    Index_t numElem = domain.numElem() ; 
  1604    if (numElem > 0) { 
  1605       const Real_t deltatime = domain.deltatime() ; 
  1606  
  1607       domain.AllocateStrains(numElem); 
  1608  
  1609       CalcKinematicsForElems(domain, vnew, deltatime, numElem) ; 
  1610  
  1611       // element loop to do some stuff not included in the elemlib function. 
  1612 #pragma omp parallel for firstprivate(numElem) 
  1613       for ( Index_t k=0 ; k<numElem ; ++k ) 
  1614       { 
  1615          // calc strain rate and apply as constraint (only done in FB element) 
… 
… 
 
  1634       } 
  1635       domain.DeallocateStrains(); 
  1636    } 
  1637 } 
  1638  
 
 
 
 
  2451 /******************************************/ 
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  2452  
  2453 static inline 
  2454 void LagrangeElements(Domain& domain, Index_t numElem) 
  2455 { 
  2456   Real_t *vnew = Allocate<Real_t>(numElem) ;  /* new relative vol -- temp */ 
  2457  
  2458   CalcLagrangeElements(domain, vnew) ; 
  2459  
  2460   /* Calculate Q.  (Monotonic q option requires communication) */ 
  2461   CalcQForElems(domain, vnew) ; 
  2462  
  2463   ApplyMaterialPropertiesForElems(domain, vnew) ; 
  2464  
  2465   UpdateVolumesForElems(domain, vnew, 
  2466                         domain.v_cut(), numElem) ; 
  2467  
  2468   Release(&vnew); 
  2469 } 
  2470  
 
 
 
  2638  
  2639 static inline 
  2640 void LagrangeLeapFrog(Domain& domain) 
  2641 { 
  2642 #ifdef SEDOV_SYNC_POS_VEL_LATE 
  2643    Domain_member fieldData[6] ; 
  2644 #endif 
  2645  
  2646    /* calculate nodal forces, accelerations, velocities, positions, with 
  2647     * applied boundary conditions and slide surface considerations */ 
  2648    LagrangeNodal(domain); 
  2649  
  2650  
  2651 #ifdef SEDOV_SYNC_POS_VEL_LATE 
  2652 #endif 
  2653  
  2654    /* calculate element quantities (i.e. velocity gradient & q), and update 
  2655     * material states */ 
  2656    LagrangeElements(domain, domain.numElem()); 
  2657  
  2658 #if USE_MPI    
  2659 #ifdef SEDOV_SYNC_POS_VEL_LATE 
  2660    CommRecv(domain, MSG_SYNC_POS_VEL, 6, 
  2661             domain.sizeX() + 1, domain.sizeY() + 1, domain.sizeZ() + 1, 
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  2662             false, false) ; 
  2663  
  2664    fieldData[0] = &Domain::x ; 
  2665    fieldData[1] = &Domain::y ; 
  2666    fieldData[2] = &Domain::z ; 
  2667    fieldData[3] = &Domain::xd ; 
  2668    fieldData[4] = &Domain::yd ; 
  2669    fieldData[5] = &Domain::zd ; 
  2670     
  2671    CommSend(domain, MSG_SYNC_POS_VEL, 6, fieldData, 
  2672             domain.sizeX() + 1, domain.sizeY() + 1, domain.sizeZ() + 1, 
  2673             false, false) ; 
  2674 #endif 
  2675 #endif    
  2676  
  2677    CalcTimeConstraintsForElems(domain); 
  2678  
  2679 #if USE_MPI    
  2680 #ifdef SEDOV_SYNC_POS_VEL_LATE 
  2681    CommSyncPosVel(domain) ; 
  2682 #endif 
  2683 #endif    
  2684 } 
  2685  
  2686  
 
 
 
 
 
  2687 /******************************************/ 
  2688  
  2689 int main(int argc, char *argv[]) 
  2690 { 
  2691   Domain *locDom ; 
  2692    Int_t numRanks ; 
  2693    Int_t myRank ; 
  2694    struct cmdLineOpts opts; 
  2695  
  2696 #if USE_MPI    
  2697    Domain_member fieldData ; 
  2698  
… 
… 
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  2770 //      std::cout << "region" << i + 1<< "size" << locDom->regElemSize(i) 
<<std::endl; 
  2771    while((locDom->time() < locDom->stoptime()) && (locDom->cycle() < 
opts.its)) { 
  2772  
  2773       TimeIncrement(*locDom) ; 
  2774       LagrangeLeapFrog(*locDom) ; 
  2775  
  2776       if ((opts.showProg != 0) && (opts.quiet == 0) && (myRank == 0)) { 
  2777          printf("cycle = %d, time = %e, dt=%e\n", 
  2778                 locDom->cycle(), double(locDom->time()), double(locDom-
>deltatime()) ) ; 
  2779       } 
  2780    } 
 
 

4.1.4.1 Call Path Profiling (usertime) experiment function inline display: Specific 
Kokkos Example: 
 
BEFORE changes to better support C++ inlining – top time taking callstack 

from kokkos-mxm.host: 

openss>>expview -vfullstack -mcalls usertime1 
 
Number of  Call Stack Function (defining location) 
Exclusive   
   Counts   
           _start (kokkos-mxm.host) 
           > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
           >>__libc_start_main (libc-2.26.so) 
           >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
           >>>> @ 131 in main (kokkos-mxm.host: kokkos-mxm.cpp,3) 
           >>>>> @ 1168 in __kmp_api_GOMP_parallel (libomp.so: kmp_gsupport.cpp,1136) 
  158  >>>>>> @ 91 in Kokkos::Impl::ParallelFor<main::{lambda(int const&)#2}, 

Kokkos::RangePolicy<Kokkos::OpenMP>, Kokkos::RangePolicy>::execute() const [clone ._omp_fn.2] 
(kokkos-mxm.host: Kokkos_OpenMP_Parallel.hpp,131) 

 

AFTER changes to better support C++ inlining – top time taking callstack from 
kokkos-mxm.host: 

 
openss>>expview -v fullstack -mcalls usertime1 
 
Number of  Call Stack Function (defining location) 
Exclusive   
   Counts   
 
           _start (kokkos-mxm.host) 
           > @ 556 in __libc_start_main (libmonitor.so.0.0.0) 
           >>__libc_start_main (libc-2.26.so) 
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           >>> @ 517 in monitor_main (libmonitor.so.0.0.0) 
           >>>> @ 3 in main (kokkos-mxm.host: kokkos-mxm.cpp,3) 
           >>>> @ 244 in parallel_for<main(int, char**)::<lambda(int const&)> > (kokkos-mxm.host: 
Kokkos_Parallel.hpp) 
           >>>> @ 224 in execute (kokkos-mxm.host: Kokkos_Parallel.hpp) 
           >>>> @ 20 in parallel_for<int, main(int, char**)::<lambda(int const&)> > (kokkos-mxm.host: 
kokkos-mxm.cpp) 
           >>>>> @ 1168 in __kmp_api_GOMP_parallel (libomp.so) 
  138  >>>>>> @ 91 in Kokkos::Impl::ParallelFor<main::{lambda(int const&)#2}, 
Kokkos::RangePolicy<Kokkos::OpenMP>, Kokkos::RangePolicy>::execute() const [clone ._omp_fn.2] (kokkos-
mxm.host: Kokkos_OpenMP_Parallel.hpp,131) 

   
 
 
 

4.1.4.2 Call Path Profiling (usertime) experiment function inline display: Specific Raja 
Example: 
 
BEFORE changes to better support C++ inlining – top time taking callstack 

from rajaperf.exe: 

openss>>expview -v fullstack -mcalls usertime1 
 
Number of  Call Stack Function (defining location) 
Exclusive   
   Counts   
           _start (raja-perf.exe) 
           > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
           >>__libc_start_main (libc-2.26.so) 
           >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
           >>>> @ 34 in main (raja-perf.exe: RAJAPerfSuiteDriver.cpp,22) 
           >>>>> @ 372 in rajaperf::Executor::runSuite() (raja-perf.exe: Executor.cpp,348) 
           >>>>>> @ 72 in rajaperf::KernelBase::execute(rajaperf::VariantID) (raja-perf.exe: 

KernelBase.cpp,64) 
     73  >>>>>>> @ 89 in rajaperf::stream::MUL::runKernel(rajaperf::VariantID) (raja-perf.exe: 

MUL.cpp,56) 
 

AFTER changes to better support C++ inlining – top time taking callstack from 
rajaperf.exe: 

 
Number of  Call Stack Function (defining location) 
Exclusive   
   Counts   
           _start (raja-perf.exe) 
           > @ 556 in __libc_start_main (libmonitor.so.0.0.0) 
           >>__libc_start_main (libc-2.26.so) 
           >>> @ 517 in monitor_main (libmonitor.so.0.0.0) 
           >>>> @ 34 in main (raja-perf.exe: RAJAPerfSuiteDriver.cpp,22) 
           >>>>> @ 372 in rajaperf::Executor::runSuite() (raja-perf.exe: Executor.cpp,348) 
           >>>>>> @ 72 in rajaperf::KernelBase::execute(rajaperf::VariantID) (raja-perf.exe: 
KernelBase.cpp,64) 
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     78  >>>>>>> @ 56 in rajaperf::stream::MUL::runKernel(rajaperf::VariantID) (raja-perf.exe: 
MUL.cpp,56) 
           >>>>>>> @ 66 in operator() (raja-perf.exe: 
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/policy/simd/forall.hpp) 
           >>>>>>> @ 740 in forall<RAJA::policy::loop::loop_exec, RAJA::TypedRangeSegment<long int>, 
rajaperf::apps::PRESSURE::runKernel(rajaperf::VariantID)::<lambda(int)> > (raja-perf.exe: 
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/pattern/forall.hpp) 
           >>>>>>> @ 399 in forall<RAJA::policy::loop::loop_exec, RAJA::TypedRangeSegment<long int>, 
rajaperf::apps::PRESSURE::runKernel(rajaperf::VariantID)::<lambda(int)> > (raja-perf.exe: 
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/pattern/forall.hpp) 
           >>>>>>> @ 214 in forall_impl<RAJA::TypedRangeSegment<long int>, 
rajaperf::apps::PRESSURE::runKernel(rajaperf::VariantID)::<lambda(int)>&> (raja-perf.exe: 
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/pattern/forall.hpp) 
           >>>>>>> @ 87 in forall<RAJA::policy::simd::simd_exec, RAJA::TypedRangeSegment<long int, 
long int>, rajaperf::stream::MUL::runKernel(rajaperf::VariantID)::<lambda(rajaperf::Index_type)> > (raja-
perf.exe: /home/jeg/raja/RAJAPerf/src/stream/MUL.cpp) 
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5   How to Relate Data to Architectural Properties 

 
Performance Application Programming Interface (PAPI) allows access to hardware 
counters through APIs and simple runtime tools.  Find more about PAPI at 
http://icl.cs.utk.edu/papi. 
 
O|SS implements three hardware counter experiments on top of PAPI.  It provides 
access to PAPI and native counters like data cache misses, TLB misses and bus 
accesses. 
 
There are a few basic models to follow in hardware counter experiments.  The first 
is thresholding: The user selects a counter and the application runs until the counter 
reaches a fixed number of events. A PC sample is then taken at that location every 
time the counter increases by the preset fixed number.  The ideal threshold (the 
fixed number at which to monitor) depends on the application.  Another model is a 
timer-based sampling in which the counters are checked at given time intervals. 
 
O|SS provides three hardware counter experiments: hwc for flat hardware counter 
profiles using a single hardware counter; hwctime for profiles with stack traces 
using a single hardware counter; and hwcsamp for PC sampling with multiple 
hardware counters.  Both osshwc and osshwctime support non-derived PAPI 
presets: All non-derived events are reported by “papi_avail –a”.  Users also can see 
the available events by running the experiments (osshwc or osshwctime) with no 
arguments.  The experiments include all native events for that specific architecture.  
Some PAPI event names are in the sections below, but please see the PAPI 
documentation for the full list. 
  
The threshold chosen depends on the application; users should balance overhead 
with accuracy.  Remember: a higher threshold will record fewer samples; rare 
events need a smaller threshold or that information may be lost (never triggered 
and recorded). Use a larger threshold for frequent events to reduce the overhead of 
collecting the information.  Selecting the right threshold can take experience or 
some trial and error.    
 
HINT:  Running the sampling-based hardware counter experiment, osshwcsamp, 
can help suggest a threshold value to try when running the threshold-based osshwc 
and osshwctime experiments.  Since the ideal number of events (the threshold) 
depends on the application and the selected counter, the hwcsamp experiment can 
be used to get an overview of counter activity for events other than the default. 
 
The default threshold is set to a high value to match the default event 
(PAPI_TOT_CYC).  For all other events, the user should run hwcsamp first to 
understand how many times a particular event occurs (the count of the event) 
during the program’s life.  To ascertain a reasonable threshold from the hwcsamp 
data, determine the average counts per thread of execution and then set the 

http://icl.cs.utk.edu/papi
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hwc/hwctime threshold to some small fraction of that.  For example, if there are 
1333333333 PAPI_L1_DCM's over the program’s life when running the hwcsamp 
experiment and there were 524 processes used during the application run, the 
following formula could find a reasonable threshold for the hwc and hwctime 
experiments when using the PAPI_L1_DCM event for the same application: 

 
(Average counts per thread) / 1000 == Threshold for hwc/hwctime 
 

In this case: 
 
(1333333333/524)/1000   == 2544529/1000  == 2545  
 

With this formula, a user could choose 2545 as the threshold value in hwc and 
hwctime for PAPI_L1_DCM and expect to get a reasonable data sample. 
 
NOTE: The number of PAPI counters and their uses can be overwhelming.  Ratios 
derived from a combination of hardware events sometimes can provide more useful 
information than raw metrics.  Develop the ability to interpret metric ratios with a 
focus on understanding:  

 Instructions per cycle or cycles per instruction. 
 Floating point/vectorization efficiency. 
 Cache behaviors; long latency instruction impact. 
 Branch mispredictions. 
 Memory and resource access patterns. 
 Pipeline stalls. 

 

5.1 Hardware Counter Experiment (hwc) 
 
As an example, here’s a run of the osshwc experiment on our test program, 
SMG2000.  The convenience script for this is experiment is: 
 
> osshwc “mpirun –np 256 smg2000 –n 50 50 50” <counter> <threshold> 
 
This is the same syntax as the osshwctime experiment.  Note: If the output is empty, 
try lowering the <threshold> value; O|SS calculates it by default.  Users can try 
lowering the threshold value if there have not been enough PAPI event occurrences 
to record.  Also, see the hint in the osshwcsamp section above.  Users can run 
osshwcsamp and use a formula to create a reasonable threshold.  Any counter 
reported by “papi_avail –a” that is not derived is available for use.  Users also can see 
the available counters by using the osshwc or osshwctime commands with no 
arguments.  Native counters are listed in the PAPI documentation. 
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Note: Threshold indications are just for rough guidance and depend on the 
application.  Also, remember that not all counters will exist on all platforms. Run 
osshwc with no arguments to see the available hardware counters. 
 
The sections below show outputs from the osshwc experiment. Note that the default 
counter is the total cycles. 
 
 
5.1.1 Hardware Counter Threshold (hwc) experiment performance data gathering 
 
The hardware counter threshold experiment convenience script is “osshwc”.   Here’s 
how to use this to gather counter values for one unique hardware counter:  
 
osshwc “how you normally run your application” <papi event > < threshold value> 
 
Here’s an example of how to gather data for the SMG2000 application on a Linux 
cluster platform using the osshwc convenience script.  It collects performance data 
for the default counter, PAPI_TOT_CYC because there is no hardware counter value 
specified after the quoted application run command: 
 
osshwc “mpirun -np 4 ./smg2000 -n 60 60 60" 
 
 
5.1.2 Viewing Hardware Counter Threshold (hwc) experiment performance data via 
GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
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The image below shows the default view for the hwc experiment run with the 
SMG2000 MPI application using PAPI_TOT_CYC as the hardware counter event.  
Double-clicking on a performance information line in the Stats Panel or on the bar 
chart will take the user to the source file and line it represents. 
 

 
 
This displays output from the osshwctime experiment in which the counter is the L1 
cache misses: 
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5.1.3 Viewing Hardware Counter Threshold (hwc) experiment performance data via 
CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“.  This 
example shows three default CLI views of varying granularities: function, statement 
and library level. 
 
 
openss -f smg2000-hwc-3.openss 
[openss]: The restored experiment identifier is:  -x 1 
 
$ openss -cli -f smg2000-hwc-3.openss 
openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>expview 
  Exclusive              % of Total           Function (defining location) 
PAPI_TOT_CYC     PAPI_TOT_CYC 
     Counts               Counts 
23080000000       43.8283     hypre_SMGResidual (smg2000: smg_residual.c,152) 
12880000000       24.4588     hypre_CyclicReduction (smg2000: cyclic_reduction.c,757) 
  3540000000          6.7224     mca_btl_vader_check_fboxes (libmpi.so.1.5.2: btl_vader_fbox.h,106) 
  1420000000          2.6965     unpack_predefined_data (libopen-pal.so.6.2.0: opal_datatype_unpack.h,41) 
  1220000000          2.3167     hypre_SemiInterp (smg2000: semi_interp.c,126) 
  1140000000          2.1648     pack_predefined_data (libopen-pal.so.6.2.0: opal_datatype_pack.h,38) 
  1020000000          1.9370     __memcpy_ssse3_back (libc-2.17.so) 
    740000000          1.4052     hypre_SemiRestrict (smg2000: semi_restrict.c,125) 
  … 
  … 
 
 
openss>>expview -v statements 
 
  Exclusive             % of Total     Statement Location (Line Number) 
PAPI_TOT_CYC     PAPI_TOT_CYC 
     Counts               Counts 
17800000000       36.9141     smg_residual.c(289) 
   3440000000         7.1340     cyclic_reduction.c(1130) 
   2780000000         5.7652     smg_residual.c(238) 
   2760000000         5.7238     cyclic_reduction.c(910) 
   1700000000         3.5255     cyclic_reduction.c(999) 
   1660000000         3.4426     btl_vader_fbox.h(119) 
   1180000000         2.4471     smg_residual.c(287) 
     960000000         1.9909     cyclic_reduction.c(853) 
… 
… 
 
openss>>expview -v linkedobjects 
 
  Exclusive              % of Total        LinkedObject 
PAPI_TOT_CYC     PAPI_TOT_CYC 
     Counts               Counts 
40800000000       77.3606        smg2000 
 6060000000        11.4903        libmpi.so.1.5.2 
 4160000000          7.8878        libopen-pal.so.6.2.0 
 1720000000          3.2613        libc-2.17.so 
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5.2 Hardware Counter Time Experiment (hwctime) 
 
In this example, the osshwc experiment runs on our test program, SMG2000.  The 
convenience script for this is experiment is: 
 
> osshwctime “mpirun –np 256 smg2000 –n 50 50 50” <counter> <threshold> 
 
This is the same syntax as the osshwc experiment.  Note: If the output is empty, try 
lowering the <threshold> value; O|SS calculates it by default.  Users can try lowering 
the threshold value if there have not been enough PAPI event occurrences to record.   
Also, see the hint in the osshwcsamp section below.  Users can run osshwcsamp and 
use a formula to create a reasonable threshold.  Any counter reported by “papi_avail 
–a” that is not derived is available for use.  Users also can use the osshwc or 
osshwctime commands with no arguments to see the available counters.  Native 
counters are listed in the PAPI documentation. 
 

 
 
Note: Threshold indications are just for rough guidance and are dependent on the 
application.  Also, remember that not all counters will exist on all platforms: Run 
osshwc with no arguments to see the available hardware counters. 
 
The sections below show outputs from the osshwctime experiment. Note that the 
default counter is the total cycles. 
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5.2.1 Hardware Counter Time Threshold (hwctime) experiment performance data 
gathering 
 
The hardware counter threshold experiment convenience script is “osshwc”.  Here’s 
how to use it to gather counter values for one unique hardware counter:  
 
osshwctime “how you normally run your application” <papi event > < threshold value> 

 
The following example shows how to use the osshwc convenience script to gather 
data for the SMG2000 application on a Linux cluster platform.  If there is no 
hardware counter value specified after the quoted application run command, the 
osshwctime convenience script will gather performance data for the default counter, 
PAPI_TOT_CYC.  This example specifies an alternative counter, PAPI_L1_DCM, and a 
specific threshold value, 750000.  Each time the threshold value is reached, a sample 
will be taken and recorded.  At program completion, an O|SS database file is created 
and users can view the performance data.  A default report is shown as part of the 
O|SS convenience script (below). 
 
$ osshwctime "mpirun -np 4 ./smg2000 -n 65 65 65" PAPI_L1_DCM 750000  
[openss]: hwctime using default threshold: 750000.  
[openss]: hwctime using user specified papi event: "PAPI_L1_DCM"  
Creating topology file for frontend host localhost  
Generated topology file: ./cbtfAutoTopology  
Running hwctime collector.  
Program: mpirun -np 4 ./smg2000 -n 65 65 65  
Number of mrnet backends: 4  
Topology file used: ./cbtfAutoTopology  
executing mpi program: mpirun -np 4  cbtfrun  --mpi  --mrnet  -c hwctime ./smg2000 -n 65 65 65  
Running with these driver parameters:  
  (nx, ny, nz)    = (65, 65, 65)  
  (Px, Py, Pz)    = (4, 1, 1)  
  (bx, by, bz)    = (1, 1, 1)  
  (cx, cy, cz)    = (1.000000, 1.000000, 1.000000)  
  (n_pre, n_post) = (1, 1)  
  dim             = 3  
  solver ID       = 0  
=============================================  
Struct Interface:  
=============================================  
Struct Interface:  
  wall clock time = 0.024858 seconds  
  cpu clock time  = 0.030000 seconds  
=============================================  
Setup phase times:  
=============================================  
SMG Setup:  
  wall clock time = 0.624002 seconds  
  cpu clock time  = 0.620000 seconds  
=============================================  
Solve phase times:  
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=============================================  
SMG Solve:  
  wall clock time = 3.907005 seconds  
  cpu clock time  = 3.870000 seconds  
 
Iterations = 7  
Final Relative Residual Norm = 1.760588e-07  
 
All Threads are finished.  
default view for ./smg2000-hwctime-4.openss  
[openss]: The restored experiment identifier is:  -x 1  
Performance data spans 4.818158 seconds  from 2016/11/11 11:12:31 to 2016/11/11 11:12:36  
 
  Exclusive    Inclusive   % of Total  Function (defining location)  
PAPI_L1_DCM  PAPI_L1_DCM    Exclusive  
     Counts       Counts  PAPI_L1_DCM  
                               Counts  
  740250000    765750000    52.555911  hypre_SMGResidual (smg2000: smg_residual.c,152)  
  446250000    525000000    31.682641  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)  
   33000000     33000000     2.342918  hypre_SemiInterp (smg2000: semi_interp.c,126)  
   24000000     24750000     1.703940  hypre_SemiRestrict (smg2000: semi_restrict.c,125)  
   23250000     27000000     1.650692  unpack_predefined_data (libopen-pal.so.13.0.2: 
opal_datatype_unpack.h,34)  
   16500000     21750000     1.171459  pack_predefined_data (libopen-pal.so.13.0.2: 
opal_datatype_pack.h,35)  
    9000000      9000000     0.638978  hypre_StructAxpy (smg2000: struct_axpy.c,25)  
    8250000      8250000     0.585729  hypre_SMGAxpy (smg2000: smg_axpy.c,27)  
    8250000      8250000     0.585729  __memcpy_ssse3_back (libc-2.17.so)  
    6750000      6750000     0.479233  hypre_SMG2BuildRAPSym (smg2000: smg2_setup_rap.c,156)  
    6000000      6000000     0.425985  hypre_SMG3BuildRAPSym (smg2000: smg3_setup_rap.c,233) 

 
 

 
 
5.2.2 Viewing Hardware Counter Threshold (hwctime) experiment performance data 
via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
 
This image shows the default view for the hwc experiment run with the SMG2000 
MPI application specifying PAPI_L1_DCM as the hardware counter event.  Double-
clicking on a performance information line in the Stats Panel or on the bar chart will 
take the user to the source file and line it represents. 
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The next image displays output from the osshwctime experiment with the Hot Call 
Path icon (red HC) chosen.  This displays the top five time-consuming call paths in 
the SMG2000 application. 
 
 

 
 
The view below shows the top time-consuming statements, with the source panel 
focused on the one in SMG2000 that took the most.  In the StatsPanel, double-



 58 

clicking on a statistics line will focus the source panel on the corresponding source 
line. 
 

 
 
5.2.3 Viewing Hardware Counter Time Threshold (hwctime) experiment performance 
data via CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“.   
This example shows three default CLI views of varying granularities: function, 
statement and library level. 
 
This is the CLI default view for the hwctime experiment: 
 
$ openss -cli -f smg2000-hwctime-4.openss  
openss>>[openss]: The restored experiment identifier is:  -x 1  
openss>>expview hwctime10  
 
  Exclusive    Inclusive   % of Total  Function (defining location)  
PAPI_L1_DCM  PAPI_L1_DCM    Exclusive  
     Counts       Counts  PAPI_L1_DCM  
                               Counts  
  740250000    765750000    52.555911  hypre_SMGResidual (smg2000: smg_residual.c,152)  
  446250000    525000000    31.682641  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)  
   33000000     33000000     2.342918  hypre_SemiInterp (smg2000: semi_interp.c,126)  
   24000000     24750000     1.703940  hypre_SemiRestrict (smg2000: semi_restrict.c,125)  
   23250000     27000000     1.650692  unpack_predefined_data (libopen-pal.so.13.0.2: 
opal_datatype_unpack.h,34)  
   16500000     21750000     1.171459  pack_predefined_data (libopen-pal.so.13.0.2: 
opal_datatype_pack.h,35)  
    9000000      9000000     0.638978  hypre_StructAxpy (smg2000: struct_axpy.c,25)  
    8250000      8250000     0.585729  hypre_SMGAxpy (smg2000: smg_axpy.c,27)  
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    8250000      8250000     0.585729  __memcpy_ssse3_back (libc-2.17.so)  
    6750000      6750000     0.479233  hypre_SMG2BuildRAPSym (smg2000: smg2_setup_rap.c,156) 

 
This CLI view for the hwctime experiment shows performance information based on 
loops in SMG2000: 
 
 
openss>>expview -v loops hwctime10  
  Exclusive    Inclusive   % of Total  Loop Start Location (Line Number)  
PAPI_L1_DCM  PAPI_L1_DCM    Exclusive  
     Counts       Counts  PAPI_L1_DCM  
                               Counts  
  739500000    765000000    42.813721  smg_residual.c(204)  
  213000000    256500000    12.331741  cyclic_reduction.c(882)  
  192000000    227250000    11.115936  cyclic_reduction.c(1022)  
   41250000     41250000     2.388189  cyclic_reduction.c(851)  
   41250000     41250000     2.388189  cyclic_reduction.c(835)  
   40500000     40500000     2.344768  cyclic_reduction.c(851)  
   39000000     39000000     2.257924  cyclic_reduction.c(851)  
   24000000     24750000     1.389492  semi_restrict.c(198)  
   20250000     20250000     1.172384  semi_interp.c(292)  
   20250000     20250000     1.172384  semi_interp.c(292)  
 

This CLI view for the hwctime experiment shows performance information based on 
statements in SMG2000.  In this experiment, statement 289 had the most level 1 
data cache misses: 
 
openss>>expview -vstatements hwctime10  
 
  Exclusive    Inclusive   % of Total  Statement Location (Line Number)  
PAPI_L1_DCM  PAPI_L1_DCM    Exclusive  
     Counts       Counts  PAPI_L1_DCM  
                               Counts  
  573750000    573750000    42.429285  smg_residual.c(289)  
  111750000    111750000     8.264004  cyclic_reduction.c(1130)  
   84750000     84750000     6.267332  cyclic_reduction.c(910)  
   63000000     63000000     4.658902  smg_residual.c(287)  
   48750000     48750000     3.605103  cyclic_reduction.c(999)  
   45750000     45750000     3.383250  smg_residual.c(238)  
   31500000     31500000     2.329451  smg_residual.c(291)  
   27000000     27000000     1.996672  cyclic_reduction.c(853)  
   26250000     26250000     1.941209  cyclic_reduction.c(1061)  
   24000000     24000000     1.774820  cyclic_reduction.c(998)  
 

This CLI view for the hwctime experiment shows performance information based on 
libraries or linked objects in SMG2000.  In this experiment, the executable had 92 
percent of the level 1 data cache misses: 
 
openss>>expview -v linkedobjects  
 
  Exclusive    Inclusive   % of Total  LinkedObject  
PAPI_L1_DCM  PAPI_L1_DCM    Exclusive  
     Counts       Counts  PAPI_L1_DCM  
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                               Counts  
 1297500000   1410000000    92.021277  smg2000  
      58500000        81750000      4.148936   libopen-pal.so.13.0.2  
      34500000      101250000      2.446809  libmpi.so.12.0.2  
      19500000    1410000000     1.382979  libc-2.17.so   
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5.3 Hardware Counter Sampling (hwcsamp) Experiment 
 
The osshwcsamp experiment supports both derived and non-derived PAPI presets 
and can sample up to six counters simultaneously.  Again, users can run 
osshwcsamp with no arguments to check the available counters.  All native events 
are available, including architecture-specific events listed in the PAPI 
documentation.  Native events also are reported by papi_native_avail. 
 
The hardware counter sampling experiment uses a sampling rate rather than the 
threshold used in previous experiments.  Like the threshold, however, the sampling 
rate depends on the application and users must strike a balance between overhead 
and accuracy.  In this case, the lower the sampling rate, the fewer samples recorded. 
 
The convenience script for this experiment is: 
 
> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” <event_list> <sampling_rate> 

 
Note: If a counter does not appear in the output, there may be a conflict in the 
hardware counters.  To find conflicts use:  
 
> papi_event_chooser PRESET <list_of_events> 
 
Here is a list (from Koushik Ghosh of LLNL) of some possible hardware counter 
combinations: 
 

For Xeon processors:  
PAPI_FP_INS, PAPI_LD_INS, PAPI_SR_INS Load store info, memory 

bandwidth needs 
PAPI_L1_DCM, PAPI_L1_TCA L1 cache hit/miss ratios 
PAPI_L2_DCM, PAPI_L2_TCA L2 cache hit/miss ratios 
LAST_LEVEL_CACHE_MISSES, 
LAST_LEVEL_CACHE_REFERENCES 

L3 cache info 

MEM_UNCORE_RETIRED:REMOTE_DRAM, 
MEM_UNCORE_RETIRED:LOCAL_DRAM 

Local/nonlocal memory access 

For Opteron processors: 
PAPI_FAD_INS, PAPI_FML_INS Floating point add multiply 
PAPI_FDV_INS, PAPI_FSQ_INS Square root and divisions 
PAPI_DP_OPS, PAPI_VEC_INS Floating point and vector 

instructions 
READ_REQUEST_TO_L3_CACHE:ALL_CORES, 
L3_CACHE_MISSES:ALL_CORES 

L3 cache 
 

 
When selecting PAPI events, users must determine if they are a valid combination.  
In general, valid combinations will pass the test: 
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> papi_event_chooser PRESET event1 event2 … eventN 

 
The output for a valid combination will contain: 
 
event_chooser.c  PASSED 

 
Here is an example of using PAPI to check the validity of a three-event combination: 
 

> papi_event_chooser PRESET PAPI_FP_INS PAPI_LD_INS PAPI_SR_INS 
-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-PAPI Version :4.1.2.1 
Vendor string and code : GenuineIntel (1) 
Model string and code : Intel Nehalem (21) 
CPU Revision : 5.000000 
… 
… 
PAPI_VEC_SP 0x80000069 No Single precision vector/SIMD instructions 
PAPI_VEC_DP 0x8000006a No Double precision vector/SIMD instructions 
-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-­­-Total events reported: 44 
event_chooser.c  PASSED 

 

Here is the osshwcsamp experiment output with counters for total cycles and 
floating point operations: 
 

 
 
Remember: It’s not always necessary to use the O|SS GUI to examine experiment 
output; the command line interface is available to view the same information.  For 
example, the output from above can be seen on the command line: 
 

>openss -cli -f smg2000-hwcsamp.openss 
openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>expview 
Exclusive  % of CPU   papi_tot_cyc     papi_tot_ins       tot_ins/tot_cyc   papi_tot_cyc%  Function (defining location) 
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CPU time    Time                                                                         IPC 
  8.1700   44.3781    23667853023  24607847270    1.0397   44.3925  hypre_SMGResidual (smg2000: smg_residual.c,152) 
  4.3900   23.8457    12639749808  13535382093    1.0709    23.7077  hypre_CyclicReduction (smg2000: 
cyclic_reduction.c,757) 
  1.0700     5.8121       3163375912    3945799878     1.2473      5.9334  mca_btl_vader_check_fboxes (libmpi.so.1.5.2: 
btl_vader_fbox.h,106) 
  0.4800    2.6073        1408936665    1631174014     1.1577      2.6427  unpack_predefined_data (libopen-pal.so.6.2.0: 
opal_datatype_unpack.h,41) 
  0.4300    2.3357        1224504349    1215231440     0.9924       2.2967  hypre_SemiRestrict (smg2000: semi_restrict.c,125) 
  0.4000    2.1727        1162611644    1430110452     1.2301       2.1806  hypre_SemiInterp (smg2000: semi_interp.c,126) 
 
openss>>expview -v linkedobjects 
 
Exclusive  % of CPU       papi_tot_cyc      papi_tot_ins  tot_ins/tot_cyc papi_tot_cyc%  LinkedObject 
CPU time     Time                                                                                IPC 
 14.4400      78.3931   41735382047   44436967182          1.0647    78.2394  smg2000 
  1.9400       10.5320      5687487004      7106186325          1.2494    10.6621  libmpi.so.1.5.2 
  1.3400         7.2747       3918861297     4788179789          1.2218      7.3465  libopen-pal.so.6.2.0 
  0.6700         3.6374       1918417268      2138815631          1.1149     3.5964  libc-2.17.so 
  0.0300        0.1629             83014429           77541115          0.9341     0.1556  libpthread-2.17.so 
 18.4200  100.0000     53343162045   58547690042          1.0976 100.0000  Report Summary 

 

 
5.3.1 Hardware Counter Sampling (hwcsamp) experiment performance data gathering 
 
The hardware counter sampling experiment convenience script is “osshwcsamp”.   
Here’s how to use this to gather values for up to six  unique hardware counters:  
 
osshwcsamp “how you normally run your application” <papi event list> < sampling rate> 

5.3.1.1 Hardware Counter Sampling (hwcsamp) experiment parameters 
 
The hwcsamp experiment is timer-based, not threshold-based: A timer periodically 
interrupts the processor.  For the hwcsamp experiment, each time that happens the 
values of the specified hardware counter events will be read up and reset to 0 for 
the next timer cycle.  This is repeated until the program finishes.  O|SS lets the user 
control the sampling rate. 
 
Here’s an example of how to gather data for the SMG2000 application on a Linux 
cluster platform using the osshwcsamp convenience script and specifying a set of 
PAPI hwc events.  In the second example, the user chooses to sample only 45 times a 
second instead of the default 100 times.  Users may do this to save database size, as 
a lower sampling rate may accurately portray the application behavior.  
 
> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM,PAPI_L3_DCA,PAPI_L3_TCM 

 
> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM 45 

 
5.3.2 Viewing Hardware Counter Sampling (hwcsamp) experiment performance data 
via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
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5.3.2.1 Getting the PAPI counter as the GUI Source Annotation Metric 
 
To make one of the PAPI or native hardware counters the counter that will appear in 
the source view, click on the SA (Source Annotation) icon.  This opens an option 
dialogue that allows users to choose the source annotation metric. 
 
 

 
 
In this example, the L2_LD_PREFETCH native counter is chosen. When users choose 
that counter and click OK, the Stats Panel view will regenerate and the source 
annotation metric will become L2_LD_PREFETCH. 

 
 
The regenerated view now shows results for only L2_LD:PREFETCH. 
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Double-clicking on a particular Stats Panel line will focus the source panel and use 
the PAPI or native counter that was chosen via the Source Annotation dialog. 
 

 
 

5.3.2.2 Viewing Hardware Counter Sampling Data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
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The default GUI view of a hardware counter sampling (hwcsamp) experiment 
example is below.  The first set of performance data shown is program counter 
exclusive time (where the program is statistically spending its time) and the 
percentage of time spent in each program function. Next are the hardware counter 
event counts listed in columns: Column three shows counts recorded for 
PAPI_TOT_CYC; column four shows event counts for PAPI_TOT_INS. This view can 
indicate whether the specified hardware counter events are occurring and, if they 
are, their prevalence.  With this information, users can use the hwc or hwctime 
experiment to isolate exactly where a particular event is occurring.  These two 
experiments (hwc and hwctime) are threshold-based: because the actual event 
triggered recording the event counts, users can map performance data back to the 
source.  The hwcsamp experiment is timer-based, so O|SS cannot take users to the 
exact line of source where the hardware counter events are happening.  It is an 
overview experiment that tells users which events are occurring.  It also tells 
whether events are occurring in numbers that would warrant using the hwc or 
hwctime experiments to pinpoint the source location where the specified hardware 
counter event actually occurs. 
 
 

 
 
 
5.3.3 Viewing Hardware Counter Sampling (hwcsamp) experiment performance data 
via CLI  
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“.  This 
example was run on the Yellowstone platform at NCAR/UCAR using the job script 
shown below. 
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5.3.3.1 Job Script and osshwcsamp command 
 
#!/bin/csh 
# 
# LSF batch script to run an MPI application 
# 
#BSUB -P Pnnnnnnnn           # project code 
#BSUB -W 00:30                     # wall-clock time (hrs:mins) 
#BSUB -n 64                            # number of tasks in job 
#BSUB -R "span[ptile=4]"    # run 4 MPI tasks per node 
#BSUB -J sweep3d-hwcsamp               # job name 
#BSUB -o sweep3d-hwcsamp.%J.out        # output file name in which %J is replaced by the job ID 
#BSUB -e sweep3d-hwcsamp.%J.err        # error file name in which %J is replaced by the job ID 
#BSUB -q regular             # queue 
 
module load openspeedshop 
 
mkdir -p /glade/scratch/${USER}/sweep3d 
rm -rf /glade/scratch/${USER}/sweep3d/hwcsamp 
mkdir /glade/scratch/${USER}/sweep3d/hwcsamp 
setenv OPENSS_RAWDATA_DIR /glade/scratch/${USER}/sweep3d/hwcsamp 
 
setenv REQUEST_SUSPEND_HPC_STAT 1 
 
echo "running (on compute node): osshwcsamp" 
osshwcsamp "mpirun.lsf /glade/u/home/galaro/demos/sweep3d/orig/sweep3d.mpi" 
PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM 
 

5.3.3.2 osshwcsamp experiment default CLI view 
 
This table describes information included in the hwcsamp experiment default view 
when no alternative PAPI hardware counter arguments are specified. 
 

Column Name   Column Definition 

Exclusive CPU Time Aggregated total exclusive time spent in the application function 
corresponding to this row of data. 

% of CPU Time Percentage of exclusive time spent in the function corresponding 
to this row of data relative to the total application exclusive time 
for all the application functions. 

PAPI_TOT_CYC Number of hardware events corresponding to the hardware 
independent PAPI_TOT_CYC PAPI event.  This value is based on 
reading the hardware counter event buffers using sampling.  This 
means this data may not accurately reflect where in the source 
these events occurred.  It is an approximation of what is going in 
the application, but does not map back to the source lines.  Use 
the hwc and hwctime experiments for that. 

PAPI_TOT_INS Number of hardware events corresponding to the hardware 
independent PAPI_TOT_INS PAPI event.  This value is based on 
reading the hardware counter event buffers using sampling.  This 
means this data may not accurately reflect where these events 
occurred in the source.  It is an approximation of what is going in 
the application, but does not map back to the source lines.  Use 
the hwc and hwctime experiments for that. 
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Column Name   Column Definition 

TOT_INS/TOT_CYC This is the graduated instructions per cycle, which is the ratio 
between the approximation of the total number of instructions 
divided by the total number of cycles 

% of TOT_CYC The percentage of PAPI_TOT_CYC events for this function relative 
to the number of PAPI_TOT_CYC events that occurred in all the 
application functions. 

 

This is a default CLI view for the hwcsamp experiment: 
 
Exclusive  % of CPU  papi_tot_cyc  papi_tot_ins  tot_ins/tot_cyc papi_tot_cyc%  Function (defining location) 
CPU time Time 
in 
seconds. 
 74.0600    99.8786  177712237021     51989184616      0.2925       99.8787  main (nbody: nbody-mpi.c,71) 
    0.0400     0.0539             95958566             28058948      0.2924         0.0539  fesetenv (libm-2.19.so) 
    0.0300      0.0405            71987793             21053819      0.2925         0.0405  __sqrt_finite (libm-2.19.so) 
    0.0100      0.0135            23864331               6996727       0.2932        0.0134  memcpy (libc-2.19.so) 
    0.0100      0.0135            23995616               7018006       0.2925        0.0135  fegetround (libm-2.19.so) 
 74.1500  100.0000  177928043327     52052312116      0.2925   100.0000  Report Summary 

 

 
This is the output from a  non-default osshwcsamp experiment which specified 
PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM on the 
osshwcsamp command: 
 
openss -cli -f L1-64PE-sweep3d.mpi-hwcsamp.openss 
openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>expview -v summary 
 
 Exclusive    % of CPU  papi_l1_dcm  papi_l1_icm  papi_l1_tcm papi_l1_ldm  papi_l1_stm  Function (defining location) 
CPU time in Time 
seconds. 
824.870000   38.689781    8646497071   117738843     8764235914    8396159476  196649065  __libc_poll (libc-2.12.so) 
799.300000   37.490443  46691996441   367096209  47059092650 46247555479   281624221  sweep (sweep3d.mpi: 
sweep.f,2) 
   75.000000     3.517807       782716992      10680760       793397752      757322217     20159725 
PAMI::Interface::Context<PAMI::Context>::advance (libpami.so: ContextInterface.h,158) 
  55.750000      2.614903       597583047         8038242      605621289  
579127274    14647999  LapiImpl::Context::Advance<true, true, false> (libpami.so: Context.h,220) 
 52.970000    2.484510    550761926     7569975    558331901 535841812    11563657  __libc_enable_asynccancel (libc-
2.12.so) 
 49.850000    2.338169    518605433     6979361    525584794 502551336    12757207  _lapi_dispatcher<false> (libpami.so: 
lapi_dispatcher.c,57) 
 48.080000    2.255149    488545916     6784192    495330108 476065093     9649598  LapiImpl::Context::TryLock<true, true, 
false> (libpami.so: Context.h,198) 
 47.750000    2.239671    479947719     6732551    486680270 471343480     6436257  __libc_disable_asynccancel (libc-
2.12.so) 
 26.680000    1.251401    275998769     3888499    279887268 269841454     4697170  udp_read_callback (libpamiudp.so: 
lapi_udp.c,538) 
 25.880000    1.213878   1522697263    12118336   1534815599 1507685061     9619348  __intel_ssse3_rep_memcpy 
(libirc.so) 
 21.960000    1.030014    223197680     3086626    226284306 215787794     5879517  _lapi_shm_dispatcher (libpami.so: 
lapi_shm.c,2283) 
 14.910000    0.699340    154744623     2075688    156820311 149803306     3979337  LapiImpl::Context::CheckContext 
(libpami.so: CheckParam.cpp,21) 
 13.990000    0.656188    151052863     2000330    153053193 146967548     3167039  LapiImpl::Context::Unlock<true, true, 
false> (libpami.so: Context.h,204) 
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5.3.3.2 osshwcsamp experiment Status command and CLI view 
 
openss>>expstatus 
 
  Experiment definition 
{ # ExpId is 1, Status is NonExistent, Saved database is L1-64PE-sweep3d.mpi-hwcsamp.openss 
   Performance data spans 1:7.958138 mm:ss  from 2013/03/27 22:32:45 to 2013/03/27 22:33:53 
  Executables Involved: 
            sweep3d.mpi 
 Currently Specified Components: 
   -h ys6128 -p 2765 -t 47176895393312 -r 3 (sweep3d.mpi) 
   -h ys6128 -p 2766 -t 47824321252896 -r 0 (sweep3d.mpi) 
   -h ys6128 -p 2767 -t 47369830317600 -r 1 (sweep3d.mpi) 
   -h ys6128 -p 2768 -t 47378742910496 -r 2 (sweep3d.mpi) 
   -h ys6129 -p 22862 -t 47327259860512 -r 5 (sweep3d.mpi) 
   -h ys6129 -p 22863 -t 47201888194080 -r 6 (sweep3d.mpi) 
   -h ys6129 -p 22864 -t 47185544437280 -r 7 (sweep3d.mpi) 
   … 
   -h ys6250 -p 11462 -t 47028080107040 -r 63 (sweep3d.mpi) 
   -h ys6250 -p 11463 -t 47600632852000 -r 60 (sweep3d.mpi) 
   -h ys6250 -p 11464 -t 47494028697120 -r 61 (sweep3d.mpi) 
   -h ys6250 -p 11465 -t 47944527175200 -r 62 (sweep3d.mpi) 
 Previously Used Data Collectors: 
                hwcsamp 
               Metrics: 
   hwcsamp::exclusive_detail 
       hwcsamp::percent 
   hwcsamp::threadAverage 
     hwcsamp::threadMax 
     hwcsamp::threadMin 
          hwcsamp::time 
      Parameter Values: 
   hwcsamp::event = PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM 
   hwcsamp::sampling_rate =  100 
       Available Views: 
                hwcsamp 
                      } 

5.3.3.3 osshwcsamp experiment Load Balance command and CLI view 
 
openss>>expview -m loadbalance 
 
 Max CPU  Rank    Min CPU  Rank    Average  Function (defining location) 
    Time    of       Time    of   CPU Time 
  Across   Max     Across   Min     Across 
Ranks(s)         Ranks(s)         Ranks(s) 
14.890000    28  10.950000    27  12.888594  __libc_poll (libc-2.12.so) 
14.270000    47  11.780000    51  12.489062  sweep (sweep3d.mpi: sweep.f,2) 
1.620000    43   0.840000    37   1.171875 PAMI::Interface::Context<PAMI::Context>::advance (libpami.so: 
ContextInterface.h,158) 
1.320000    16   0.570000     3   0.871094 LapiImpl::Context::Advance<true, true, false> (libpami.so: Context.h,220) 
1.130000    60   0.500000     2   0.778906 _lapi_dispatcher<false> (libpami.so: lapi_dispatcher.c,57) 
1.110000    35   0.520000    49   0.751250 LapiImpl::Context::TryLock<true, true, false> (libpami.so: Context.h,198) 
1.030000    42   0.600000    12   0.827656 __libc_enable_asynccancel (libc-2.12.so) 
0.950000    62   0.520000    38   0.746094 __libc_disable_asynccancel (libc-2.12.so) 
0.700000     6   0.200000    59   0.343125  _lapi_shm_dispatcher (libpami.so: lapi_shm.c,2283) 
0.630000    33   0.250000     0   0.404375 __intel_ssse3_rep_memcpy (libirc.so) 
0.600000    18   0.270000    16   0.416875  udp_read_callback (libpamiudp.so: 
 

5.3.3.4 osshwcsamp experiment Linked Object command and CLI view 
 
openss>>expview -v linkedobjects 
 
 Exclusive    % of CPU  papi_l1_dcm  papi_l1_icm  papi_l1_tcm papi_l1_ldm  papi_l1_stm  LinkedObject 
CPU time in Time 
seconds. 
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  928.310000   43.541541    9818946796   133244862    9952191658     9543597734   215608918  libc-2.12.so 
  811.920000   38.082373  47212355914   369525459  47581881373  46596204924   441601622  sweep3d.mpi 
  311.490000   14.610157    3356646038      44875637    3401521675     3255300343      80090932  libpami.so 
    29.640000      1.390237    1824778610      12931604    1837710214     1680978945   127174346  libirc.so 
    26.930000      1.263127      287313329         3994016       291307345        281053971       4763152  libpamiudp.so 
    22.250000      1.043616    1049603690         9037920     1058641610     1033650896     11422120  libpthread-2.12.so 
       1.440000      0.067542        72649683            620083          73269766         71327993         1007704  libmpich.so.3.3 
       0.020000      0.000938          1286256               23770             1310026            1232178               5222  ld-2.12.so 
       0.010000      0.000469                    327                   394                        721                      313                    13  librt-2.12.so 
2132.010000  100.000000  63623580643   574253745  64197834388 62463347297   881674029  Report Summary 
openss>> 
 

5.3.3.5 osshwcsamp experiment displaying only the hwcsamp PAPI events CLI view 
 

The -m allEvents option prints only the PAPI event values and not the program 
counter sampling exclusive time and percentage values: 
 
openss -cli -f L1-64PE-sweep3d.mpi-hwcsamp.openss 
openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>expview -m allEvents 
 
 papi_l1_dcm  papi_l1_icm  papi_l1_tcm papi_l1_ldm  papi_l1_stm  Function (defining location) 
  8646497071   117738843     8764235914    8396159476  196649065  __libc_poll (libc-2.12.so) 
46691996441   367096209  47059092650 46247555479   281624221  sweep (sweep3d.mpi: sweep.f,2) 
    782716992      10680760       793397752       757322217     20159725  PAMI::Interface::Context<PAMI::Context>::advance  
    597583047         8038242      605621289       579127274     14647999  LapiImpl::Context::Advance<true, true, false>  
    550761926        7569975       558331901       535841812     11563657  __libc_enable_asynccancel (libc-2.12.so) 
    518605433        6979361       525584794       502551336     12757207  _lapi_dispatcher<false> (libpami.so: 
lapi_dispatcher.c,57) 
    488545916        6784192       495330108       476065093       9649598  LapiImpl::Context::TryLock<true, true, false>  
    479947719        6732551       486680270      471343480        6436257  __libc_disable_asynccancel (libc-2.12.so) 
    275998769        3888499       279887268      269841454        4697170  udp_read_callback (libpamiudp.so: lapi_udp.c,538) 
  1522697263     12118336     1534815599   1507685061        9619348  __intel_ssse3_rep_memcpy (libirc.so) 
    223197680       3086626        226284306      215787794        5879517  _lapi_shm_dispatcher (libpami.so: lapi_shm.c,2283) 
    154744623       2075688        156820311      149803306        3979337  LapiImpl::Context::CheckContext (libpami.so: 
CheckParam.cpp,21) 
      151052863     2000330        153053193      146967548        3167039  LapiImpl::Context::Unlock<true, true, false> 
(libpami.so: Context.h,204) 

 

6   I/O Tracing and I/O Profiling 
 

6.1 O|SS I/O Tracing General Usage 
 
The O|SS io and iot I/O function-tracing experiments wrap the most common I/O 
functions, record the time spent in each, record the call path along which an I/O 
function was called, record the time spent along each call path to an I/O function, 
and record the number of times each function was called.  In addition, the iot 
experiment also records information about each individual I/O function call.  The 
values of the arguments and the return value from the I/O function are recorded.  

 
6.2 I/O Base Tracing (io) experiment 
 
This base I/O tracing experiment gathers data for these I/O functions: close, creat, 
creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, pread64, pwrite, 
pwrite64, read, readv, write and writev.  It is a trace-type experiment that wraps the 
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real I/O calls and records information before and after calling the real I/O functions.  
This I/O experiment records the basic I/O information as stated in the introductory 
section, but does not record the arguments to each call. The extended (iot) 
experiment does that. 
 
6.2.1 I/O Base Tracing (io) experiment performance data gathering 
 
The base I/O tracing (io) experiment convenience script is “ossio”.  Here’s how to 
use this convenience script to gather base I/O tracing performance data: 
  
ossio “how you normally run your application” <list of I/O function(s)> 

 
Here’s an example of how to use the ossio convenience script to gather data for the 
IOP application on a Linux cluster platform.  It gathers performance data for all the 
I/O functions because there are no list I/O functions specified after the quoted 
application run command: 
 
ossio  "srun -n 512 ./IOR" 
 
6.2.2 Viewing I/O Base Tracing (io) experiment performance data via CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
 
6.2.3 Viewing I/O Base Tracing (io) experiment performance data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
 

6.3 I/O Extended Tracing (iot) experiment 
 
6.3.1 I/O Extended Tracing (iot) experiment performance data gathering 
 
The extended I/O tracing (iot) experiment convenience script is “ossiot”.  Here’s 
how to use this to gather extended I/O tracing performance data: 
  
ossiot “how you normally run your application” <list of I/O function(s)> 

 
Here’s an example of how to gather data for the IOP application on a Linux cluster 
platform using the ossiot convenience script.  It gathers performance data for all the 
I/O functions because there are no list I/O functions specified after the quoted 
application run command: 
 
ossiot  "srun -n 512 ./IOR" 
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6.3.2 Viewing I/O Extended Tracing (iot) experiment performance data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
 
The default GUI view for the iot experiment is below.  It summarizes the I/O 
functions that were called, how many times they were called and the time spent in 
each function.  The percentage of the total I/O time also is attributed to each I/O 
function.  The time is aggregated (totaled) across all the threads, ranks, or processes 
in the application.  This table describes what the columns of data represent.   
 
Choose one of the call path views to see functions that called the I/O functions.  
 

Column Name   Column Definition 

I/O Call Time Aggregated total exclusive time spent in the I/O 
function corresponding to this row of data. 

% of I/O Total Time Percentage of exclusive time relative to the total time 
spent in the I/O function corresponding to this row of 
data. 

Number of Calls Total number of calls to the I/O function 
corresponding to this row of data. 

Min Bytes Count The number of times minimum bytes read or written 
by the corresponding I/O function occurred during 
this experiment. 

Min Bytes Read or Written  The minimum number of bytes that were read or 
written by the corresponding I/O function. 

Max Bytes Count The number of times maximum bytes read or written 
by the corresponding I/O function occurred during 
this experiment. 

Max Bytes Read or Written  The maximum number of bytes that were read or 
written by the corresponding I/O function. 

Total Bytes Read or 
Written 

The total number of bytes read or written by the 
corresponding function.  This number only represents 
the totals for the number of bytes read or written 
based on the I/O function called. 
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Below, the user has chosen the C+ view icon. The Stats Panel now shows all the call 
paths in the user’s application.  This view shows every possible call path through the 
source to all the I/O functions called during execution.  From this, the user could 
validate that this is expected behavior or find where the I/O is behaving 
unexpectedly.  
 

 
 
Below is the load balance view, which provides the min, max and average values for 
the I/O function call time across all ranks in this application. This view shows some 
wide ranges between min and max values for some I/O functions.  It may be 
valuable to use the Cluster Analysis view try to identify the ranks.   
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The view below, generated by choosing the CA icon, shows that there are two 
groups of ranks where the I/O is performing similarly.  For group 2 (labeled –c 3), 
there are two ranks where the rest of the 512 ranks perform like group 1 (labeled –c 
2).   Comparing ranks 312 or 317 to one of the ranks in the other group could shed 
some light on why group 2 is different from the rest.  This may or may not be 
significant, but is here for illustration.   
 

 
 
6.3.3 Viewing I/O Extended Tracing (iot) experiment performance data via CLI 
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To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
 
The CLI can provide the same data options as the GUI views.  Here are some 
examples of the performance data users can view and the commands to generate the 
CLI views.  The following table describes the headers and meanings of the default iot 
view CLI columns. 
 

Column Name   Column Definition 

I/O Call Time Aggregated total exclusive time spent in the I/O function corresponding to this row of 

data. 

% of I/O Total Time Percentage of exclusive time relative to the total time spent in the I/O function 

corresponding to this row of data. 

Number of Calls Total number of calls to the I/O function corresponding to this row of data. 

Min Bytes Count The number of times minimum bytes read or written by the corresponding I/O function 

occurred during this experiment. 

Min Bytes Read or Written  The minimum number of bytes that were read or written by the corresponding I/O 

function. 

Max Bytes Count The number of times maximum bytes read or written by the corresponding I/O function 

occurred during this experiment. 

Max Bytes Read or Written  The maximum number of bytes that were read or written by the corresponding I/O 

function. 

Total Bytes Read or Written The total number of bytes read or written by the corresponding function.  This number 

only represents the totals for the number of bytes read or written based on the I/O 

function called. 

 
>openss -cli -f IOR-iot.openss 
openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>expview 
 
   I/O          % of                 Number  Min_Bytes  Min_Bytes  Max_Bytes Max_Bytes  Total_Bytes  Function (defining location) 
  Call         Total                of                       Count       Read             Count           Read           Read 
                Time(ms)          I/O Calls                           Written                                Written      Written 
Time 
1858436.71  61.48       2048                                                                                                                                 close (libc-2.12.so) 
1055603.73  34.92       2048                   2048     262144      2048               262144   536870912        __GI___read (libc-2.12.so) 
   108107.66     3.57      1024                                                                                                                                 __libc_open (libc-2.12.so) 
           335.82    0.01       3072                     512                  6      2048               262144   536878080       write (libc-2.12.so) 
                8.75    0.003    4096                                                                                                                                __GI___libc_lseek (libc-2.12.so) 
 
 
# Show load balance based on exclusive time spent in the I/O Functions 
openss>>expview -m loadbalance 
 
   Max I/O        Rank      Min I/O       Rank       Average           I/O  Function (defining location) 
  Call Time           of       Call Time        of         Call Time   
     Across          Max       Across          Min          Across   
  Ranks(ms)                   Ranks(ms)                Ranks(ms)   
4114.522156   509  2680.653110   273  3629.759208  close (libc-2.12.so: syscall-template.S,82) 
2824.349452   346         0.315392   317   2061.726036  __GI___read (libc-2.12.so: syscall-template.S,82) 
   989.579445   358         5.784552   414     211.147786  __libc_open (libc-2.12.so: syscall-template.S,82) 
        4.574762    65          0.424622   494          0.655899  write (libc-2.12.so: syscall-template.S,82) 
        0.044708   184         0.011079   317          0.017103  __GI___libc_lseek (libc-2.12.so: syscall-template.S,82) 
 
# Show the call paths in the application run that allocated the largest number of bytes 



 76 

# Using the min_bytes would show all the paths that allocated the minimum number of bytes. 
 
openss>>expview -vfullstack -m max_bytes 
 
Max_Bytes  Call Stack Function (defining location) 
    Read 
 Written 
          _start (IOR) 
          > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
          >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96) 
          >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
          >>>> @ 153 in main (IOR: IOR.c,108) 
          >>>>> @ 2013 in TestIoSys (IOR: IOR.c,1848) 
          >>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562) 
          >>>>>>> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
          >>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so: wrappers.c,239) 
  262144  >>>>>>>>> @ 82 in write (libc-2.12.so: syscall-template.S,82) 
          _start (IOR) 
          > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
          >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96) 
          >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
          >>>> @ 153 in main (IOR: IOR.c,108) 
          >>>>> @ 2173 in TestIoSys (IOR: IOR.c,1848) 
          >>>>>> @ 2611 in WriteOrRead (IOR: IOR.c,2562) 
          >>>>>>> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
          >>>>>>>> @ 223 in read (iot-collector-monitor-mrnet-mpi.so: wrappers.c,137) 
  262144  >>>>>>>>> @ 82 in __GI___read (libc-2.12.so: syscall-template.S,82) 
  … 
  … 
 
# Show the top time related call paths in the application run . 
openss>>expview -v fullstack 
 
      I/O Call       % of  Number  Call Stack Function (defining location) 
      Time(ms)      Total      of   
                     Time   Calls   
                                   _start (IOR) 
                                   > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
                                   >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96) 
                                   >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
                                   >>>> @ 153 in main (IOR: IOR.c,108) 
                                   >>>>> @ 2021 in TestIoSys (IOR: IOR.c,1848) 
                                   >>>>>> @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315) 
                                   >>>>>>> @ 766 in close (iot-collector-monitor-mrnet-mpi.so: wrappers.c,685) 
1858418.863034  61.486298     512  >>>>>>>> @ 82 in close (libc-2.12.so: syscall-template.S,82) 
                                   _start (IOR) 
                                   > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
                                   >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96) 
                                   >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
                                   >>>> @ 153 in main (IOR: IOR.c,108) 
                                   >>>>> @ 2173 in TestIoSys (IOR: IOR.c,1848) 
                                   >>>>>> @ 2611 in WriteOrRead (IOR: IOR.c,2562) 
                                   >>>>>>> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
                                   >>>>>>>> @ 223 in read (iot-collector-monitor-mrnet-mpi.so: wrappers.c,137) 
1055603.730633  34.924939    2048  >>>>>>>>> @ 82 in __GI___read (libc-2.12.so: syscall-template.S,82) 
                                   _start (IOR) 
                                   > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
                                   >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96) 
                                   >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
                                   >>>> @ 153 in main (IOR: IOR.c,108) 
                                   >>>>> @ 2004 in TestIoSys (IOR: IOR.c,1848) 
                                   >>>>>> @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74) 
                                   >>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608) 
 103350.518692   3.419380     512  >>>>>>>> @ 82 in __libc_open (libc-2.12.so: syscall-template.S,82) 
                                   _start (IOR) 
                                   > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
                                   >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96) 
                                   >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
                                   >>>> @ 153 in main (IOR: IOR.c,108) 
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                                   >>>>> @ 2161 in TestIoSys (IOR: IOR.c,1848) 
                                   >>>>>> @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173) 
                                   >>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608) 
   4757.147988   0.157392     512  >>>>>>>> @ 82 in __libc_open (libc-2.12.so: syscall-template.S,82) 
                                   _start (IOR) 
                                   > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541) 
                                   >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96) 
                                   >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492) 
                                   >>>> @ 153 in main (IOR: IOR.c,108) 
                                   >>>>> @ 2013 in TestIoSys (IOR: IOR.c,1848) 
                                   >>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562) 
                                   >>>>>>> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
                                   >>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so: wrappers.c,239) 
    316.176763   0.010461    2048  >>>>>>>>> @ 82 in write (libc-2.12.so: syscall-template.S,82) 

 

6.4 I/O Lightweight Profiling (iop) General Usage 
 
The O|SS iop I/O function profiling experiment wraps the most common I/O 
functions, records the time spent in each I/O function, records the call path along 
which the I/O function was called, records the time spent along each call path to an 
I/O function, and records the number of times each function was called.  
 
6.4.1 I/O Profiling (iop) experiment performance data gathering 
 
The I/O Profiling (iop) experiment convenience script is “ossiop”.   Here’s how to 
use this convenience script to gather lightweight I/O profiling performance data:  
ossiop “how you normally run your application” 

 
Here’s an example of how to use the ossiop convenience script to gather data for the 
IOP application on the Cray platform: 
 
ossiop "aprun -n 64 ./IOR" 
 
6.4.2 Viewing I/O Profiling (iop) experiment performance data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
 
The image below shows the default view for the iop experiment run on a 50000 
rank “IOR” application job.  Performance information shown in the default view is 
the time spent in I/O functions and the percentage of time spent in each I/O 
function. 
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The image below shows the hot call path view for the iop experiment run on a 
50000 rank “IOR” application job.  The performance information displayed in this 
view includes the top five call paths to each of the I/O functions that took the most 
time, time spent in I/O functions and the percentage of time spent in each I/O 
function. 
 

 
 
This image shows the min, max and average time spent in each of the I/O functions 
and the rank of the minimum value and the rank of the maximum value for each I/O 
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function.  This view indicates whether there is an imbalance relative to the I/O in 
the application being run.  This may or may not be expected. 
 

 
 
6.4.3 Viewing I/O Profiling (iop) experiment performance data via CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
 
The CLI can provide the same data options as the GUI views.  Here are some 
examples of performance data users can view and the commands to generate the 
CLI views. 
 
> openss -cli -f IOR-iop-1.openss 
openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>expview 
 
  Exclusive     Inclusive       % of  Function (defining location) 
   I/O call      I/O call      Total 
   times in      times in  Exclusive 
   seconds.      seconds.   CPU Time 
38297.33  38297.33     96.46      __write (libpthread-2.11.3.so) 
    741.01        741.01       1.86       open64 (libpthread-2.11.3.so) 
    598.43        598.43       1.50       read (libpthread-2.11.3.so) 
      63.38          63.38        0.15       close (libpthread-2.11.3.so) 
       2.264           2.26        0.01       __lseek64 (libpthread-2.11.3.so) 
 
openss>>expview -v fullstack 
 
  Exclusive     Inclusive       % of  Call Stack Function (defining location) 
   I/O call      I/O call      Total 
   times in      times in  Exclusive 
   seconds.      seconds.   CPU Time 
                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 2608 in WriteOrRead (IOR: IOR.c,2562) 
                                      >> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
38297.33  38297.33  96.46  >>>__write (libpthread-2.11.3.so) 
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                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 2611 in WriteOrRead (IOR: IOR.c,2562) 
                                      >> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
 598.43    598.43   1.51  >>>read (libpthread-2.11.3.so) 
                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74) 
 472.14    472.14   1.19  >>open64 (libpthread-2.11.3.so) 
                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173) 
 268.88    268.88   0.68 >>open64 (libpthread-2.11.3.so) 
                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315) 
  61.587482     61.587482   0.155123  >>close (libpthread-2.11.3.so) 
                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315) 
   1.796442      1.796442   0.004525  >>close (libpthread-2.11.3.so) 
                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 2608 in WriteOrRead (IOR: IOR.c,2562) 
                                      >> @ 234 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
   1.280113      1.280113   0.003224  >>>__lseek64 (libpthread-2.11.3.so) 
                                      TestIoSys (IOR: IOR.c,1848) 
                                      > @ 2611 in WriteOrRead (IOR: IOR.c,2562) 
                                      >> @ 234 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224) 
   0.981341      0.981341   0.002472  >>>__lseek64 (libpthread-2.11.3.so) 
 

 
In the CLI output above, the expview command with no options gives the overview 
or summary view for all the ranks and threads.  Users can view the performance 
information for individual ranks (using –r <rank number>), individual threads 
(using –t <thread number>) or individual processes (using –p <process id>).  Users 
also can give a range of ranks, threads or processes using their respective option. 
 
The calltrees view shows where the I/O function was called from in the user’s 
application source.  In this example, most I/O time was spent in the write I/O 
function along the path shown in the first individual call path.  The call path with 
fullstack option stops the calltrees view from collapsing any similar sub-trees, which 
makes the view more explicit.  Without the fullstack option the calltrees would be 
more consolidated.   
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7   Applying Experiments to Parallel Codes 
 
The ideal scenario for executing parallel code using pthreads or OpenMP is efficient 
threading, in which all threads are assigned work that can execute concurrently.  In 
the ideal scenario for MPI code, the job is properly load balanced so all MPI ranks do 
the same amount of work and none is stuck waiting. 
 
What can make these ideal scenarios fail? According to a Lawrence Livermore 
National Laboratory parallel processing tutorial, MPI jobs can become unbalanced if 
an unequal amount of work was assigned to each rank, possibly through an unequal 
number of array operations for each rank or through uneven distribution of loop 
iterations. Problems can persist even if the work seems to be evenly distributed.  
For example, when a sparsely populated array is evenly distributed, some ranks 
may end up with very little or no work while others will have a full load.  Under 
adaptive grid models, some ranks must redefine their mesh while other don’t.  
Under N-body simulations, some work migrates to other ranks so those ranks will 
have more to do while the others have less. 
 
Performance analysis can help with load balancing and evenly distributing work.  
Tools like O|SS are designed to work on parallel jobs.  It supports threading and 
message passing and automatically tracks all ranks and threads during execution.  It 
also can store the performance information on a per process, rank or thread basis 
for individual evaluation.  All of the O|SS experiments run on parallel jobs and 
collectors are applied to all ranks on all nodes. An experiment’s results can be 
displayed as an aggregation across all ranks or threads (the default view) or the 
user can select individual or groups of ranks or threads to view.  There also are 
experiments specifically designed for tracing MPI function calls. 
  
O|SS has been tested with a variety of MPI versions, including Open MPI, 
MVAPICH[2] and MPICH2 on Intel, Blue Gene and Cray systems.  O|SS can identify 
the MPI task (rank info) through the MPIR interface for the online version or 
through PMPI preload for the offline version.  To run MPI code with O|SS, just 
include the MPI launcher as part of the executable as normal. Here are several 
examples: 
 

> ossmpi “mpirun –np 128 sweep3d.mpi” 
 
> osspcsamp “mpirun –np 32 sweep3d.mpi” 
 
> ossio “srun –N 4 –n 16 sweep3d.mpi” 
 
> openss –offline –f “mpirun –np 128 sweep3d.mpi” hwctime 
 
> openss –online –f “srun –N 8 –n 128 sweep3d.mpi” usertime 
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The default view for parallel applications aggregates the information collected 
across all ranks.  Users can manually include or exclude individual ranks, processes 
or threads to view their specific results.  They also can use the Customize Stats Panel 
View to compare ranks and can create a compare column for the process groups or 
individual ranks.  Cluster analysis also is available and can be used to find outliers – 
ranks that are performing very differently from others.  From the Stats Panel toolbar 
or context menu users can automatically create groups of similarly performing 
ranks or threads.  Through the Stat Panel, O|SS also provides common analysis 
functions designed for quick analysis of MPI applications. Load-balance views that 
calculate min, max and average values across ranks, processes or threads are 
available.  This image shows the O|SS buttons for Load Balance.  Cluster Analysis is 
next to that. 
 

 
 

This shows the creation of a comparison between two ranks in O|SS: 
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This shows those two ranks compared side by side in the statistics panel: 
 

 
 

8 MPI Tracing Experiments (mpi, mpit, mpip) 
 
This section follows an O|SS MPI tracing experiment that will record all MPI call 
invocations.  There are three MPI experiments and associated convenience scripts: 
ossmpi, which records call times; ossmpit, which records call times and arguments; 
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and mpip, a lightweight version of mpi that records individual MPI calls but doesn’t 
save them in the database.  Equal events will be aggregated to save space in the 
database and reduce the overhead.   
 
Again, we will run the experiment on the SMG2000 application. Syntax for the 
experiment is: 
 
> ossmpi[t][p] “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category] 

 
The default behavior is to trace all MPI functions, but a comma-separated list can be 
supplied if users only want to trace specific ones, e.g. MPI_Send, MPI_Recv…, etc.  
Users also can select an mpi_category to trace "all”, "asynchronous_p2p”, 
"collective_com”, "datatypes”, "environment”, "graphs_contexts_comms”, 
"persistent_com”, "process_topologies” and “synchronous_p2p”. 
 
The default views are designed to relate the information included in the report back 
to the individual calls to their corresponding MPI functions.  This same information 
would be reported if the user were to do an: “expview -m min, max, average”.  The 
view is a representation of the minimum, maximum and average time values per 
individual calls to their corresponding MPI functions.   
 
The average time reported is the total time for all calls to a function divided by the 
total number of calls.  Thus, it is the average time that each individual call spends in 
the function.  As such, it is comparable to the Max (maximum) and Min (minimum) 
of a call to the function found in the same “min, max, average” report. 
 
Alternatively, if a user does an “expview -m ThreadMin, ThreadMax, ThreadAve”, 
then information for the Max, Min and Average is related back to the individual 
ranks. 
 
Another way of saying it: The average is the total amount of time for all calls to a 
function divided by the total number of ranks.  Thus, it is the average time each rank 
spends in the function.  As such, it is comparable to the Max and Min of a rank in the 
same report. 
 
If the number of ranks is the same as the number of calls, the two different 
calculations should produce the same result.  This would be true if all calls were in a 
single thread or there were one in each rank, as it is for MPI_Init. 
 
The “expview -m min, max, average” view can expose load imbalance by showing 
large differences in the minimum and maximum times for asynchronous MPI 
functions.  This indicates that some of the MPI asynchronous functions ran quickly 
(low minimum times) but some had to wait a long time to get started (large 
maximum times).  Many times, the function calls that ran quickly were the last to 
arrive and actually are from ranks that are running worse than the others, causing 
load imbalance and delaying the overall job execution.  These ranks show better MPI 
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function time numbers, but only because they were the last to arrive at the internal 
barrier point and did not have to wait as long as other MPI functions that arrived 
sooner, but had to wait for the other ranks to arrive. 
 
This shows results of the MPI experiment in the default view: 
 
 
 
 
 

 
 
Here is the MPI function call path view: 

 

Show min, max, average times per call.  
These numbers represent per function call 

time values. 
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Here is the default pcsamp view based on functions: 
 

 
 
Here is the load balance view based on functions: 
 

 
 
Here is the default view based on Linked Objects (libraries): 
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This is the load balance view base on Linked Objects (libraries): 
 

 
 
Here is the cluster analysis view based on Linked Objects: 
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Here is the pcsamp view of Rank 255 performance data only: 
 

 
 
Rank 255 is examined further here, this time using the load balance view in the 
Command Line Interface for O|SS: 
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This shows the difference between Rank 255 and Rank 0: 
 

 
 
Here are the hot call paths for MPI_Wait on Rank 255: 
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In this experiment, we did program counter sampling to get an overview of the 
application.  We noticed that smp_net_lookup appeared in function load balance 
view, prompting an examination of the linked object view.  The load balance on the 
linked object showed some imbalance, so we looked at the cluster analysis view and 
found that rank 255 was an outlier. 
 
Taking a closer look at rank 255, we saw that the pcsamp output shows most of the 
time was spent in smp_net_lookup.  To get more clues, we used the MPI experiment 
and saw that a load balance view shows rank 255’s MPI_Allreduce time is the 
highest of the 256 ranks.  We then checked rank 255 and a representative rank from 
the rest and noted the differences in MPI_Wait, MPI_Send and MPI_Allreduce.  We 
looked at the call paths to MPI_Wait to determine why the wait was occurring. 
 
The mpit experiment has a performance information entry for each MPI function 
call.  Besides time spent in each MPI function, information such as source and 
destination rank and bytes sent or received also are available.  Users can selectively 
view the information they desire.   
 
Here is the default event view for an MPI application: 
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User can create their own event view with the OV button: 
 

 
 
Use the views dialog box to choose the metrics to display: 
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Choosing the event to view will display it: 
 

 
 

8.1 MPI Tracing Experiment (mpi)  
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8.1.1 MPI Tracing Experiment (mpi) performance data gathering 
 
Much of this information is described in the main MPI Tracing Experiments section 
(above), but for completeness, here is the convenience script description for 
running the MPI-specific tracing experiments: 
 
> ossmpi “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category] 

 
If users give the mpi_category or a list of categories to the ossmpi command, then 
only those MPI functions corresponding to that category or categories will be traced.  
This table defines the MPI categories: 

MPI Category                                                        Argument 
All MPI Functions 
Collective Communicators  
Persistent Communicators  
Synchronous Point to Point  
Asynchronous Point to Point  
Process Topologies  
Groups Contexts Communicators  
Environment  
Datatypes 
MPI File I/O 

all 
collective_com  
persistent_com  
synchronous_p2p  
asynchronous_p2p  
process_topologies 
graphs_contexts_comms  
environment  
datatypes 
fileio 

 
 
8.1.2 Viewing MPI Tracing Experiment (mpi) performance data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name> “. 
 
 
8.1.3 MPI Viewing Tracing Experiment (mpi) performance data via CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
This table describes the header and column data definitions for the default MPI 
experiment views. 
 

Column Name   Column Definition 

Exclusive MPI Call Time Aggregated total exclusive time spent in the MPI function corresponding to this row 

of data. 

% of MPI Time Percentage of exclusive MPI time spent in the MPI function corresponding to this 

row of data relative to the total MPI time for all the MPI functions. 

Number of Calls Total number of calls to the MPI function corresponding to this row of data. 

Min MPI Call Time  The minimum time that an MPI call took across all calls spent in the corresponding 

MPI function. 

Max MPI Call Time  The maximum time that an MPI call took across all calls spent in the corresponding 

MPI function. 
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Column Name   Column Definition 

Average MPI Call Time Across Ranks  The average time for the default view is the total amount of time for all the calls to 

a function divided by the total number of calls.  Thus, it is the average time that 

each MPI function call spends in the function.  

  

 
This is an example of the CLI default view for the MPI (mpi, mpit) experiments:  
 

 
 
This is an example of the GUI default view for the MPI (mpi, mpit) experiments:  
 

 
 
The default views are designed to relate information included in the report back to 
the individual calls to their corresponding MPI functions.  This same information 
would be reported by using the command: “expview -m min, max, average”.   The 
view is a representation of the minimum, maximum and average time values per 
individual calls to their corresponding MPI functions.   
 
The average time reported is the total time for all calls to a function divided by the 
total number of calls.  Thus, it is the average time each individual call spends in the 
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function.  As such, it is comparable to the Max (maximum) and Min (minimum) of a 
call to the function found in the same “min, max, average” report. 
 
Alternatively, if a user does an “expview -m ThreadMin, ThreadMax, ThreadAve”, 
then the report information for the Max, Min and Average is related back to the 
individual ranks. 
 
Another way of saying it: The average is the total amount of time for all the calls to a 
function divided by the total number of ranks.  Thus, it is the average time that each 
rank spends in the function.  As such, it is comparable to the Max and Min of a rank 
in the same report. 
 
If the number of ranks is the same as the number of calls, the two different 
calculations should produce the same result.  This would be true if all the calls were 
in a single thread or there were one in each rank, as it is for MPI_Init. 
 
The “expview -m min, max, average” view can expose load imbalance by showing 
when the minimum and maximum time for asynchronous MPI functions have large 
differences.  This indicates that some of the MPI asynchronous functions ran quickly 
(low minimum times) but some had long waits to get started (large maximum 
times).  Many times, the function calls that ran quickly were the last to arrive and 
actually are from ranks that are not running as well as the others, causing load 
imbalance and slowing overall job execution.  These ranks show better MPI function 
time performance, but only because they were the last to arrive at the internal 
barrier point. They did not have to wait as long as other MPI functions that arrived 
earlier, but had to wait for the other ranks to finally arrive. 
 

8.2 MPI Tracing Experiments (mpit)  
 
8.2.1 MPI Tracing Experiments (mpit) performance data gathering 
 
Much of this information is described in the main MPI Tracing Experiments section 
(above), but for completeness, here is the convenience script description for 
running the MPI-specific tracing experiments: 
 
> ossmpit “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category] 
 

If users give the mpi_category or a list of categories to the ossmpit command, then 
only those MPI functions corresponding to that category or categories will be traced.  
This table defines the MPI categories:  

MPI Category                                                        Argument 
All MPI Functions 
Collective Communicators  
Persistent Communicators  
Synchronous Point to Point  
Asynchronous Point to Point  
Process Topologies 

all 
collective_com  
persistent_com  
synchronous_p2p  
asynchronous_p2p  
process_topologies 
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Groups Contexts Communicators  
Environment  
Datatypes 
MPI File I/O 

graphs_contexts_comms  
environment  
datatypes 
fileio 

 

 
8.2.2 Viewing MPI Tracing Experiments (mpit) performance data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
 
 
8.2.3 Viewing MPI Tracing Experiments (mpit) performance data via CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
This table describes the header and column data definitions for the default MPI 
experiment views. 
 

Column Name   Column Definition 

Exclusive MPI Call Time Aggregated total exclusive time spent in the MPI function corresponding to this row 

of data. 

% of MPI Time Percentage of exclusive MPI time spent in the MPI function corresponding to this 

row of data relative to the total MPI time for all the MPI functions. 

Number of Calls Total number of calls to the MPI function corresponding to this row of data. 

Min MPI Call Time  The minimum time that an MPI call took across all calls spent in the corresponding 

MPI function. 

Max MPI Call Time  The maximum time that an MPI call took across all calls spent in the corresponding 

MPI function. 

Average MPI Call Time Across Ranks  The average time for the default view is the total amount of time for all the calls to 

a function divided by the total number of calls.  Thus, it is the average time that 

each MPI function call spends in the function.  

  

 
This is an example of the CLI default view for the MPI (mpi, mpit) experiments:  
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This is an example of the GUI default view for the MPI (mpi, mpit) experiments:  
 

 
 
The default views are designed to relate information included in the report back to 
the individual calls to their corresponding MPI functions.  This same information 
that would be reported by doing: “expview -m min, max, average”.   The view is a 
representation of the minimum, maximum and average time values per individual 
calls to their corresponding MPI functions.   
 
The average time reported is the total time for all calls to a function divided by the 
total number of calls.  Thus, it is the average time each individual call spends in the 
function.  As such, it is comparable to the Max (maximum) and Min (minimum) of a 
call to the function found in the same “min, max, average” report. 
 
Alternatively, if a user does an “expview -m ThreadMin, ThreadMax, ThreadAve”, 
then the report information for the Max, Min and Average is related back to the 
individual ranks. 
 
Another way of saying it:  The average is the total amount of time for all the calls to a 
function divided by the total number of ranks.  Thus, it is the average time that each 
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rank spends in the function.  As such, it is comparable to the Max and Min of a rank 
in the same report. 
 
If the number of ranks is the same as the number of calls, the two different 
calculations should produce the same result.  This would be true if all the calls were 
in a single thread or there were one in each rank, as it is for MPI_Init. 
 
The “expview -m min, max, average” view can expose load imbalance by showing 
when the minimum and maximum time for asynchronous MPI functions have large 
differences.  This indicates that some of the MPI asynchronous functions ran quickly 
(low minimum times) but some had long waits to get started (large maximum 
times).  Many times the function calls that ran quickly were the last to arrive and 
actually are from ranks that are not running as well as the others, causing load 
imbalance and slowing overall job execution.  These ranks show better MPI function 
time performance, but only because they were the last to arrive at the internal 
barrier point. They did not have to wait as long as the other MPI functions that 
arrived earlier, but had to wait for the other ranks to finally arrive. 
 
 

8.3 MPI Tracing Experiments (mpip)  
 
8.3.1 MPI Tracing Experiments (mpip) performance data gathering 
 
Much of this information is described in the main MPI Tracing Experiments section 
(above), but for completeness, here is the convenience script description for 
running the MPI-specific (mpi, mpit, mpip) tracing experiments. 
 
> ossmpip “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category] 

 
If users give the mpi_category or a list of categories to the ossmpi command, then 
only those MPI functions corresponding to that category or categories will be traced.  
This table defines the MPI categories: 

MPI Category                                                        Argument 
All MPI Functions 
Collective Communicators  
Persistent Communicators  
Synchronous Point to Point 
Asynchronous Non-Blocking  
Asynchronous Point to Point  
Process Topologies 
Groups Contexts Communicators  
Environment 
Datatypes 
MPI File I/O 

all 
collective_com  
persistent_com  
synchronous_p2p  
async_nonblocking  
asynchronous_p2p 
process_topologies 
graphs_contexts_comms  
environment 
datatypes 
fileio 

 
 
8.3.2 Viewing MPI Tracing Experiments (mpip) performance data via CLI 
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To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
 
This table describes the header and column data definitions for the default MPI 
experiment views. 
 

 
 
This is an example of the CLI default view for the MPI (mpip) experiments:  
 

Column Name   Column Definition 

Exclusive MPI Call Time Aggregated total exclusive time spent in the 
MPI function corresponding to this row of 
data. 

% of MPI Time Percentage of exclusive MPI time spent in 
the MPI function corresponding to this row 
of data relative to the total MPI time for all 
the MPI functions. 

Number of Calls Total number of calls to the MPI function 
corresponding to this row of data. 

Min MPI Call Time Across Ranks  The minimum time that a rank or ranks, 
across all ranks, spent in the corresponding 
MPI function. 

Rank of Min The number of the rank that had the 
minimum time spent in the MPI function 
across all the ranks of the application. 

Max MPI Call Time Across Ranks  The maximum time that a rank or ranks, 
across all ranks, spent in the corresponding 
MPI function. 

Rank of Max The number of the rank that had the 
maximum time spent in the MPI function 
across all the ranks of the application. 

Average MPI Call Time Across Ranks  The average for the default view is the total 
amount of time for all the calls to a function 
divided by the total number of ranks.  Thus, 
it is the average time that each rank spends 
in the function.  As such, it is comparable to 
the Max and Min of a rank that is in the 
same report. 
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Here is an example of the CLI load balance view for the MPI (mpip) experiment.  
This view shows the minimum, maximum and average time per rank for each 
function and the rank that represents the maximum time and minimum time.   Note 
that there may be more ranks that have the same maximum and minimum time per 
rank:   
 

 
 
Here is an example of the ability to compare performance information at the rank 
level in the CLI.  This example shows a comparison on the exclusive time metric for 
rank 0 and rank 23.  These ranks were shown to be the ones with the maximum and 
minimum values for MPI_Waitall above.  Users also could use the expview -r 0 and 
expview -r 23 to see times for just those ranks: 
 
 

 
 
This shows the top two call paths in the program that took the most time (with 
respect to MPI function calls): 
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8.3.3 MPI Viewing Tracing Experiments (mpip) performance data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
 
This is an example of the GUI default view for the MPI (mpip) experiment:  
 

 
 
This shows the load balance for this execution of lulesh on 27 ranks: 
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This shows the cluster analysis view for this run of lulesh on 27 ranks.  This view 
groups similarly performing ranks to help users locate groups of ranks that are 
outliers with respect to the other ranks. 
 
 

 
 
This shows the hot call paths in the application: 
 

 
 
 
 



 103 

9 Threading Analysis Section 
 
In the previous sections we described experiments that use MPI, but users can do a 
similar analysis on applications that use threads.  To analyze a threaded application, 
users can first run the pcsamp experiment to get an overview, then check the load 
balance view to detect any widely varying values, and finally do cluster analysis to 
find outliers. 
 
This shows the default view for an application with four threads. The information 
displayed is the aggregated total from all threads:  
 

 
 
This is the load balance view based on functions: 
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Next is a cluster analysis view based on functions: 
 

 
 
9.1 Threading Specific Experiment (pthreads) 
 
O|SS also has available an experiment specific to tracking and analyzing POSIX 
thread function calls.  The experiment, pthreads, traces several POSIX thread-related 
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functions.  Like all the other tracing experiments, it provides the number of calls, 
time spent in each function, call paths to each POSIX thread function and an event-
by-event trace.  Load balance and cluster analysis features also are available. 
 
9.1.1 Threading Specific (pthreads) experiment performance data gathering 
(osspthreads) 
 
To run the pthreads experiment, use the osspthreads convenience script while 
placing how the application would normally run in quotes, as shown here: 
 
osspthreads "mpirun -np 4 ./smg2000 -n 15 15 15" 
[openss]: pthreads using default experiment trace function list.  
Creating topology file for frontend host localhost  
Generated topology file: ./cbtfAutoTopology  
Running pthreads collector.  
Program: mpirun -np 4 ./smg2000 -n 15 15 15  
Number of mrnet backends: 4  
Topology file used: ./cbtfAutoTopology  
executing mpi program: mpirun -np 4  cbtfrun  --mpi  --mrnet  -c pthreads ./smg2000 -n 15 15 15  
Running with these driver parameters:  
  (nx, ny, nz)    = (15, 15, 15)  
  (Px, Py, Pz)    = (4, 1, 1)  
  (bx, by, bz)    = (1, 1, 1)  
  (cx, cy, cz)    = (1.000000, 1.000000, 1.000000)  
  (n_pre, n_post) = (1, 1)  
  dim             = 3  
  solver ID       = 0  
=============================================  
Struct Interface:  
=============================================  
Struct Interface:  
  wall clock time = 0.000475 seconds  
  cpu clock time  = 0.000000 seconds  
=============================================  
Setup phase times:  
=============================================  
SMG Setup:  
  wall clock time = 0.047075 seconds  
  cpu clock time  = 0.050000 seconds  
=============================================  
Solve phase times:  
=============================================  
SMG Solve:  
  wall clock time = 0.092030 seconds  
  cpu clock time  = 0.100000 seconds  
 
Iterations = 5  
Final Relative Residual Norm = 6.027844e-07  
 
All Threads are finished.  
default view for /home/fred/DEMOS/demos/mpi/openmpi-1.8.2/smg2000/test/smg2000-
pthreads-1.openss  
[openss]: The restored experiment identifier is:  -x 1  
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Performance data spans 0.881730 ms  from 2017/01/04 19:14:25 to 2017/01/04 19:14:26  
 
Exclusive       % of  Number  Function (defining location)  
 Pthreads      Total      of  
     Call              Calls  
 Time(ms)  
 0.944687  66.038845     652  pthread_mutex_lock (libpthread-2.17.so)  
 0.485815  33.961155     652  pthread_mutex_unlock (libpthread-2.17.so) 

 
9.1.2 Viewing Threading Specific (pthreads) experiment performance data via GUI 
 
To launch the GUI on any experiment, use “openss –f <database name>“. 
 
Here are three pthreads experiment views.  First is the default, listing the POSIX 
thread function routines that were called in the application being monitored, the 
number of times they were called and the time spent in each function: 

 
 
This shows the top five time-consuming POSIX thread function call paths through 
the application: 
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Last is an event list view, showing POSIX thread function calls in the order they 
occurred with the rank and thread the call originated from, the time spent in the 
POSIX thread function call event and the percentage of the total time that 
represents: 

 
 
9.1.3 Viewing Threading Specific (pthreads) experiment performance data via CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
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openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>expview 
 
Exclusive       % of  Number  Function (defining location)  
 Pthreads      Total      of  
     Call              Calls  
 Time(ms)  
 0.944687  66.038845     652  pthread_mutex_lock (libpthread-2.17.so)  
 0.485815  33.961155     652  pthread_mutex_unlock (libpthread-2.17.so) 
 
openss>>expview -m loadbalance  
 
      Max  Rank        Min  Rank    Average  Function (defining location)  
Exclusive    of  Exclusive    of  Exclusive  
 Pthreads   Max   Pthreads   Min   Pthreads  
call time        call time        call time  
       in               in               in  
 seconds.         seconds.         seconds.  
   Across           Across           Across  
Ranks(ms)        Ranks(ms)        Ranks(ms)  
 0.165071     2   0.065597     1   0.118086  pthread_mutex_lock (libpthread-2.17.so)  
 0.125825     1   0.007971     2   0.060727  pthread_mutex_unlock (libpthread-2.17.so)  
 
 
openss>>expview -m loadbalance -r 0  
 
         Max  ThreadId           Min  ThreadId       Average Function (defining location)  
   Exclusive    of Max     Exclusive    of Min     Exclusive  
    Pthreads                Pthreads                Pthreads  
call time in            call time in            call time in  
    seconds.                seconds.                seconds.  
      Across                  Across                  Across  
ThreadIds(ms)            ThreadIds(ms)            ThreadIds(ms)  
 
    0.162899         1      0.071457         0      0.117178 pthread_mutex_lock (libpthread-2.17.so)  
    0.120930         1      0.009044         0      0.064987 pthread_mutex_unlock (libpthread-2.17.so)  
 
openss>>expcompare -r1 -t0:1  
 
  -t 0 -r    -t 0 -r    -t 0    -t 1 -r    -t 1 -r    -t 1  Function (defining location)  
       1,    1, % of   -r 1,         1,    1, % of   -r 1,  
Exclusive      Total  Number  Exclusive      Total  Number  
 Pthreads                 of   Pthreads                 of  
     Call              Calls       Call              Calls  
 Time(ms)                      Time(ms)  
 0.065597  87.269510      24   0.161611  56.225038     137 pthread_mutex_lock (libpthread-2.17.so)  
 0.009569  12.730490      24   0.125825  43.774962     137 pthread_mutex_unlock (libpthread-2.17.so)  
openss>>  
openss>>expview -vfullstack pthreads4  
 
Exclusive       % of  Number  Call Stack Function (defining location)  
 Pthreads      Total      of  
     Call              Calls  
 Time(ms)  
                              __clone (libc-2.17.so)  
                              >start_thread (libpthread-2.17.so)  
                              >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)  
                              >>> @ 1631 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)  
                              >>>> @ 169 in poll_dispatch (libopen-pal.so.6.2.0: poll.c,120)  
                              >>>>> @ 74 in evthread_posix_lock (libopen-pal.so.6.2.0: evthread_pthread.c,68)  
                              >>>>>> @ 247 in pthread_mutex_lock (pthreads-collector-monitor-mrnet-mpi.so: 
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wrappers.c,211)  
 0.190707  13.331474      82 >>>>>>>pthread_mutex_lock (libpthread-2.17.so)  
                              __clone (libc-2.17.so)  
                              >start_thread (libpthread-2.17.so)  
                              >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)  
                              >>> @ 1645 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)  
                              >>>> @ 1437 in event_process_active (libopen-pal.so.6.2.0: event.c,1428)  
                              >>>>> @ 1374 in event_process_active_single_queue (libopen-pal.so.6.2.0: event.c,1331)  
                              >>>>>> @ 74 in evthread_posix_lock (libopen-pal.so.6.2.0: evthread_pthread.c,68)  
                              >>>>>>> @ 247 in pthread_mutex_lock (pthreads-collector-monitor-mrnet-mpi.so: 
wrappers.c,211)  
 0.136457   9.539099     165 >>>>>>>>pthread_mutex_lock (libpthread-2.17.so)  
                              __clone (libc-2.17.so)  
                              >start_thread (libpthread-2.17.so)  
                              >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)  
                              >>> @ 1631 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)  
                              >>>> @ 165 in poll_dispatch (libopen-pal.so.6.2.0: poll.c,120)  
                              >>>>> @ 81 in evthread_posix_unlock (libopen-pal.so.6.2.0: evthread_pthread.c,78)  
                              >>>>>> @ 298 in pthread_mutex_unlock (pthreads-collector-monitor-mrnet-mpi.so: 
wrappers.c,262)  
 0.085655   5.987758      82 >>>>>>>pthread_mutex_unlock (libpthread-2.17.so)  
                              __clone (libc-2.17.so)  
                              >start_thread (libpthread-2.17.so)  
                              >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)  
                              >>> @ 1645 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)  
                              >>>> @ 1437 in event_process_active (libopen-pal.so.6.2.0: event.c,1428)  
                              >>>>> @ 1367 in event_process_active_single_queue (libopen-pal.so.6.2.0: event.c,1331)  
                              >>>>>> @ 81 in evthread_posix_unlock (libopen-pal.so.6.2.0: evthread_pthread.c,78)  
                              >>>>>>> @ 298 in pthread_mutex_unlock (pthreads-collector-monitor-mrnet-mpi.so: 
wrappers.c,262)  
 0.085246   5.959167     105 >>>>>>>>pthread_mutex_unlock (libpthread-2.17.so)  
openss>> 

 
9.2 OpenMP Related Performance Analysis 
 

9.2.1 OpenMP Thread Wait Detection using OMPT interface 
 
If built with the OMPT enhanced OpenMP runtime library, O|SS will detect OpenMP 
thread wait time.  In general, OpenMP support in O|SS is available in two forms: 
augmenting the sampling experiments and providing an OpenMP specific 
experiment.   
 

9.2.1.1 Augmentation of O|SS sampling experiments  
 
The first form integrates information gathered from the OpenMP runtime through 
the new OMPT tools interface into existing displays and experiments.  This is done 
by aggregating the information from the runtime into “pseudo functions” and listing 
them as part of the standard profile (without any details of what is actually executed 
in the runtime).  Here’s an example showing thread idle time (as part of the pseudo 
function IDLE) and barrier time (as part of WAIT_BARRIER). Other states in the 
runtime would be shown similarly: 
 
openss>>expview  



 110 

Exclusive % of Function (defining location) CPU time CPU in Time seconds.  
453.0900 14.4423 CalcFBHourglassForceForElems() (lulesh2.0: lulesh.cc,745)  
325.5600 10.3773 IntegrateStressForElems() (lulesh2.0: lulesh.cc,526)  
312.5800  9.9635 EvalEOSForElems(Domain&, double*, int, int*, int) (lulesh2.0: lulesh.cc,2236)  
306.6100  9.7732 LagrangeNodal(Domain&) (lulesh2.0: lulesh.cc,1253)  
230.6600  7.3523 CalcKinematicsForElems(Domain&, double*, double, int) (lulesh2.0: lulesh.cc,1535)  
160.3400  5.1109 IDLE (pcsamp-collector-monitor-mrnet-mpi.so: collector.c,477)  
156.6800  4.9942 psm_mq_ipeek (libpsm_infinipath.so.1.14) 1 
150.4100  4.7943 ips_ptl_poll (libpsm_infinipath.so.1.14)  
132.9100  4.2365 CalcElemVolumeDerivative(double*, double*, double*, double const*, double const*, double 
const*) (lulesh2.0: lulesh.cc,658)  
105.9600  3.3775 CalcMonotonicQGradientsForElems(Domain&, double*) (lulesh2.0: lulesh.cc,1643)  
   99.8600  3.1831 __pthread_cond_signal (libpthread-2.12.so: pthread_cond_signal.S,38)  
   77.6300  2.4745 __GI_vfprintf (libc-2.12.so: vfprintf.c,201)  
   77.2600  2.4627 sbrk (libc-2.12.so: sbrk.c,35) 60.2000 1.9189 CalcMonotonicQRegionForElems(Domain&, int, 
double*, double) (lulesh2.0: lulesh.cc,1792)  
   41.7800  1.3317 main (lulesh2.0: lulesh.cc,2690)  
  34.1000 1.0869 WAIT_BARRIER (pcsamp-collector-monitor-mrnet-mpi.so: collector.c,501) 30.6000 0.9754 
__psmi_poll_internal (libpsm_infinipath.so.1.14)  
  25.2300 0.8042 _IO_default_xsputn_internal (libc-2.12.so: genops.c,452)  

 

What does using the OMPT interface in O|SS let users do?    
 
O|SS applies the OMPT API blame callbacks for ompt_event_thread_idle, 
ompt_event_thread_barrier and ompt_event_thread_wait_barrier to samples taken 
in the OpenMP library that otherwise would be shown as __kmp_barrier, 
__kmp_wait_sleep, etc. in the Intel libiomp5 library.  O|SS uses the libiomp5 library 
with the OMPT API enabled at runtime to do this for all OpenMP codes run with the 
pcsamp, usertime and hardware counter-based experiments.  The user can then see 
the sample time per thread for idle, barrier and wait_barrier. The user also can use 
the loadbalance metric to see the min, max and average of these blame events or use 
the expcompare across all threads to compare individual metrics. 
 
For barrier symbols, samples taken when a thread is waiting at a barrier are 
inclusive to total barrier time; that is, adding barrier and wait_barrier metrics gives 
total barrier time.  
 
Essentially these blame metrics, as used in the O|SS sampling experiments, provide 
the time a thread is idle and the time spent at a barrier (including waiting at a 
barrier).   
 
Adding barrier and wait_barrier gives the total samples taken at a barrier; 
wait_barrier is just the samples within that barrier when there is a 
thread_barrier_wait condition. 
 
Here is an example from the lulesh sequential OpenMP case: 
openss>>expview -f OMPT* -m time 
Exclusive  Function (defining location) 
 CPU time 
       in 
 seconds. 

http://libpthread-2.12.so/
http://libc-2.12.so/
http://libc-2.12.so/
http://libc-2.12.so/
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 1.460000  IDLE (pcsamp-collector-monitor-mrnet.so: collector.c,99) 
 0.470000  WAIT_BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,129) 
 0.020000  BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,113) 
 
openss>>expcompare -f OMPT* -m time -t0:4 
 
    -t 0,      -t 2,      -t 3,      -t 4,  Function (defining location) 
Exclusive  Exclusive  Exclusive  Exclusive 
 CPU time   CPU time   CPU time   CPU time 
       in         in         in         in 
 seconds.   seconds.   seconds.   seconds. 
 0.360000   0.030000   0.070000   0.010000  WAIT_BARRIER (pcsamp-collector-monitor-mrnet.so: 
collector.c,129) 
 0.000000   0.500000   0.400000   0.560000  IDLE (pcsamp-collector-monitor-mrnet.so: 
collector.c,99) 
 0.000000   0.000000   0.010000   0.010000  BARRIER (pcsamp-collector-monitor-mrnet.so: 
collector.c,113) 
openss>>expview -f OMPT* -m time -t3 
 
Exclusive  Function (defining location) 
 CPU time 
       in 
 seconds. 
 0.400000  IDLE (pcsamp-collector-monitor-mrnet.so: collector.c,99) 
 0.070000  WAIT_BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,129) 
 0.010000  BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,113) 

 

This shows that most of the barrier samples were taken when the thread was 
waiting at the barrier.  The BARRIER and WAIT_BARRIER symbols replace samples 
that would have appeared as __kmp_barrier (or possibly __kmp_join_barrier) in the 
latest libiomp5.  The IDLE samples replace __kmp_wait_sleep in the real libiomp5. 
 
The above applies to pcsamp, usertime and the three hardware counter collectors 
(hwc, hwctime, and hwcsamp), is essentially telling the user the time a thread is idle 
and the time spent at a barrier (including waiting at a barrier). 
 
From the example above, with the addition of BARRIER, it can be inferred that most 
of the barrier time for thread 2 was spent waiting at the barrier. 
 
The usertime experiment on an OpenMP application can help pinpoint the origin of 
wait barrier time in the source.  For example: 
openss>>expview             
Exclusive  Inclusive       % of  Function (defining location)  
 CPU time   CPU time      Total   
       in         in  Exclusive   
 seconds.   seconds.   CPU Time   
23.200000  23.200000  38.648263  IDLE (usertime-collector-monitor-mrnet.so: collector.c,122)  
13.142857  13.142857  21.894336  MAIN__.omp_fn.2 (stress_omp: stress_omp.f,179)  
12.885714  12.885714  21.465969  MAIN__.omp_fn.5 (stress_omp: stress_omp.f,227)  
 4.742857   4.742857   7.901000  WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c,150)  
 2.000000  11.771428   3.331747  MAIN__ (stress_omp: stress_omp.f,1)  
 1.257143   1.257143   2.094241  __kernel_cosf (libm-2.12.so: k_cosf.c,45)  
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This shows the call path that points to the source lines leading to the thread waiting 
in the barrier: 
 
openss>>expview -vfullstack -f WAIT_BARRIER  usertime1 
 
Exclusive  Inclusive       % of  Call Stack Function (defining location)  
 CPU time   CPU time      Total   
       in         in  Exclusive   
 seconds.   seconds.   CPU Time   
                                 _start (stress_omp)  
                                 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)  
                                 >>__libc_start_main (libc-2.12.so)  
                                 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)  
                                 >>>>main (stress_omp)  
                                 >>>>> @ 227 in MAIN__ (stress_omp: stress_omp.f,1)  
                                 >>>>>> @ 557 in __kmp_api_GOMP_parallel_end_10_alias (libiomp5.so: kmp_gsupport.c,490)  
                                 >>>>>>> @ 2395 in __kmp_join_call (libiomp5.so: kmp_runtime.c,2325)  
                                 >>>>>>>> @ 7114 in __kmp_internal_join (libiomp5.so: kmp_runtime.c,7093)  
                                 >>>>>>>>> @ 1458 in __kmp_join_barrier(int) (libiomp5.so: kmp_barrier.cpp,1371)  
 1.742857   1.742857   2.903379  >>>>>>>>>> @ 150 in WAIT_BARRIER (usertime-collector-monitor-mrnet.so: 
collector.c,150)  

 

These changes mean O|SS now has support in:  
 Added idle, barrier, and wait_barrier blame support to all sampling 

collectors. 
 Improved naming (IDLE, BARRIER, WAIT_BARRIER) for sample call site. 
 Support for building from LLVM OpenMP. 
 Updated runtime codes to allow running OMPT with gnu/gomp binaries 

(which means libiomp5 replaces libgomp since gomp does not support OMPT 
directly). 

 
Also, note that the OMPT aspect of OSS works with gcc or g++ generated OpenMP 
code (and likely clang).  No matter which compiler was used to generate the 
OpenMP code, the Intel libiomp5.so runtime is used for its OMPT API. 
  
With the current OMPT support, no distinctions are made specific to the idle time or 
wait_barrier time subcategorization. 
 
Looking at the code in question as found in kmp_runtime.c, __kmp_launch_thread 
has a while loop, that sets the ompt state to ompt_state_idle, calls 
__kmp_fork_barrier, and then sets the ompt state to a default value of 
ompt_state_overhead.  If __kmp_wait_sleep is called while ompt state is 
ompt_state_idle, then the OMPT API considers the thread "idle".  In that case, would 
this "OMP_thread_idle" be considered "OMP_thread_fork_wait”? 
 
The other case where __kmp_wait_sleep is entered, with an OMPT state of 
ompt_state_wait_barrier, is when that OMPT state is managed by the __kmp_barrier 
and code __kmp_join_barrier in kmp_runtime.c.   The wait and join barrier are both 
using ompt_state_wait_barrier as coded by the OMPT interface. That means those 
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are combined in what O|SS reports for OMP_thread_wait_barrier in the pcsamp 
example, actually WAIT_BARRIER.   
 

9.2.2 O|SS OpenMP specific profiling experiment (omptp) 
 
The second form is a separate OpenMP specific profiling experiment (omptp).    
 
9.2.2.1 OpenMP Specific (omptp) experiment performance data gathering (ossomptp) 
 
To run the OpenMP specific experiment, use the ossomptp convenience script, 
placing how the application would normally be run in quotes: 
 
export OMP_NUM_THREADS=4 
ossomptp "mpirun -np 4 ./smg2000 -n 15 15 15" 
 
9.2.2.2 Viewing OpenMP Specific (omptp) experiment performance data via GUI 
 
TBD.  The GUI does not currently support the omptp experiment outputs. 
 
9.2.2.3 Viewing OpenMP Specific (omptp) experiment performance data via CLI 
 
These three CLI examples show the most important ways to view OMPTP 
experiment data.  The default view shows the timing of the parallel regions, idle, 
barrier, and wait barrier as an aggregate across all threads: 
 
openss -cli -f ./matmult-omptp-0.openss 
openss>>expview 
 
Exclusive  Inclusive       % of  Function (defining location) 
 times in   times in      Total   
 seconds.   seconds.  Exclusive   
                       CPU Time   
44.638794  45.255843  93.499987  compute._omp_fn.1 (matmult: matmult.c,68) 
  1.744841    1.775104    3.654726  compute_interchange._omp_fn.3 (matmult: matmult.c,118) 
  0.701720    0.701726    1.469817  compute_triangular._omp_fn.2 (matmult: matmult.c,95) 
  0.652438    0.652438    1.366591  IDLE (omptp-collector-monitor-mrnet.so: collector.c,573) 
  0.004206    0.009359    0.008810  initialize._omp_fn.0 (matmult: matmult.c,32) 
  0.000032    0.000032    0.000068  BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587) 
  0.000000    0.000000    0.000001  WAIT_BARRIER (omptp-collector-monitor-mrnet.so: 
collector.c,602 
 

This example shows the comparison of exclusive time across all threads for the 
parallel regions, idle, barrier, and wait barrier: 
 
openss>>expcompare -mtime -t0:4 
 
    -t 0,      -t 2,      -t 3,      -t 4,  Function (defining location) 
Exclusive  Exclusive  Exclusive  Exclusive   
 times in   times in   times in   times in   
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 seconds.   seconds.   seconds.   seconds.   
11.313892  11.081346  11.313889  10.929668  compute._omp_fn.1 (matmult: matmult.c,68) 
  0.443713    0.430553    0.429635    0.440940  compute_interchange._omp_fn.3 (matmult: matmult.c,118) 
  0.253632    0.213238    0.164875    0.069975  compute_triangular._omp_fn.2 (matmult: matmult.c,95) 
  0.001047    0.001100    0.001095    0.000964  initialize._omp_fn.0 (matmult: matmult.c,32) 
  0.000008    0.000008    0.000006    0.000010  BARRIER (omptp-collector-monitor-mrnet.so: 
collector.c,587) 
  0.000000    0.000000    0.000000    0.000000  WAIT_BARRIER (omptp-collector-monitor-mrnet.so: 
collector.c,602) 
  0.000000    0.247592    0.015956     0.388890  IDLE (omptp-collector-monitor-mrnet.so: collector.c,573) 

 

This example shows the load balance of time across all threads for the parallel 
regions, idle, barrier, and wait barrier: 
 
 
openss>>expview -mloadbalance 
 
        Max      OpenMp         Min    OpenMp     Average  Function (defining location) 
  Exclusive   ThreadId   Exclusive  ThreadId    Exclusive   
Time Across  of Max  Time Across  of Min  Time Across   
    OpenMp                OpenMp                   
ThreadIds(s)            ThreadIds(s)             ThreadIds(s)   
                                                            
  11.313892        0    10.929668         4     11.159699  compute._omp_fn.1 (matmult: matmult.c,68) 
     0.443713        0     0.429635           3       0.436210  compute_interchange._omp_fn.3 (matmult: 
matmult.c,118) 
     0.388890        4     0.015956           3       0.217479  IDLE (omptp-collector-monitor-mrnet.so: 
collector.c,573) 
     0.253632        0     0.069975           4      0.175430  compute_triangular._omp_fn.2 (matmult: matmult.c,95) 
     0.001100        2     0.000964           4      0.001052  initialize._omp_fn.0 (matmult: matmult.c,32) 
     0.000010        4     0.000006           3      0.000008  BARRIER (omptp-collector-monitor-mrnet.so: 
collector.c,587) 
     0.000000        0     0.000000           0      0.000000  WAIT_BARRIER (omptp-collector-monitor-mrnet.so: 
collector.c,602) 

 

9.3 Hybrid (OpenMP and MPI) Performance Analysis 
 
For this tutorial example, we ran O|SS convenience script on the AMG2013 hybrid 
program and created a database file that has eight ranks, each with four underlying 
OpenMP threads.   

This example is designed to show that users can first examine hybrid performance 
at the MPI level, then go under the MPI rank to see how the threads are performing. 
At the MPI level, users can see load balance and outliers, then focus on a rank and 
look at load balance and outliers for the underlying threads.  Within a terminal 
window, enter:   

openss -f amg2013-pcsamp-2.openss 
 
to bring up the O|SS GUI. 
 

The GUI view below displays the aggregated results for the application at statement-
level granularity.  When the default view first comes up, it’s at function-level 
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granularity.  To switch to the statement level, select the Statements button in the 
View/Display Choice section on the right-hand side of the Stats Panel display and 
then click the “D” icon for default view.  This will switch the Stats Panel view to 
statement-level granularity. 
 
The Stats Panel now displays statements that took the most time in the application 
run.  For this execution of AMG2013, the statement at line 97 of the OpenMP thread 
idle wrapper took the most time.  This means that the most time spent in this run 
was a thread idle routine.  This is expected because the ranks and number of threads 
in this run were both oversubscribed. Double clicking on the statement focuses O|SS 
on the source for that line of the application source and highlights that line.    
 
In the view below, the ManageProcess panel tab is moved to the lower panel and the 
upper panel is split using the vertical splitter icon on the far-right side of the original 
upper panel.    
 
Note: Left mouse down and hold on the panel tab then slide the panel to be moved 
to another location on the O|SS GUI or off onto other parts of the display. 
 

 
 
9.3.1 Focus on individual Rank to get Load Balance for Underlying Threads 

 
The next view uses the ManageProcess panel to highlight one rank and an individual 
thread within the rank to show only that thread’s performance data in the Stats 
Panel view.  The existing view is the default function view with data aggregated 
across all ranks and threads for this run of the AMG2013 application. 
    
Note: Use the “focus on threads and processes” Manage Process panel option to 
focus on individual threads within a rank.  Right mouse button down on the Manage 
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Process panel tab to see the options. 
 

 
 

The next GUI view used the ManageProcess panel to highlight one rank, showing the 
performance data from all the threads executed under that particular rank in order 
to see only that performance data in the Stats Panel view.     
 
Note: Use the "focus on selected rank and underlying threads" Manage Process 
panel option to focus on all the threads within a rank.  Right mouse button down on 
the Manage Process panel tab to see the options. 
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9.3.2 Clearing Focus on individual Rank to get back to default behavior 
 
Note: Once the user focuses on individual or groups of ranks, e.g. venturing away 
from the default aggregated views, then the "CL" clear auxiliary setting icon is 
needed to clear all the optional selections and return to examining the aggregated 
results. 
 

 
 
After clearing the specific rank and/or thread selections, clicking the "LB" load 
balance icon displays the min, max, average values across all ranks in the hybrid 
code.  This helps decide if there is imbalance across ranks of the hybrid 
application.  The user can focus on individual ranks to see the balance across the 
OpenMP threads that are in an individual rank: 
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This uses the Manage Process panel "Focus on selected rank and underlying 
threads" menu options to view the load balance across the four OpenMP threads for 
the rank 0 process: 
 

 
 

The next GUI view selects the CA icon, which activates a cluster analysis algorithm 
on the performance data for the threads under rank 0.  This view shows there are 
two groups of threads that are performing differently.  Thread 0 is in one group and 
threads 3, 4, and 5 are in another group: 
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Please explore the options offered via a panel's pull-down menu.  To access the 
options, click on a colored downward-facing arrow or use the Stats Panel icons.  Red 
icons represent view options, such as updating the data or clearing the view options. 
The green icons correspond to possible performance data views.  The dark blue 
icons correspond to analysis options while the light blue icon corresponds to 
information about the experiment.  Hovering the cursor over the icons displays 
context-sensitive text. 
 

10 GPU Performance Analysis 
 
10.1 NVIDIA CUDA Analysis Section 
 
The O|SS version with CBTF collection mechanisms supports tracing CUDA events in a 
NVIDIA CUDA based application.  An event-by-event list of CUDA events and the event 
arguments are gathered and displayed. 
 
10.1.1 NVIDIA CUDA Tracing (cuda) experiment performance data gathering (osscuda) 
 
To run the NVIDIA CUDA experiment, use the osscuda convenience script and specify 
the CUDA application as an argument.   Here is the general format of the osscuda 
convenience script that is used to gather the NVIDIA CUDA performance information.   
 
 
osscuda “how you run your application normally” 
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In this example, the osscuda script will run the experiment by running the GEMM 
application and will create an O|SS database file with the results of the experiment.  
Viewing of the performance information can be done with the GUI or CLI.   A default CLI 
text based report is displayed at the end of the application run. 
 
 
osscuda “mpirun -np 2 -ppn 1 -hosts ccn001,ccn002 ./GEMM” 
[openss]: cuda counting all instructions for CPU and GPU.  
[openss]: cuda using default periodic sampling rate (10 ms).  
[openss]: cuda configuration: "interval=10000000,PAPI_TOT_INS,inst_executed"  
Creating topology file for slurm frontend node ccn001 for SLURM_JOB_ID 131  
Generated topology file: ./cbtfAutoTopology  
Running cuda collector.  
Program: mpirun -np 2 -ppn 1 -hosts ccn001,ccn002 ./GEMM  
Number of mrnet backends: 2  
Topology file used: ./cbtfAutoTopology  
executing mpi program: mpirun -np 2 -ppn 1 -hosts ccn001,ccn002 cbtfrun  --mpi  --mrnet  -c 
cuda ./GEMM  
MPI Task 0/1 starting....  
MPI Task 1/1 starting....  
Chose device: name='Tesla K40c' index=0  
Running single precision test  
Chose device: name='Tesla K40c' index=0  
Running single precision test  
Running double precision test  
Running double precision test  
test    atts    units    median    mean    stddev    min    max  
DGEMM-N(max)    128    GFlops    57.5899    57.5899    0.259358  57.3306    57.8493  
DGEMM-N(mean)    128    GFlops    56.9609    56.9609    0.0587321  56.9022    57.0196  
DGEMM-N(median)    128    GFlops    57.3772    57.3772    0.395575  56.9816    57.7728  
DGEMM-N(min)    128    GFlops    54.036    54.036    1.59142  52.4445    55.6274  
… 
… 
Extreme outliers (>3.0 IQR from 1st/3rd quartile):  
None.  
default view for ./GEMM-cuda-3.openss  
 
[openss]: The restored experiment identifier is:  -x 1  
Performance data spans 0.452563 ms  from 2016/11/09 22:35:07 to 2016/11/09 22:35:07  
 
Exclusive       % of  Exclusive  Function (defining location)  
Time (ms)      Total      Count  
           Exclusive  
                Time  
 9.861216  52.062327        200  void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: 
GEMM.cpp,156)  
 9.079958  47.937673        200  void RunTest<double>(std::string, ResultDatabase&, OptionParser&) 
(GEMM: GEMM.cpp,156) 
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10.1.2 NVIDIA CUDA Experiment Performance Data Viewing using the new GUI 
 
The NVIDIA CUDA Desktop application, having the executable name “opens-gui”, allows 
the user to explore CUDA event activity within in a timeline graph view and examine 
detailed parametric data for each CUDA event shown in the timeline view. 
 
To launch the new beta, CUDA focused, GUI on any experiment, use:  
 
 
“openss-gui –f <database name>“ 
 
 
This is a different GUI than the existing O|SS GUI.  It is being developed initially focused 
on providing views for the NVIDIA CUDA experiment.   Use openss-gui instead of openss 
to invoke this GUI.  NOTE: However, this GUI will also load other non-CUDA experiments 
and if the collector type provides “time-based” metrics, such as “usertime”, then those 
are displayed. 
 
10.1.3 NVIDIA CUDA GUI Main Window User Interface Layout 
 
The application user interface is laid out in a logical manner to present a comprehensive 
view of the performance characteristics of an application.  The main screen of the 
application is divided into four sections (ref. ”Figure 1 – Main Window User Interface 
Layout”): 
 

 Experiment Panel 

 Metric Plot View 

 Metric Table View 

 Source Code View 
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Figure 1- Main WIndow User Interface Layout 

 
The Experiment Panel is on the left-hand side of the main window.  Inside the 
Experiment Panel is the section labeled “Loaded Experiments” (ref. Figure 2).  For the 
experiment that is currently loaded, this section shows the name of the loaded 
experiment (without the “.openss“ file extension) at the top level of a tree view 
providing details regarding the application process, the CPU threads/ranks and GPU 
device.  For CUDA experiments this information is shown under the tree view level titled 
“GPU Compute / Data Transfer Ratio”; otherwise this tree view level is titled “Thread 
Groups”.  Currently, only one experiment can be loaded at a time.  If another 
experiment is desired to be analyzed, then the user needs to unload the current 
experiment from the application before loading another.  Experiment loading and 
unloading is accomplished using the menu items under the “File” menu.  Each of the 
parallel executions (processes, threads, ranks, GPUs) are listed by hostname.  The GPU 
device entry has “(GPU)” appended after the hostname.  The checkbox to the left of the 
hostname is used to select which “thread groups” will be included in the performance 
views on the right-hand side of the main window (NOTE – currently all items are 
included regardless of selection).  Under the thread/rank/GPU items is another subtree 
level enumerating which sample counters that were selected when the experiment was 
executed.   

Experiment Panel 

Metric Plot View 

Metric Table View 

Source Code View 
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Figure 2- "Experiment Panel" 

 
The right-hand side of the main window has the three other sections.  The upper section 
is the Metric Plot View which provides a timeline in which the CUDA kernel executions 
are shown with a green color and data transfers between the GPU device and the CPU 
are shown with a red color.  The length of the CUDA event in the timeline shows the 
duration of the event from the actual start (not enqueue time) and the end time of the 
event.  The CUDA events are overlaid on top of a histogram showing the delta values as 
the counter is sampled by the collector (NOTE: currently only the first sample counter in 
the list can be viewed in the background histogram.)  The CUDA event display provides 
insight into the relative cost of the transfers versus the actual time spent executing in 
the kernel. 
 
The middle section on the right-hand side is the Metric Table View and is where the text 
based performance information is displayed in a table view.   The user can control what 
type of information is displayed in the Metric Table View by using three different combo 
boxes.  The “Mode” combo-box selects either “Metric” or “Details” view mode.  
Currently, the “Details” view mode only works for CUDA experiments and allows 
detailed examination of the CUDA events, filtered by type - Kernel Executions, Data 
Transfers or Both Kernel Executions and Data Transfers (All Events).  The table view can 
be ordered by clicking on a column header to toggle between ascending and descending 
order using the selected column as the key for sorting.  By default, the enqueue time 
column is sorted in ascending order.  For the “Metric” view mode, the user will be able 
to view metric information, including: time, percentage, defining location, thread 
minimum, thread maximum and thread average.  The metric type shown is selected 
using the “Metric” combo-box and the particular metric view can be changed with the 
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“View” combo-box.  The “Metric” combo-box are metrics that can be selected in the 
OSS CLI using the “-m” option; whereas the “View” combo-box are views selectable in 
the OSS CLU using the “-v” option.  For the “Metric” view the time interval for metric 
computations depends on the visible range of the graph timeline and for the “Detail” 
mode the same time interval is used to filter which CUDA events are shown in the table.  
As the user changes the graph timeline by zooming into the graph or panning the 
timeline left or right the Metric Table View is dynamically updated.  There is a delay 
threshold between the time the user pauses or completes timeline changes and the 
actual kickoff of the processing involved for the Metric Plot or Metric Table View 
updates. 
 
The lower section on the right-hand side is the Source Code View.  When the user has 
activated the “Metric” mode of the Metric Table View, any selections of a row in the 
table cause the display the corresponding line of the source code in the Source Code 
View.  Updates to the Source Code View is possible in either the “Functions”, 
“Statements” or “Loops” metric view (but not the “Linked Objects” metric view) as long 
as the source code is available on the host machine.  If the source code is not in the 
same location as when the executable was compiled, then the user can specify the 
mapping between the original development machine location and the location of the 
host machine processing the experiment database (running the opens-gui application).  
The dialog in which the mappings can be specified is by activating a context menu.  The 
context menu is activated by holding down the right-mouse button when the cursor is 
over the table row of interest.  When the context menu appears near the location of the 
cursor, the user must select the “Modify Path Substitutions” menu item to activate the 
“Modify Path Substitutions Dialog” (ref “Figure 3 - Modify Path Substitutions Dialog”) .  
The “Modify Path Substitutions Dialog” shows a table with two columns – the left 
column are the original paths to the source code and the right column are the paths on 
the local host machine.   When the dialog is activated a new entry in the table is created 
with the left column, “Original Path”, filled in from the information in the metric data.  
The user then types in the absolute path on the local host machine to the corresponding 
source code. 
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Figure 3 - Modify Path Substitutions Dialog 

 
 
10.1.4 Using the NVIDIA CUDA GUI to Analyze Application Performance 
 
In order to demonstrate how the new GUI can be used to view CPU and GPU activity 
within an application and generate summary metric results and detailed CUDA event 
lists two different examples will be discussed. 
 
To launch the new GUI using the GEMM experiment discussed in the previous section, 
use: 
 
 
openss-gui –f GEMM-cuda-0.openss 
 

 
The default view for the new GUI using the GEMM experiment discussed previously can 
be seen in Figure 4.  As seen here the main window configuration was changed by the 
user to completely close the “Experiment Panel” normally visible on the left-hand side 
of the main window so that the right-hand panels take the full width of the main 
window.  This is accomplished by using the “handles” in the border area between two 
panels (ref. the annotation in Figure 4 and Figure 5 for a zoomed in view of the splitter 
handle between the Metric Plot and Metric Table Views). 
 

Pre-populated in accordance with 
the item selected in the Metric 
Table View when this dialog is 
activated.  This represents the 

original location of the particular 
source-code file when the 

application was built. 

This is initially blank and 
the user enters the path of 
the corresponding source-
code file on the local host 

machine. 
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Figure 4- Default View for the GEMM Experiment 

 

 
Figure 5- Zoomed View of Panel Splitter Handles 

 
For the screenshot shown in Figure 6 one can see the CUDA events in the graph timeline. The CUDA 
events are currently placed on the CPU graph of the CPU + GPU graph view.  The current thought process 
for placing them on the CPU graph is so that it does not obstruct the GPU sample counter histogram and 
the user can clearly see the magnitude of each histogram bar as there should be a direct relationship with 
CUDA event activity.  As dicussed previously the red pastel colored rectangle corresponds to a Data 
Transfer event and the green pastel colored rectangle to a Kernel Execution event.  Thus, in the graph 
above there are two Data Transfer events, followed by 5 Kernel Execution events, followed by one Data 
Transfer event (see annotations on screenshot).  There is another annotation from the “Time Begin (ms)” 
value of the first Kernel Execution to the position of the left-edge of the Kernel Execution event rectangle 
on the graph timeline.  The “Time End (ms)” value will be the position on the graph timeline for the right 

Panel splitter “handle” locations 
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edge of the Kernel Execution event rectangle.  This screenshot represents the “Details – All Events” view 
in the area below the Metric Plot View.  The additional two screenshots show the “Details – Data 
Transfers” and “Details – Kernel Executions” views that just contain CUDA Data Transfer or CUDA Kernel 
Execution events respectively (ref. Figures 7 and 8). 

 
 
 
 
 

 
Figure 6 - CUDA Events in Graph Timeline and Details Mode View 

 
For the Data Transfer and Kernel Execution Details views many more columns are 
displayed showing all the available event information.  For the All Events Details view 
only the common set of event information is shown.  
 
As discussed previously the metric values displayed in the “Metric” mode or the events 
listed in the various “Details” mode views use the visible time range in the graph 
timeline as input to the metric computations or filtering logic for which CUDA events to 
show. 

1 Data Transfer 
Event 

5 Kernel 
Execution 

Events 

2 Data Transfer 
Events 
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Figure 7- Data Transfer Details View 

 
Figure 8- Kernel Execution Details View 
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Let’s show another CUDA experiment starting with the performance data collection by 
running the “osscuda” convenience script on an example CUDA program which executes 
various implementations of matrix multiplication to demonstrate performance 
differences using various performance optimization techniques, including: 

1. Tiling 

2. Memory coalescing 

3. Avoiding memory bank conflicts 

4. Increase floating portion by outer product. 

5. Loop unrolling 

6. Prefetching 

A discussion of the matrix multiplication problem, the various performance optimization 
techniques used in the application and source-code can be found at 
https://sites.google.com/site/5kk70gpu/matrixmul-example. 

 
 

$ osscuda "./matrixmul"  
[openss]: cuda counting all instructions for CPU and GPU.  
[openss]: cuda using default periodic sampling rate (10 ms).  
[openss]: cuda configuration: "interval=10000000,PAPI_TOT_INS,inst_executed"  
Creating topology file for frontend host eluv  
Generated topology file: ./cbtfAutoTopology  
Running cuda collector.  
Program: ./matrixmul  
Number of mrnet backends: 1  
Topology file used: ./cbtfAutoTopology  
executing sequential program: cbtfrun -c cuda --mrnet ./matrixmul  
[Matrix Multiply Using CUDA] - Starting...  
GPU Device 0: "GeForce GTX 1060" with compute capability 6.1  
 
[CUDA 5632:0] CUPTI_metrics_start(): The selected CUDA device doesn't support continuous GPU event 
sampling. GPU events will be sampled at CUDA kernel entry and exit only (not peridiocally). This also 
implies CUDA kernel execution will be serialized, possibly exhibiting different temporal behavior than 
when executed without performance monitoring.  
Naive CPU (Golden Reference)  
Processing time: 279.404175 (ms), GFLOPS: 0.360278  
threads: x=16  y=16  
grid: x=24  y=16  
Naive GPU  
Processing time: 1.555232 (ms), GFLOPS: 64.725580  
Total Errors = 0  
Tiling GPU  
Processing time: 0.944896 (ms), GFLOPS: 106.533736  
Total Errors = 0  
Global mem coalescing GPU  
Processing time: 1.168640 (ms), GFLOPS: 86.137128  
Total Errors = 0  

https://sites.google.com/site/5kk70gpu/matrixmul-example
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Remove shared mem bank conflict GPU  
Processing time: 0.853728 (ms), GFLOPS: 117.910264  
Total Errors = 0  
Threads perform computation optimization GPU  
Processing time: 0.825312 (ms), GFLOPS: 121.969984  
Total Errors = 0  
Loop unrolling GPU  
Processing time: 0.862624 (ms), GFLOPS: 116.694296  
Total Errors = 0  
Prefetching GPU  
Processing time: 1.037664 (ms), GFLOPS: 97.009520  
Total Errors = 0  
default view for /home/gschultz/Downloads/exercises/cuda/matrixMul/matrixmul-cuda-3.openss  
[openss]: The restored experiment identifier is:  -x 1  
Performance data spans 0.461198 ms  from 2017/02/16 23:26:30 to 2017/02/16 23:26:31  
 
Exclusive       % of  Exclusive  Function (defining location)  
Time (ms)      Total      Count  
           Exclusive  
                Time  
 0.605867  32.275192          1 matrixMul_coalescing(float*, float*, float*, int, int) (matrixmul: 
matrixMul_coalescing.cuh,31)  
 0.496201  26.433165          1  matrixMul_naive(float*, float*, float*, int, int) (matrixmul: 
matrixMul_naive.cuh,17)  
 0.257925  13.739944          1  matrixMul_tiling(float*, float*, float*, int, int) (matrixmul: 
matrixMul_tiling.cuh,31)  
 0.211493  11.266461          1 matrixMul_noBankConflict(float*, float*, float*, int, int) (matrixmul: 
matrixMul_noBankConflict.cuh,32)  
 0.108675   5.789235          1 matrixMul_prefetch(float*, float*, float*, int, int) (matrixmul: 
matrixMul_prefetch.cuh,31)  
 0.107011   5.700592          1 matrixMul_compOpt(float*, float*, float*, int, int) (matrixmul: 
matrixMul_compOpt.cuh,31)  
 0.090019   4.795410          1  matrixMul_unroll(float*, float*, float*, int, int) (matrixmul: 
matrixMul_unroll.cuh,32) 

 

Upon completion of the CUDA experiment the O|SS experiment database can be 
located.  For this run it is in the file “matrixmul-cuda-3.openss”.  First let’s open the 
experiment in the O|SS CLI: 

 
opens -cli -f matrixmul-cuda-3.openss 
 

 
Once the CLI has loaded the experiment the following series of commands are 
generated to produce metric data: 
 
expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 
expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 
expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 
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expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 
 
 

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)        Kernel        Kernel      Time 

              Execution     Execution      (ms) 

            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.605867      0.605867      0.605867  0.605867 matrixMul_coalescing(float*, float*, 

float*, int, int) (matrixmul: matrixMul_coalescing.cuh,31) 

 0.496201      0.496201      0.496201  0.496201 matrixMul_naive(float*, float*, float*, 

int, int) (matrixmul: matrixMul_naive.cuh,17) 

 0.257925      0.257925      0.257925  0.257925 matrixMul_tiling(float*, float*, float*, 

int, int) (matrixmul: matrixMul_tiling.cuh,31) 

 0.211493      0.211493      0.211493  0.211493 matrixMul_noBankConflict(float*, float*, 

float*, int, int) (matrixmul: matrixMul_noBankConflict.cuh,32) 

 0.108675      0.108675      0.108675  0.108675 matrixMul_prefetch(float*, float*, 

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31) 

 0.107011      0.107011      0.107011  0.107011 matrixMul_compOpt(float*, float*, float*, 

int, int) (matrixmul: matrixMul_compOpt.cuh,31) 

 0.090019      0.090019      0.090019  0.090019 matrixMul_unroll(float*, float*, float*, 

int, int) (matrixmul: matrixMul_unroll.cuh,32) 

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)          Data          Data      Time 

               Transfer      Transfer      (ms) 

            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.973283      0.973283      0.973283  0.046347 runTest(int, char**) (matrixmul: 

matrixMul.cu,163) 

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)        Kernel        Kernel      Time 

              Execution     Execution      (ms) 

            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.108675      0.108675      0.108675  0.108675 matrixMul_prefetch(float*, float*, 

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31) 

 0.090019      0.090019      0.090019  0.090019 matrixMul_unroll(float*, float*, float*, 

int, int) (matrixmul: matrixMul_unroll.cuh,32) 

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)          Data          Data      Time 

               Transfer      Transfer      (ms) 

            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.287658      0.287658      0.287658  0.047943 runTest(int, char**) (matrixmul: 

matrixMul.cu,163) 

 

 
Now let’s launch the new GUI automatically loading the same experiment database: 
 
 
openss-gui –f matrixmul-cuda-3.openss 
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Here are a series of screenshots demonstrating that the same performance metric 
results are obtained in the new GUI: 
 

 
Figure 9- “expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104” 
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Figure 10- "expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104" 

 

 
Figure 11- "expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981" 
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Figure 12- "expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981" 

 
Each screenshot caption indicates the corresponding “expview” command in the O|SS 
CLI. 
 
These screenshots demonstrate that the user can alter the column ordering by holding 
the left-mouse button when the mouse cursor is over one of the columns and moving it 
into a new position.  The columns were re-ordered to match the ordering of the CLI 
views. 

 
10.1.5 Viewing NVIDIA CUDA Tracing (cuda) experiment performance data via CLI 
 

To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
 
The O|SS CLI will report NVIDIA CUDA kernel execution, NVIDIA CUDA data transfer 
and CPU/GPU hardware performance counter data the “cuda” collector gathers.  
 
The type of data displayed can be controlled through the '-v' options:  
 
    Exec       CUDA kernel executions (this is the default)  
    Xfer      CUDA data transfers  
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    HWPC      CPU/GPU hardware performance counters  
 
The form of the displayed information is controlled thru additional '-v' options.  
For '-v Exec' and '-v Xfer' these additional '-v' options are:  
 
    ButterFly                Produces a report summarizing the calls to  
                                       and from the one or more functions specified  
                                       by the '-f <function_list>' option. By default, calling  
                                       functions will be listed before the named  
                                       function and called functions afterwards,  
                                       unless 'TraceBacks' is specified  
                                       to reverse this order.  
 
    CallTree[s]              Produces a calling stack report presented  
                                       in calling tree order, from the executable's  
                                       start toward the measurement locations.  
 
    (DSO|LinkedObject)[s]    Produces a summary report by linked object.  
 
    FullStack[s]              Causes the report to include the full call  
                                         stack for each measurement location when  
                                         added to either 'CallTree' or 'TraceBack'.  
                                         Redundant call stack frames are suppressed  
                                         by default if this option isn't specified.  
 
    Function[s]              Produces a summary report by function.  
                                         This is the default.  
 
    Loop[s]                      Produces a summary report by loop.  
 
    Statement[s]             Produces a summary report by statement.  
 
    Summary                  Causes the report to include an additional  
                                         line of output at the end that summarizes  
                                         the information in each column. Does not  
                                         apply to 'ButterFly' or 'Trace'.  
 
    SummaryOnly          Causes the report to ONLY include the line  
                                          of output generated by 'Summary'.  
 
    Trace                           Produces a report of each individual CUDA  
                                          kernel execution or data transfer, sorted in  
                                         ascending order of the event's start time.  
 
    TraceBack[s]            Produces a calling stack report presented  
                                          in traceback order, from the measurement  
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                                          locations toward the executable's start.  
 
Except for the '-v Trace' option, the report will be sorted in descending order of 
values in the leftmost column. Multiple '-v' values can be delimited with commas, 
e.g. '-v Exec,Trace'.  
 
Finally, columns included in the report can be controlled using the ‘-m' option. More 
than one column may be specified in a comma-delimited list. And when '-m' is used, 
ONLY those columns specified are reported, in the order given.  
 
The following '-m' options are available for '-v [Exec|Xfer]':  
 
    [%][exclusive_]count[s]    Exclusive number of events  
    [%]inclusive_count[s]        Inclusive number of events  
    [%][exclusive_]time[s]      Exclusive time in the event  
    [%]inclusive_time[s]          Inclusive time in the event  
    min[imum]                            Minimum time in the event  
    max[imum]                           Maximum time in the event  
    avg|average                          Average time in the event  
    stddev                                    Standard deviation of time in the event  
 
    ThreadMin                           Minimum accumulated time for a process  
    ThreadMinIndex                Process ID of the 'ThreadMin' process  
    ThreadMax                          Maximum accumulated time for a process  
    ThreadMaxIndex               Process ID of the 'ThreadMax process'  
    ThreadAverage                  Average accumulated time for a process  
 
    LoadBalance                       Equivalent to 'ThreadMax, ThreadMaxIndex,  
                                                    ThreadMin, ThreadMinIndex, ThreadAverage'.  
 
 
The following '-m' options are only available for '-v [Exec|Xfer],Trace':  
 
    (start|stop)[_time]    Start or stop time for the event  
 
The following '-m' options are only available for '-v Exec,Trace':  
 
    block    Dimensions of each block  
    cache   Cache preference used  
    dsm      Total amount (in bytes) of dynamic shared memory reserved  
    grid      Dimensions of the grid  
    lm         Total amount (in bytes) of local memory reserved  
    rpt        Registers required for each thread  
    ssm      Total amount (in bytes) of static shared reserved  
 
The following '-m' options are only available for '-v Xfer,Trace':  



 137 

 
    size       Number of bytes being transferred  
    kind      Kind of data transfer performed  
    src         Kind of memory from which the data transfer was performed  
    dest       Kind of memory to which the data transfer was performed  
    async    Was the data transfer asynchronous?  
 
The default columns used for various '-v' combinations are:  
 
    -v Exec,Trace                               -m start,time,%time,grid,block  
    -v Xfer,Trace                                -m start,time,%time,size,kind  
    -v (Exec|Xfer),Butterfly            -m inclusive_time,%inclusive_time  
    -v (Exec|Xfer)[,<all-other>]    -m time,%time,count  
 
The '-v HWPC' view works differently: It only displays the sampled CPU/GPU 
hardware performance counters as a function of time; i.e. it does not display data as 
a function of source-code constructs. Thus, only the '-v Summary' and '-v 
SummaryOnly' options apply.  
 
It also interprets differently the positive integer added to the end of the keyword 
'cuda'. Instead of identifying the maximum number of reported items, it specifies the 
fixed sampling interval (in ms) at which the data should be resampled before 
display. The default value (0) is given the special meaning that the original sampling 
interval should be used instead.  
 
Examples:  
 
    expView cuda  
    expView -v Xfer,Fullstack cuda10 -m min,max,count  
    expView -v HWPC,Summary cuda33  
 
See also:  
 
    expView 
 
Here are some CLI views of the output from the osscuda experiment.  These views 
show results of a cuda experiment on the NVIDIA CUDA application GEMM on the 
Pleiades SGI platform at NASA: 
 

pfe27-433>openss -cli -f GEMM-cuda-4.openss  
openss>>[openss]: The restored experiment identifier is:  -x 1  
openss>>expview  
 
Exclusive       % of  Exclusive  Function (defining location)  
Time (ms)      Total      Count  
           Exclusive  
                Time  
14.810702  52.042113        300  void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
13.648369  47.957887        300  void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
openss>>expstatus  
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Experiment definition  
{ # ExpId is 1, Status is Terminated, Saved database is GEMM-cuda-4.openss  
    Performance data spans 0.443760 ms  from 2016/08/24 10:01:03 to 2016/08/24 10:01:03  
(none)  
  Executables Involved:  
    (none)  
  Currently Specified Components:  
    -h maia29 -p 43727 -t 0 -r 0  
    -h maia30 -p 27136 -t 0 -r 1  
    -h maia31 -p 80595 -t 0 -r 2  
  Previously Used Data Collectors:  
    cuda  
  Metrics:  
    cuda::count_exclusive_details  
    cuda::exec_exclusive_details  
    cuda::exec_inclusive_details  
    cuda::exec_time  
    cuda::xfer_exclusive_details  
    cuda::xfer_inclusive_details  
    cuda::xfer_time  
  Parameter Values:  
  Available Views:  
    cuda  
}  
 
 
openss>>expview -vExec  
 
Exclusive       % of  Exclusive  Function (defining location)  
Time (ms)      Total      Count  
           Exclusive  
                Time  
14.810702  52.042113        300  void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: 
GEMM.cpp,19)  
13.648369  47.957887        300  void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: 
GEMM.cpp,19)  
openss>>expview -vXfer  
 
Exclusive       % of  Exclusive  Function (defining location)  
Time (ms)      Total      Count  
           Exclusive  
                Time  
 1.774178  75.232917         69  void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: 
GEMM.cpp,19)  
 0.584069  24.767083         69  void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: 
GEMM.cpp,19)  
openss>>expview -v trace, Xfer 
   Start Time (d:h:m:s)           Exclusive        % of          Size      Kind Call Stack Function (defining location)  
                                                  Time (ms)       Total  
                                                                           Exclusive  
                                                                          Time  
2016/08/24 10:01:03.845   0.001217   0.051606     112  HostToDevice >>void RunTest<float>(std::string, 
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.850   0.027392   1.161541  262144  HostToDevice >>void RunTest<float>(std::string, 
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.850   0.027553   1.168368  262144  HostToDevice >>void RunTest<float>(std::string, 
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.001217   0.051606     112  HostToDevice >>void RunTest<float>(std::string, 
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.027425   1.162940  262144  DeviceToHost >>void RunTest<float>(std::string, 
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.852   0.026721   1.133087  262144  DeviceToHost >>void RunTest<float>(std::string, 
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.852   0.026753   1.134444  262144  DeviceToHost >>void RunTest<float>(std::string, 
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)  
…… 
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openss>>expview -v trace,Exec  
 
   Start Time (d:h:m:s)         Exclusive      % of       Grid      Block     Call Stack Function (defining location)  
                                                Time (ms)     Total      Dims     Dims  
                                                                       Exclusive  
                                                                       Time  
2016/08/24 10:01:03.851   0.055585   0.195316  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.048705   0.171141  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.049761   0.174851  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.051617   0.181373  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.051648   0.181482  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.050817   0.178562  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.046496   0.163378  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.851   0.048193   0.169341  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
2016/08/24 10:01:03.852   0.049633   0.174401  4,4,1  16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, 
OptionParser&) (GEMM: GEMM.cpp,19)  
…. 
openss>>expview -vfullstack  
 
Exclusive       % of        Exclusive  Call Stack Function (defining location)  
Time (ms)      Total      Count  
                        Exclusive  
                       Time  
                                                   main (GEMM: main.cpp,135)  
                                                       > @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)  
11.818358  41.527561        240  >> @ 240 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&) 
(GEMM: GEMM.cpp,19)  
                                                    main (GEMM: main.cpp,135)  
                                                        > @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)  
10.894840  38.282486        240  >> @ 240 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&) 
(GEMM: GEMM.cpp,19)  
                                                   main (GEMM: main.cpp,135)  
                                                       > @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)  
 2.992344  10.514553         60  >> @ 231 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: 
GEMM.cpp,19)  
                                                   main (GEMM: main.cpp,135)  
                                                    > @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)  
 2.753529   9.675400         60  >> @ 231 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&) 
(GEMM: GEMM.cpp,19)  
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11   Memory Analysis Techniques 
 
This O|SS version supports tracing memory allocation and deallocation function 
calls in user applications.  This capability includes: 

 Timeline of events that set a new high-water mark. 
 List of event allocations (with calling context) to leaks. 
 Overview of all unique callpaths to traced memory calls, providing max and 

min allocation and count of calls on this path. 
 
The mem experiment supports sequential, MPI and threaded applications. No in-
application instrumentation is needed.  The mem experiment traces the following 
system calls: 

 malloc 
 calloc 
 realloc 
 free 
 memalign 
 posix_memalign 

 

11.1 Memory Analysis Tracing (mem) experiment performance data 
gathering (ossmem) 
To run the memory analysis experiment, use the ossmem convenience script and 
specify the application as an argument.  No quotes are necessary if there are no 
arguments to the application, but they are placed here for consistency.  In this 
example using the sweep3d application, the ossmem script will apply the memory 
analysis experiment by running the application with the O|SS memory trace 
collector, gathering the data and creating an O|SS database file containing 
experiment results. The performance information can be viewed via GUI or CLI. 
 
# Sequential example: 
ossmem "./lulesh2.0” 
# MPI example: 
ossmem “mpirun –np 64 ./sweep3d.mpi” 
 
For example, here is a memory experiment run for the matmul application: 
 
$ ossmem ./matmul  
[openss]: mem using default experiment trace function list.  
Creating topology file for frontend host localhost  
Generated topology file: ./cbtfAutoTopology  
Running mem collector.  
Program: ./matmul  
Number of mrnet backends: 1  
Topology file used: ./cbtfAutoTopology  
executing sequential program: cbtfrun -c mem --mrnet  --openmp ./matmul  
Main...  
Do work...  
Allocate matrix...  
Allocate matrix...  
Allocate matrix...  
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Initialize...  
Initialize...  
Initialize...  
Compute...  
Compute interchange...  
Compute triangular...  
Done.  
All Threads are finished.  
default view for /home/fred/sc16/exercises/matmul/matmul-mem-0.openss  
[openss]: The restored experiment identifier is:  -x 1  
Performance data spans 19.928560 seconds  from 2017/01/06 08:51:31 to 2017/01/06 08:51:50  
 
Exclusive       % of       Number      Min        Min            Max          Max                   Total                  Function (defining 
location)  
     (ms)         Total         of             Request  Requested  Request Requested     Bytes  
                        Time         Calls         Count      Bytes        Count         Bytes     Requested  
 
 0.013286  81.830500    1546        1        192                  6      4096      6320832  __GI___libc_malloc (libc-2.17.so)  
 0.002144  13.205223       5                                                                                             __GI___libc_free (libc-2.17.so)  
 0.000469   2.888643         7            1        368                  1         368             2576  __calloc (libc-2.17.so)  
 0.000337   2.075634         1             1         72                  1             72                 72  __realloc (libc-2.17.so) 

 

11.2 Viewing Memory Analysis Tracing (mem) experiment performance 
data via CLI 
 
To launch the CLI on any experiment, use “openss –cli –f <database name>“. 
This table describes fields in the memory experiment default CLI view: 
 

Column Name   Column Definition 

Exclusive Mem Call Time Aggregated total exclusive time spent in the memory function corresponding to this 

row of data. 

% of Total Time Percentage of exclusive time relative to the total time spent in the memory function 

corresponding to this row of data. 

Number of Calls Total number of calls to the memory function corresponding to this row of data. 

Min Request Count The number of times minimum bytes allocated or freed occurred during this 

experiment. 

Min Requested Bytes The minimum number of bytes that were allocated or freed by the corresponding 

memory function. 

Max Request Count The number of times maximum bytes allocated or freed occurred during this 

experiment. 

Max Requested Bytes The maximum number of bytes that were allocated or freed by the corresponding 

memory function. 

Total Requested Bytes The total number of bytes allocated by the corresponding function.  Note: this does not 

subtract the bytes freed.  This only totals the allocation function requested bytes. 

 
Important command line interface (CLI) views are: 

 expview -vunique   
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o Show times, call counts per path, min/max bytes allocation, total 
allocation to all unique paths to memory calls that the mem 
collector saw. 

 expview -vleaked    
o Show function view of allocations that were not released while the 

mem collector was active. 
 expview -vtrace,leaked  

o Will show a timeline of any allocation calls that were not released. 
 expview -vfullstack,leaked  

o Display a full callpath to each unique leaked allocation.  
 expview -v trace,highwater  

o Is a timeline of mem calls that set a new high-water mark. 
o The last entry is the allocation call that set the high-water mark for 

the complete run. 
o Investigate the last calls in the timeline and look at allocations that 

have the largest allocation size (size1,size2,etc) if your application 
is consuming lots of system RAM. 

 
 

Here is a default view of the output from the ossmem experiment run of matmul 
on a small cluster.  This shows the last eight allocation events that set the high-
water mark: 

 
 
openss>>expview -vtrace,highwater 
    Start Time(d:h:m:s)  Event     Size  Size  Ptr    Return Value       New  Call Stack Function (defining location) 
                           Ids     Arg1  Arg2  Arg                  Highwater  
*** trimmed all but the last 8 events of 61 **** 
2016/11/10 09:56:50.824  11877:0     2080     0             0x7760e0  19758988  >>>>>>>__GI___libc_malloc (libc-2.18.so) 
2016/11/10 09:56:50.826  11877:0  1728000     0            0x11783d0  21484908  >>>>__GI___libc_malloc (libc-2.18.so) 
2016/11/10 09:56:50.827  11877:0  1728000     0            0x131e1e0  23212908  >>>>__GI___libc_malloc (libc-2.18.so) 
2016/11/10 09:56:50.827  11877:0  1728000     0            0x14c3ff0  24940908  >>>>__GI___libc_malloc (libc-2.18.so) 
2016/11/10 09:56:50.827  11877:0     2080     0             0x776a90  24942988  >>>>>>>__GI___libc_malloc (libc-2.18.so) 
2016/11/10 09:56:50.919  11877:0  1728000     0            0x1654030  25286604  >>>>__GI___libc_malloc (libc-2.18.so) 
2016/11/10 09:56:50.919  11877:0  1728000     0            0x17f9e40  27014604  >>>>__GI___libc_malloc (libc-2.18.so) 
2016/11/10 09:56:50.919  11877:0     2080     0             0xabc6a0  27016684  >>>>>>>__GI___libc_malloc (libc-2.18.so) 
 

 
Below is the default view of all unique memory calls seen while the mem collector 
was active.  This is an overview of the memory activity.  The default display is 
aggregated across all processes and threads. Users can view specific processes or 
threads. 
 
For all memory calls the following are displayed:  

 The exclusive time and percent of exclusive time. 
 The number of times this memory function was called. 
 The traced memory function name. 

 
For allocation calls (e.g. malloc) the following are displayed: 

 The maximum and minimum allocation size seen. 
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 The number of times that maximum or minimum was seen. 
 The total size of all allocations. 

 
 
 
 
 
openss>>expview -vunique 
Exclusive       % of          Number      Min        Min             Max        Max               Total          Function (defining location) 
    (ms)           Total             of         Request  Requested  Request  Requested     Bytes   
                       Time           Calls        Count      Bytes          Count      Bytes         Requested   
                                                                                 
 0.024847  89.028629    1546            1          192                 6           4096             6316416     __GI___libc_malloc (libc-2.18.so) 
 0.002371   8.495467       5                                                                                                             __GI___libc_free (libc-2.18.so) 
 0.000369   1.322154       1                 1            40                 1                40        40                     __realloc (libc-2.18.so) 
 0.000322   1.153750       3                 1          368                 1             368      1104                   __calloc (libc-2.18.so) 

 

NOTE: Number of Calls means the number of unique paths to the memory function 
call.  To see the paths, use the CLI command: expview –vunique,fullstack 

 
In this example, the sequential OpenMP version of lulesh was run under ossmem.  
The initial run detected 69 potential memory leaks.  Examining the calltrees using 
the cli command "expview -vfullstack,leaked -mtot_bytes" revealed that allocations 
from the Domain::Domain constructor were not later released in the 
Domain::~Domain destructor. Adding appropriate deletes in the destructor and 
rerunning ossmem found leaks detected in the Domain class were resolved. The 
remaining leaks were minor and from system libraries.  
 
To see the improvements, use the exprestore command to load the initial database 
and the second-run database, then use the expcompare cli command.  
 
Below, database -x1 shows the initial run and -x2 shows results from the run with 
changes to address leaks detected in the Domain class:  
 
 

openss>>exprestore -f lulesh-mem-initial.openss  
openss>>exprestore -f lulesh-mem-improved.openss  
openss>>expcompare -vleaked -mtot_bytes -mcalls -x1 -x2  
 
   -x 1,          -x 1,     -x 2,          -x 2,    Function (defining location)  
   Total     Number  Total        Number  
   Bytes         of         Bytes           of  
Requested  Calls  Requested   Calls  
10599396      69      3332              8    __GI___libc_malloc (libc-2.17.so)  
               72         1           72              1    __realloc (libc-2.17.so) 

 
 

11.3 Viewing Memory Analysis Tracing (mem) experiment performance 
data via GUI 
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To launch the GUI on any experiment, use “openss –f <database name>“. 
 
The first GUI display shown below is the default view for the mem experiment.  It 
shows the memory functions that were called in the application, how many times 
they were called, the time spent in each and the percentage of the overall memory 
function time spent in each of the memory functions.  This table identifies what each 
column represents in the default GUI view for the mem experiment: 
 

Column Name   Column Definition 

Exclusive Mem Call Time Aggregated total exclusive time spent in the memory function corresponding to this 

row of data. 

% of Total Time Percentage of exclusive time relative to the total time spent in the memory function 

corresponding to this row of data. 

Number of Calls Total number of calls to the memory function corresponding to this row of data. 

Min Request Count The number of times minimum bytes allocated or freed occurred during this 

experiment. 

Min Requested Bytes The minimum number of bytes that were allocated or freed by the corresponding 

memory function. 

Max Request Count The number of times maximum bytes allocated or freed occurred during this 

experiment. 

Max Requested Bytes The maximum number of bytes that were allocated or freed by the corresponding 

memory function. 

Total Requested Bytes The total number of bytes allocated by the corresponding function.  Note: this does not 

subtract the bytes freed.  This only totals the allocation function-requested bytes. 

 
The paths to each memory function call, through the source, are available through 
the call path views.  This is the high-water memory experiment GUI view for the 
matmul application: 
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There are other GUI views based on the high-water mark, Unique call paths and 
Leaked memory.  The CLI will show the same information. 
 
Here is the trace of the memory calls that changed the high-water value as the 
application executed. 
 

 
 
The view below shows the memory leaks that occurred while running amg2013.  
The minimum and maximum leaks are tracked in the graphical view. 
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Views mentioned above are accessed through the openss-gui –f <database name> 
command. 
 
 

12   Advanced Analysis Techniques 
 
Analyzing the results of a single performance experiment can be useful for 
debugging and tuning a code, but comparing results of different experiments can 
show users how an application’s performance has changed.  This is useful for 
tracking how performance varies with each version of an application or for 
understanding how a different compiler or compiler options affect an application’s 
performance.  This also lets users perform scalability tests to see how their 
application’s performance scales with the number of processors.  It’s also helpful 
just to see the progress made while tuning a code. 

 
O|SS has options that let users compare performance data. Use the Custom Compare 
Panel (CC icon) in the GUI or the osscompare convenience script:   
 
> osscompare “db1.openss, db2.openss,…” [options] 
 
This will produce side-by-side comparison listings of up to eight databases at once. 
See the osscompare man page for more details.   Here is an example comparing two 
pcsamp experiments on the smg2000 application:  
 

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp­1.openss” 
 
[openss]: Legend: ­c 2 represents smg2000­pcsamp.openss 
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[openss]: Legend: -c 4 represents smg2000-­­pcsamp-­­1.openss  
­c 2, Exclusive CPU                     ­c 4, Exclusive CPU         Function (defining location) 
time in seconds.                       time in seconds. 
  3.870000000     3.630000000             hypre_SMGResidual (smg2000:smg_residual.c,152) 
  2.610000000     2.860000000             hypre_CyclicReduction (smg2000:cyclic_reduc;on.c,757) 
  2.030000000    0.150000000             opal_progress (libopen­pal.so.0.0.0) 
  1.330000000    0.100000000             mca_btl_sm_component_progress (libmpi.so.0.0.2) 
  0.280000000    0.210000000             hypre_SemiInterp (smg2000: semi_interp.c,126) 
  0.280000000    0.040000000             mca_pml_ob1_progress (libmpi.so.0.0.2) 

 

12.1 Comparison Script Argument Description 
 
The O|SS comparison script accepts a number of arguments.  This section describes 
acceptable options for those arguments.  For a quick overview, see 14.4 osscompare: 
Compare Database Files.  As described above, the osscompare script accepts at least 
two and up to eight comma-separated database file names, enclosed in quotes as the 
mandatory argument.  By default, the compared metric is the primary one the 
experiment produced.  For most experiments, this is exclusive time, but hardware 
counter experiments use the number of hardware counter overflows.  These are the 
default or mandatory arguments to osscompare.  The following sections describe 
arguments for osscompare in more detail. 
 
12.1.1 osscompare metric argument 
 
The osscompare metric argument specifies the type of performance information 
O|SS will use to compare against when examining each database file in the compare 
database file list.  To find the legal metric specifications and produce comparison 
outputs, open one of the database files with the O|SS command line interface (CLI) 
and list the available metrics: 
 
openss -cli -f smg2000-pcsamp.openss 
   openss>>list -v metrics 
   pcsamp::percent 
   pcsamp::threadAverage 
   pcsamp::threadMax 
   pcsamp::threadMin 
   pcsamp::time 

 
Use the output of the list metrics command as an argument to the osscompare 
command as shown in these examples: 
 
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" 
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" percent 
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" threadMin 
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" threadMax 

 
There are exceptions.  For example, some experiments such as usertime and 
hwctime have “details”-type metrics output by the list metrics CLI command (list –v 
metrics).  These will not work as a metric argument to osscompare. 
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For the hwc and hwctime hardware counter experiments, use the actual PAPI event 
name in addition to the metric names output from the list metric command.  This 
example database file was generated using the PAPI_TOT_CYC event: 
 
openss -cli -f smg2000-hwc.openss 
openss>>[openss]: The restored experiment identifier is:  -x 1 
openss>>list -v metrics 
hwc::overflows 
hwc::percent 
hwc::threadAverage 
hwc::threadMax 
hwc::threadMin 

 

Here are a couple of osscompare examples where “hwc::overflows” can be used 
interchangeably with PAPI_TOT_CYC: 
 

osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows 
osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" PAPI_TOT_CYC 
 
Note: For compares involving hwcsamp metric-based databases, use the “allEvents” 
metric in the osscompare command to compare all of the existing hardware 
counters from each experiment.  That will compare all events in each of the 
databases and will ignore the program counter sampling data from each of the 
databases.  The form of the osscompare command to compare all the hardware 
counter events is: 
 
osscompare "smg2000-hwcsamp.openss,smg2000-hwcsamp-1.openss" allEvents 
 
 
12.1.2 osscompare rows of output argument 

 
The osscompare command allows the user to specify how many lines of the 
comparison output to generate.  The argument is optional 
"rows=nn" is defined as follows: 
           "nn"     - Number of rows/lines of performance data output. 

 
In this next example, only ten (10) lines of comparison will be shown when the 
osscompare command is executed.  It will be the most interesting, or top, ten lines: 
 
osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows rows=10 

 
12.1.3 osscompare output name argument. 
 
The osscompare command allows the user to specify the name to be used when 
writing out the comparison output files.  The argument is optional. 
"oname=<output file name>" is defined as follows: 
           "output file name"     - Name given to the output files created for the comparison. 
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This argument is valid when the environment variable OPENSS_CREATE_CSV is set 
to 1.  In this example, the comparison files created when the osscompare command 
is executed will be named smg_hwc_cmp.csv and/or smg_hwc_cmp.txt: 
 
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" oname=mar2015_pcsamp_cmp 

 

This example will generate comparison files named using the particular oname 
specification: 
 
8 -rw-rw-r--. 1 fred fred   4475 Mar 11 15:53 mar2015_pcsamp_cmp.compare.csv 
8 -rw-rw-r--. 1 fred fred   4841 Mar 11 15:53 mar2015_pcsamp_cmp.compare.txt 

 
12.1.4 osscompare view type or granularity argument. 
 
The osscompare command allows an optional view type argument representing the 
granularity.  O|SS allows for viewing performance data at three levels: linked object, 
function and statement.  The osscompare command will produce output at one of 
those levels based on the view type argument where:  
"viewtype=<functions | statements | linkedobjects >" is defined as follows: 

"functions"          - View type granularity is per function 
"statements"       - View type granularity is per statement 
"linkedobjects"  - View type granularity is per library (linked object) 

 
The following example will produce a side-by-side comparison for the statement 
level, not the default function level.  So, this example will compare statement 
performance values in each of the two databases and produce a side-by-side 
comparison showing how each statement in the application differed from the two 
experiments: 
 
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" viewtype=statements 

 

13   O|SS User Interfaces 
 
The O|SS (O|SS) GUI has been used throughout this manual and users are 
encouraged play with the interface to become familiar with it. The GUI lets users 
peel off and rearrange any panel.  There also are context-sensitive menus, letting 
users right-click on any location to access a different view or activate additional 
panels.   
 
For users who prefer not to employ the GUI, there are three other options with 
equal functionality.  First there is the command line interface that has been 
illustrated throughout this manual. It is launched with the –cli option: 
 
> openss -cli 
 
There also is the immediate command (batch) interface. This uses the –batch flag: 
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> openss –batch < openss_cmd_file 
> openss –batch –f <exe> <experiment> 
 

Lastly, there is a Python scripting API, letting users launch O|SS commands within a 
python script: 
 
> python openss_python_script_file.py 
   

13.1 Command Line Interface Basics 
 
The interactive command line interface offers processing like gdb or dbx. Several 
interactive commands allow users to create experiments, provide users with 
process/thread control or enable users to view experiment results. Full CLI 
documentation is available at http://www.openspeedshop.org/doc/cli_doc/, but 
some important points are briefly covered here.  This is a quick overview of some 
commands (those marked with * are only available for the online version): 
 

Experiment Creation 
 expcreate 
 expattach* 

Result Presentation 
 expview 
 opengui 

Experiment Control 
 expgo 
 expwait* 
 expdisable* 
 expenable* 

Misc. Commands 
 help 
 list 
 log 
 record 
 playback 
 history 
 quit 

Experiment Storage 
 expsave 
 exprestore 

 
This is a simple example to create, run and view data from an experiment using the 
CLI: 
 

> openss –cli Open the CLI. 

openss>> expcreate –f “mutatee 2000” pcsamp Create an experiment using pcsamp with 
this application. 

openss>> expgo Run the experiment and create the 
database 

openss>> expview Display the default view of the 
performance data. 

 
Users also can get alternative views of the performance data within the CLI.  Here is 
a list of some options to change the way the information is displayed: 
 

help or help commands  Display CLI help text.  

expview  Show the default view for experiment. 

expview -v statements  Show time-consuming statements.  

http://www.openspeedshop.org/doc/cli_doc/
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expview -v loops Show time-consuming loop. 

expview –v vectorinstr On Intel platforms: show instructions that are vector and the 
time spent in vector instruction execution 

expview -v linkedobjects  Show time spent in libraries.  

expview -v fullstack  See all unique call paths in the application. 

expview -m loadbalance  See load balance across all the ranks/threads/processes in 
the experiment. 

expview –r <rank_num>  See data for specific rank(s) 

expcompare –r 1 –r 2 –m time  Compare rank 1 to rank 2 for metric equal to “time”. Other 
metrics are allowed.  This is a usage example. 

list –v metrics  See the list of optional performance data metrics.  

list –v src  See the list of source files associated with experiment. 

list –v obj  See the list of object files associated with experiment. 

list –v ranks  See the list of ranks associated with experiment. 

list –v hosts  See machine host names associated with experiment. 

expview –m <metric>  See performance data for the specified metric . 

expview –v fullstack <experiment type> 
<number>  

See <number> of call paths from the list of expensive call 
paths.   

expview –v fullstack usertime2   Shows the top two call paths in execution time.  

expview <experiment-name><number>  Shows <number> of the functions from the list of the top 
time-consuming functions.  

expview pcsamp2  Shows the two functions consuming the most time.  

expview –v statements  
<experiment-name><number> 

Show <number> of the statements from the list of the top 
time-consuming statements. 

expview -Fcsv Show the view in comma separated list format (csv) 

 
 
Remember, to use the GUI at any time just issue the command opengui in the CLI. 
 
13.1.2 CLI Metric Expressions and Derived Types 

 
O|SS can create a derived metric from the gathered metrics by using the metric 
expression math functionality in the command line interface (CLI).  Access the 
overview from the CLI by typing this help CLI command: 
 
openss>>help metric_expression 
 
   ********* 
<metric_expression>  ::=<string>  ( [<constant>  ||<metric_expression>  ] [ , 
[<constant>  ||<metric_expression>  ] ]* ) 
 
A user-defined expression that uses metrics to compute a special value for display in a report. 
 
User-defined expression can be added to an<expMetric_list>. 
A functional notation is used to build the desired expression and the following simple arithmetic operations are 
available: 
   Function    # arguments    returns 
   --------    -----------    ------- 
   Uminus()     1    unary minus of the argument 
   Abs()             1    Absolute value of the argument 
   Add()            2    summation of the arguments 
   Sub()             2    difference of the arguments 
   Mult()           2    product of the arguments 
   Div()             2    first argument divided by second 
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   Mod()           2    remainder of divide operation 
   Min()            2    minimum of the arguments 
   Max()              2    maximum of the arguments 
   A_Add()         1    sum of all the data samples specified for the view 
   A_Mult()        1    product of all the data samples specified for the view 
   A_Min()         1    minimum of all the data samples specified for the view 
   A_Max()         1    maximum of all the data samples specified for the view 
   Sqrt()             1    square root of the argument 
   Stdev()          3    standard deviation calculation 
   Percent()      2    percent the first argument is of the second 
   Condexp()    3    "C" expression: "(first argument) ? second argument: third argument" 
   Header()       2    use the first argument as a column header for the display of the second 
 
Note: 
 
Integer and floating constants are supported as arguments as are the metric keywords associated with the 
experiment view. 
 
Arguments to these functions can be <metric_expressions>, with the exception of the first argument of 'Header'. 
 
The first argument of 'Header' must be a character string that is preceded with and followed by '\"'. 
 
When the '-v summary' option is used, it is not generally possible to produce a meaningful column summary. 
A summary is produced for Add(), Max(), Min(), Percent(), A_Add(), A_Max and A_Min(). 
 
Examples: 
 
   expview hwc -m count,Header(\"percent of counts\",Percent(count,A_Add(count)) -v summary 
   expview mpi -v butterfly -f MPI_Alltoallv -m time,Header("average time/count",Div(Mult(time,1000),counts)) 
   expview -m papi_l2_tca,papi_l2_tcm,Header(\"percent of l2_tcm/l2_tca\", Percent(papi_l2_tcm,papi_l2_tca)) 

 
The following example for study takes the default view, expview command, and 
appends the capability to add the percentage each function contributes to the total. 
 
Use the “Header” phrase to create a header for the new data column being added.   
Use the “Percent” phrase to create the arithmetic expression that divides the 
PAPI_L1_DCM counts (count) for each function by the total number of PAPI_L1_DCM 
counts in the application(A_Add(count)): 
 
openss>>expview  -m count,Header(\"percent of counts\",Percent(count,A_Add(count))) 
 
 Exclusive          percent    Function (defining location) 
PAPI_L1_DCM  of counts 
    Counts 
 342000000    52.333588  hypre_SMGResidual (smg2000: smg_residual.c,152) 
 207500000    31.752104  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757) 
    20500000      3.136955  hypre_SemiInterp (smg2000: semi_interp.c,126) 
    15000000      2.295333  hypre_SemiRestrict (smg2000: semi_restrict.c,125) 
      8500000      1.300689  pack_predefined_data (libmpi.so.0.0.3) 
      7000000      1.071155  unpack_predefined_data (libmpi.so.0.0.3) 

 
Another example, this one based in the hwcsamp experiment view, shows the ratio 
between total cache accesses and total cache misses. A header is created, defined by 
the Header clause: 
 
openss>>expview -m papi_l2_tca,papi_l2_tcm,Header(\"percent of l2_tcm/l2_tca\", Percent(papi_l2_tcm,papi_l2_tca)) 
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papi_l2_tca  papi_l2_tcm    percent of                      Function (defining location) 
                                                  l2_tcm/l2_tca   
                                       
 289946516   109226440     37.671237  hypre_SMGResidual (smg2000: smg_residual.c,152) 
 203463495      74795126     36.760956  hypre_CyclicReduction (smg2000: cyclic_reduction.c,757) 
   34442810      12746112     37.006597  mca_btl_vader_check_fboxes (libmpi.so.1.4.0: btl_vader_fbox.h,108) 
   25522126         8311723     32.566734  hypre_SemiInterp (smg2000: semi_interp.c,126) 
… 
… 

13.1.3 CLI Automatically Generated Derived Metrics and CLI Derived Metric Names 
 
The CLI view code has logic to match up existing PAPI hardware counters with other 
PAPI hardware counters, if the user specified a combination of counters that O|SS 
has been coded to recognize.  Users have requested these combinations of counters 
as interesting ones to have pre-computed and output in the CLI views. 
 
The list of automatically generated and displayed derived metric values are 
discussed in the following paragraphs.  Here is a short list of the metric names that 
can be used in the CLI view and the hardware counters needed: 
 
      

Purpose/Function: CLI metric name: PAPI formula: 
Computational Intensity -m intensity  PAPI_TOT_INS/PAPI_TOT_CYC 
Reports level 1 data 
cache to total cache miss 
ratio 

-m l1dcmiss  PAPI_L1_DCM/PAPI_L1_TCA 

Reports L1 data cache 
read miss ratios 

-m l1dcrmiss PAPI_L1_DCM / PAPI_L1_DCA 

Reports level 2 data 
cache miss ratio 

-m l2dcmiss PAPI_L2_DCM / PAPI_L2_TCA 

Reports level 2 cache 
miss ratio 

-m l2tcmiss  PAPI_L2_TCM/PAPI_L2_TCA 

Reports L2 cache data hit 
rate 

-m l2dchitrate (1.0 - (PAPI_L2_DCM / 
PAPI_L1_DCA)) 

Reports level 3 total 
cache to cache access 
ratio 

-m l3tcmiss  PAPI_L3_TCM/PAPI_L3_TCA 

Reports level 3 total 
cache to data cache 
access ratio 

-m l3tdcmiss PAPI_L3_TCM / PAPI_L3_DCA 

Reports data references 
per instruction 

-m datarefperinstr PAPI_L1_DCA / PAPI_TOT_INS 

Reports double precision 
flops 

-m dflops PAPI_DP_OPS / time 

Reports single precision 
flops 

-m flops PAPI_FP_OPS / time 
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Reports ratio of floating 
point instructions to total 
instructions 

-m  fpinstratio PAPI_FP_INS / PAPI_TOT_INS 

Reports graduated 
floating point 
instructions per cycle 

-m gradfpinst PAPI_FP_INS / PAPI_TOT_CYC 

Reports ratio of mis-
predicted to correctly 
predicted branches 

-m mispredicted PAPI_BR_MSP / PAPI_BR_PRC 

Reports 
SIMD_FP_256:packed_sin
gle / PAPI_FP_OPS 

-m simdfpfpops SIMD_FP_256:packed_single/PA
PI_FP_OPS 

Reports 
SIMD_FP_256:packed_do
uble / PAPI_DP_OPS 

-m simdfpdpops SIMD_FP_256:packed_double/P
API_DP_OPS 

 

13.1.3.1 Computational Intensity 
For this derived metric, a ratio is created based on the number of total instructions 
(PAPI_TOT_INS) divided by the PAPI_TOT_CYC hardware counter value.  This ratio 
gives an idea of the instruction execution computational intensity.  TBD. 
 

13.1.3.2 Level 1 Data Cache Miss Ratio 
For this derived metric, a ratio is created based on the number of total level 1 cache 
accesses with the level 1 data cache misses.  This ratio gives…  TBD. 
 
13.1.3.3 Level 2 Data Cache Miss Ratio 
For this derived metric, a ratio is created based on the number of total level 2 cache 
accesses with the level 2 data cache misses.  This ratio gives…  TBD. 
 
13.1.3.4 Level 3 Data Cache Miss Ratio 
For this derived metric, a ratio is created based on the number of total level 3 cache 
accesses with the level 3 data cache misses.  This ratio gives…  TBD. 
 
 

13.2 CLI Batch Scripting 
 
Users with a known set of commands they want to issue can create a plain text file 
with CLI commands.  For example, here’s a batch file that will create, run and view 
the pcsamp experiment on the application fred: 
 

# Create batch file commands 
> echo expcreate –f fred pcsamp >> input.script 
> echo expgo >> input.script 
> echo expview pcsamp10 >> input.script 
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To run the batch file input.script, use the –batch option to openss: 
 
> openss –batch < input.script 
 
Note that in this context this interface is only supported via the online version of 
O|SS, so it must have been built with the OPENSS_INSTRUMENTOR=mrnet options. 
 

13.3 Python Scripting 
 
The O|SS Python API lets users execute the same interactive/batch commands 
directly through Python.  Users can intersperse the normal Python code with 
commands to O|SS.  Currently this interface is only supported via the online O|SS 
version.   
 

13.4 MPI_Pcontrol Support 
 
O|SS also supports the MPI_Pcontrol function.  This feature lets the user gather 
performance data only for sections of their code bounded by MPI_Pcontrol calls.   
 
The MPI_Pcontrol must be added to the application’s source code.   
 
MPI_Pcontrol(1) enables performance data gathering; MPI_Pcontrol(0) disables it.   
 
Users also must set the O|SS environment variable 
OPENSS_ENABLE_MPI_PCONTROL to 1 to activate the MPI_Pcontrol call recognition.  
Otherwise the MPI_Pcontrol statements will be ignored.   
 
Users can optionally set the OPENSS_START_ENABLED environment variable to 1 to 
gather performance data until an MPI_Pcontrol(0) call is encountered.   
 
If OPENSS_START_ENABLED is not set, no performance data will be gathered 
until an MPI_Pcontrol(1) call is encountered.   
 
Note that for OPENSS_START_ENABLED to have any effect, 
OPENSS_ENABLE_MPI_PCONTROL must be set. 

 
 

13.5 Qt3 Legacy Graphical User Interface Basics 
 
This section gives an overview of the O|SS graphical user interface with a focus on 
the GUI’s basic functionality. 
 
To launch the GUI on any experiment, use “openss –f <database name>”. 
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13.5.1 Basic Initial View – Default View 

 
The usertime experiment default view is used here as an illustration because it has 
many of the icons and features of other O|SS experiments: 
 

 
 
 

13.5.1.1 Icon ToolBar 
 

 
 
The most used items, found in the Stats Panel menu located under the Stats Panel tab, also are 
available in the Stats Panel Toolbar, which is provided as a convenience.  A quick overview of the 
toolbar options is below.  Toolbar contents vary by experiment, because some options don't make 
sense for all experiments.  This table describes the icons and the functions they represent: 
 

"I" Information This shows the experiment metadata.  Information such as the 
experiment type, processes, ranks, threads, hosts and other 
experiment-specific information is displayed. 

“U” Update This updates information in the Stats Panel display.  This can be 
used to display any new data that may have come from the nodes 
on which the application is running. 

"CL" Clear auxiliary 
information 

If the user has chosen a performance data time segment or a 
specific function for which to view the data, this option clears those 
settings and allows the next view selection to show data for the 
entire program again. 

"D" Default View The default view icon shows performance results based on the 
view choice granularity selection. 
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"S, down 
arrow" 

Statements per 
Function  

Show performance results related back to the source statements in 
the application for the selected function.  Highlight a function in the 
Stats Panel and click on this icon. 

"C-plus 
sign" 

Call paths w/o 
coalescing 

Show all the calling paths in this application.  Duplicate paths will 
not be coalesced.  All the calling paths will be shown in their 
entirety. 

"C-plus 
sign, 
down 
arrow" 

Call paths w/o 
coalescing per 
Function 

Show all calling paths in this application for only the selected 
function.  Highlight a function in the Stats Panel and click on this 
icon.  Duplicate paths will not be coalesced.  All the calling paths 
will be shown in their entirety. 

"HC" Hot Call Path Show the call path in the application that took the most time.  This 
is a short cut to find the "hot" call path. 

"B" Butterfly view Show the butterfly view, which displays the callers and callees of 
the selected function.  Highlight a function in the Stats Panel and 
click on this icon, then repeat to drill down into the callers and/or 
callees. 

"TS" Time Segment Show a portion of the performance data results based on the time 
segment selected. 

"OV" Optional View Use this dialog to select which performance metrics to show in the 
new performance data report. 

“SA” Source 
Annotation 

Choose which metric to use in the source panel to annotate the 
source.  Defaults are different for each experiment, but usually is 
“time”. 

"LB" Load Balance Show the load balance view, which displays the min, max and 
average performance values for the application; only available on 
threaded or multiple-process applications.   

"CA" Cluster Analysis Show the comparative analysis view, which displays the output of a 
cluster analysis algorithm run against the threaded or multiple-
process performance analysis results for the user application.  This 
view’s use is to find outlying threads or processes and report the 
groups of like-performing threads, processes or ranks. 

"CC" Custom 
Compare 

Raise the custom comparison panel, which provides mechanisms 
allowing the user to create custom views of the performance 
analysis results.  This lets the user supplement the provided O|SS 
views. 

  

13.5.1.2 View/Display Choice Selection 

 
The View/Display Choice set of buttons lets users choose the granularity for a 
particular display. Normally a user chooses a view choice granularity and then 
selects a view via one of the icons described in the table above.  The choices, as 
shown in the image below, are: 

 Per Function – Display the performance information relative to each function 
in the program that had performance data gathered during the experiment. 

 Per Statement – Display the performance information relative to each 
statement in the program that had performance data gathered during the 
experiment. 

 Per Linked Object – Display the performance information relative to each 
library or linked object in the program that had performance data gathered 
during the experiment. 
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 Per Loop – Display the performance information relative to each loop in the 
program that had performance data gathered during the experiment.  Note 
that the loop performance information is shown only for loops that actually 
were executed.  There may be loops in the application that will not show up 
in the display because they were not executed or had minimal time 
attributed to them. 

 

 
 
The image below shows that double-clicking on a line of statistical information in 
the Stats Panel will focus the source panel at the line of source representing the 
performance information and annotates the source with that information.  Note the 
hot (red) to cold (blue) color highlights: The higher the performance values, the 
hotter the color.  Source highlighted in red takes the most time in the profiled 
program: 
 
 

 
 

13.5.2 Preferences - How to change preferences  
 
These preference panel images are included to outline the sequence for changing 
the GUI and CLI options to generate and view performance information.  The first 
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view is the main (General) preference panel, which sets the font, view field sizes, 
data precision, path, number of lines in the view and many other general options: 

 
 
The Stats Panel preference panel lets users change preferences for viewing the 
performance information in the GUI Stats Panel: 
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The Source Panel preference panel lets users remap paths to source files that are in 
a different location on the viewing platform.  Use this when the source files on the 
viewing machine aren’t visible because the executable was built on a different 
machine.  Put the old path to the source into the Old Path Name text box area and 
put the new path for the source on the viewing machine into the New Path Name 
text box area. 
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13.5.2.1 Disabling or enabling the preference for Save/Reuse views in CLI. 
 
This shows the General preferences window, scrolled down to the area that shows 
more preference options.  Users who do not want an active new save/reuse view 
can click on the “Save Views for Reuse in CLI and GUI” (see the blue arrow below) to 
disable that function. Clicking on that preference line disables or enables the feature.  
This same procedure also works for the other preferences. 
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13.6 Next Generation O|SS GUI Application 
 
13.6.1 Introduction 
 
Originally developed as the Graphical User Interface (GUI) for NVIDIA CUDA 
application performance analysis under a NASA SBIR contract, the Next Generation 
O|SS GUI has been expanded to include support for other O|SS sampling and tracing 
experiments such as “pcsamp”, “usertime”, “hwc”, “hwctime”, “hwcsamp”, “omptp”, 
“mem”, “io”, “iop”, “iot”, “mpi”, “mpip”, “mpit” and “pthreads”. 
 
The Next Generation O|SS GUI application, having the executable name “openss-gui”, 
allows the user to explore application experiment trace data within in a timeline 
graph view or hardware performance counter data within line or bar graph views 
with additional details shown in a table view and correlated to the source-code as 
applicable. 
 
In general, to launch the Next Generation O|SS GUI application for any experiment, 
use:  
 
 
“openss-gui [–f <database name>]“ 
 
 
The “–f <database name>” command-line option is optional as indicated by the 
brackets “[…]”.  NOTE:  The brackets are not entered by the user it only indicates 
optional entry. 
 
From the command-line general application usage instructions may be viewed by 
using the “--help” or “-h” command-line option: 
 
 
$ ./openss-gui --help  

Usage: ./openss-gui [options]  

Open|SpeedShop Application Performance Analysis GUI  

 

Options:  

  -h, --help         Displays this help.  

  -v, --version      Displays version information.  

  -f, --file <file>  The Open|SpeendShop experiment database (.openss) file to  

                     load. 

 
 
Just to reiterate this is a different GUI than the original O|SS GUI based on Qt3.     The 
Next Generation O|SS GUI is launched by using “openss-gui” instead of “openss”.  
The Qt3 GUI can still be activated by running “openss” without the “-cli” command-
line option. 
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13.6.1.1 Main Window User Interface Layout 
 
The application user interface is laid out in a logical manner to present a 
comprehensive view of the performance characteristics of an application.  The main 
screen of the application is divided into four sections (ref. Figure 1, “Main Window 
User Interface Layout”). 
 

 Experiment Panel 
 Metric Plot View 
 Metric Table View 
 Source Code View 

 
 

Figure 13 - Main WIndow User Interface Layout 

The main window has a menu bar with two menu items - “File” and “Help”.  Figure 1 
shows the “Help” menu items which are: 
 

Source Code View 

Metric Table View 

Metric Plot View 

Experiment Panel 
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 View O|SS Quick Start Guide 
 View O|SS Reference Guide 
 About O|SS GUI 

 
If the O|SS Quick Start and Reference guides were installed in the standard location 
the menu items will be activated.  The standard locations respectively are: 
 

 $OSS_CBTF_ROOT/$USER_GUIDE_PATH/OpenSpeedShop_Quick_Start_Guide.
pdf 

 $OSS_CBTF_ROOT/$USER_GUIDE_PATH/OpenSpeedShop_Reference_Guide.p
df 

 
Where: 
 
$USER_GUIDE_PATH = “share/doc/packages/doc/users_guide” and 
$OSS_CBTF_ROOT is the root installation directory of the O|SS CBTF components.  
 
Activating one these menu items will open the document using the system 
registered application for PDF files. 
 
The “About O|SS GUI” will open the application about dialog as shown in Figure 2.  
The “http://www.openspeedshop.org” hyperlink can be clicked to launch the 
system registered web browser which will automatically open the O|SS website 
home page. 
 
 

 
Figure 14 - About O|SS GUI dialog 

 
Figure 3 shows the “File” menu items “Load O|SS Experiment” and “Unload O|SS 
Experiment”. 
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Figure 15 - File menu 

Experiment loading and unloading is accomplished using the menu items under the 
“File” menu.  The “File->Load O|SS Experiment” menu item will present an “Open 
File” dialog in which the user can select an O|SS experiment database to load into 
the application.  Once an experiment has been loaded it will be added as a menu 
item of the “File-> Unload O|SS Experiment” menu (ref Figure 3).  Upon selection of 
the experiment in the “File->Unload O|SS Experiment” menu the user will be 
presented with a dialog to confirm the users desire to unload the experiment (ref. 
Figure 4). 
 
 

 
Figure 16 - Confirm Unload Experiment Dialog 

 
The Experiment Panel is on the left-hand side of the main window.  Inside the 
Experiment Panel is the section labeled “Currently Loaded Experiment Information” 
(ref. Figure 5).  For the experiment that is currently loaded, this section shows the 
name of the loaded experiment (without the “.openss“ file extension) at the top level 
of a tree view providing details regarding the application process identifying each 
parallel thread of execution.  For CUDA experiments this information is shown 
under the tree view level titled “GPU Compute / Data Transfer Ratio”; otherwise this 
tree view level is titled “Thread Groups”.  Currently, only one experiment can be 
loaded at a time.  If another experiment is desired to be analyzed, then the user 
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needs to unload the current experiment from the application before loading 
another. 
 
Each of the parallel executions (processes, threads, ranks, GPUs), called 
“components” in O|SS, are listed under the “GPU Compute / Data Transfer Ratio” or 
“Thread Groups” item in the following format: 
 

<hostname>-<process id>-<rank> OR <hostname>-<process id>-<rank>-<thread 
id> 

 
Where: 
 

<hostname> is the name of the computer (with domain name removed) 
             <process id> is the UNIX process id 
             <rank> is the MPI rank number (if the application is an MPI program) 
             <thread id> is an unique O|SS GUI thread id for each POSIX thread id 
 
The checkbox to the left of the component name is used to select which components 
will be included in the performance views on the right-hand side of the main 
window.  Upon initial load of the experiment all components are selected.  Thus, any 
metric views in the Metric Table View will include all components in the 
computations.  
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Figure 17 - Experiment Panel 

 
 
Under the component items is another subtree level enumerating which sample 
counters were configured during experiment collection.   
 
The right-hand side of the main window has the three sections providing the user 
detailed information collected by the experiment collector.  The upper section is the 
Metric Plot View which provides graphical views of the metric data, including: event 
timelines, line graphs and bar graphs.  The middle section is the Metric Table View 
and is where performance information is displayed in table views.   The user can 
control the type of information displayed in the Metric Table View by using three 
different combo boxes labelled “Mode”, “Metric” and “View”.  The “Mode” combo-
box allows the user to select the metric view mode.  The following modes have been 
implemented which match the O|SS CLI commands to provide basic metric 
information: load balance, calltree, metric comparisons for selected threads, 
processes, ranks or hosts and detailed event trace listings.  The available mode 
options are: “Metric”, “Load Balance”, “CallTree”, “Compare”, “Compare By Process”, 
“Compare By Rank”, “Compare By Host”, “Trace” and “Details”.  The mode options 
available for a particular experiment type varies according to the collector type – ie 
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sampling or trace.  For example, sampling experiments such as “hwc”, “hwctime” 
and “hwcsamp” do not provide event traces.  Thus, the “Trace” or “Details” mode 
option would not be available.  Other experiment types do not provide load balance 
or calltree views.  Thus, the “Load Balance” or “CallTree” modes would not be 
available.  All experiments provide the metric view mode and each experiment has a 
default metric view which in most cases is similar to O|SS CLI default view (as 
shown with the “expview” command). 
 
Detailed event trace views are provided by the “Details” or “Trace” modes.  The 
“Details” mode is provided only for CUDA experiments and provides detailed 
examination of the CUDA events, filtered by type - Kernel Executions, Data Transfers 
or Both (All Events).  By default, the “Time (ms)” column is sorted in ascending 
order.  The “Trace” mode provides the event trace view for all other experiments. 
 
For the “Metric” view mode, the user is able to view metric information, including: 
time, percentage, defining location, thread minimum, thread maximum and thread 
average.  The metric type shown is selected using the “Metric” combo-box and the 
metric view can be changed with the “View” combo-box. 
 
An analogy on how the Metric Table Views correlate to the O|SS CLI may be useful.   
The “Metric” option in the “Mode” combo-box provides information obtained from 
the O|SS CLI “expview” command.  Within the “Metric” combo-box are a subset of 
the metrics that can be selected using the O|SS CLI “expview -m” command option; 
whereas the “View” combo-box are views selectable using the O|SS CLI “expview -v” 
command option.  Many of the metrics selectable via the “-m” option are 
automatically included as columns in the table view – such as thread minimum, 
maximum and average metric values.  The “Compare By Host”, “Compare By 
Process” and “Compare By Rank” options in the “Mode” combo-box provides 
information obtained by the O|SS CLI “expcompare” command.  The O|SS CLI 
“expcompare” command has “-h”, “-p”, and “-r” options to specify which hosts, 
processes or ranks to compare and correlate to the “Compare By Host”, “Compare 
By Process” and “Compare By Rank” selections.  The O|SS CLI has no ability to 
compare components which is possible in the O|SS GUI using the “Compare” 
selection.  Components is a termed used by the O|SS CLI for each parallel thread of 
execution.  Using the O|SS CLI these components can be listed using the “expstatus” 
command.  The “expstatus” command also lists the available metrics (ref. Figure 6, 
“expstatus command”).  
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Figure 6 - expstatus command 

 
The hosts, processes, ranks or components to compare are selected from the 
Experiment Panel.  Based on the selections a set of unique hostnames, process 
identifiers or thread identifiers is generated and provides sets of performance data 
to use in the calculation of Metric Table View information.  Currently the component 
selections are not used in the generation of the Metric Plot View event timelines, line 
graphs or bar graphs.  In the near future a better means to select hostnames, rank 
numbers, process and thread identifiers will be implemented. 
 
For the “Metric” view the time interval for metric computations depends on the 
visible range of the graph timeline and for the “Details” or “Trace” modes the time 
interval is used to filter which trace events are shown in the table.  As the user 
changes the graph timeline by zooming into the graph or panning the timeline left or 

 

$ openss -cli -f ./SHOC-S3D-cuda-0.openss 

openss>>[openss]: The restored experiment identifier is:  -x 1 

openss>>expstatus 

 

Experiment definition 

{ # ExpId is 1, Status is Terminated, Saved database is ./SHOC-S3D-cuda-0.openss 

    Performance data spans 4.904680 seconds  from 2017/04/07 14:25:09 to 2017/04/07 

14:25:14 

(none) 

  Executables Involved: 

    (none) 

  Currently Specified Components: 

    -h maia10 -p 62868 -t -1 

    -h maia10 -p 62868 -t 0 -r 6 

    -h maia11 -p 17771 -t -1 

    -h maia11 -p 17771 -t 0 -r 7 

    -h maia4 -p 15179 -t -1 

    -h maia4 -p 15179 -t 0 -r 0 

    -h maia5 -p 79517 -t -1 

    -h maia5 -p 79517 -t 0 -r 1 

    -h maia6 -p 17084 -t -1 

    -h maia6 -p 17084 -t 0 -r 2 

    -h maia7 -p 93435 -t -1 

    -h maia7 -p 93435 -t 0 -r 3 

    -h maia7 -p 93435 -t 4 -r 3 

    -h maia8 -p 71904 -t -1 

    -h maia8 -p 71904 -t 0 -r 4 

    -h maia8 -p 71904 -t 1 -r 4 

    -h maia9 -p 45031 -t -1 

    -h maia9 -p 45031 -t 0 -r 5 

    -h maia9 -p 45031 -t 1 -r 5 

  Previously Used Data Collectors: 

    cuda 

  Metrics: 

    cuda::count_counters 

    cuda::count_exclusive_details 

    cuda::exec_exclusive_details 

    cuda::exec_inclusive_details 

    cuda::exec_time 

    cuda::periodic_samples 

    cuda::xfer_exclusive_details 

    cuda::xfer_inclusive_details 

    cuda::xfer_time 

  Parameter Values: 

  Available Views: 

    cuda 

} 
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right, the Metric Table View is dynamically updated.  There is a delay threshold 
between the time the user pauses or completes timeline changes and the actual 
kickoff of the processing involved for the Metric Plot or Metric Table View updates.  
 
The row items in the table view can be ordered by clicking on a column header (ref. 
Figure 7 and 8) to toggle between ascending and descending order using the 
selected column as the key for sorting.  Notice the upward and downward pointing 
triangle icons in the column header being used to sort the rows in the table.  The 
upward triangle icon represents ascending order sorting and the downward triangle 
icon is descending order. 
 
 

 
Figure 7 - Column sorting via mouse clicks on column header (ascending order) 

 
 

 
Figure 8 - Column sorting via mouse clicks on column header (descending order)- 

 
The user can alter the column ordering by holding the left-mouse button when the 
mouse cursor is over one of the columns and dragging it into a new position (ref 
Figure 9, “Changing Column Ordering”).  Notice the dashed red line in the 
screenshot of Figure 9 showing the rubber-band effect as the “% of Time” column is 
dragged to the new location after the “Function (defining location)” column.  The “% 
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of Time” text follows the cursor location as the user slides the mouse to the right.  
The text has a faded transparent look. 
 

 
Figure 9 - Changing Column Ordering 

 
The lower section on the right-hand side is the Source Code View.  When the user 
has activated the “Metric” mode of the Metric Table View, any selections of a row in 
the table under the “Function (defining location)” column cause the corresponding 
line of the source code in the Source Code View to be displayed.  Updates to the 
Source Code View is possible in either the “Functions”, “Statements” or “Loops” 
metric view (but not the “Linked Objects” metric view) assuming the source code is 
available on the host machine.  If the user makes a selection in which the source-
code cannot be found, then the Source-Code View will be empty. 
 
If the source code is not physically located in the same location as when the 
executable was compiled (perhaps on another computer), then the user can specify 
the mapping between the original development machine location and the location 
on the local host machine.  The dialog in which the mappings can be specified is 
activated from a context menu.  The context menu is activated by holding down the 
right-mouse button when the cursor is over the row of interest under the “Function 
(defining location)” column.  When the context menu appears near the location of 
the cursor, the user must select the “Modify Path Substitutions” menu item to 
activate the “Modify Path Substitutions Dialog” (ref Figure 10, “Modify Path 
Substitutions Dialog”). 
 
The “Modify Path Substitutions Dialog” shows a table with two columns – the left 
column shows the original paths to the source code when the application was 
compiled and the right column shows the corresponding paths on the local host 
machine.   When the dialog is activated a new entry in the table is created with the 
left column, “Original Path”, filled in from the information in the metric data.  
 
 



 173 

 
Figure 10 - Modify Path Substitutions Dialog 

 
There are two methods in which the user can provide entry for the “New Path” item.  
The user can manually enter or cut-and-paste the absolute file path for the source-
code into the text entry area.  Alternatively there is a context-menu that can be 
activated by holding down the right-mouse button (ref Figure 11, “Modify Path 
Substitutions Dialog – Select File”).  Once the context-menu appears, the user can 

click on the “Select File” menu item, after which the “Select Directory For File” dialog 
appears (ref Figure 12, “Select Directory For File Dialog”). 

 

This is initially blank and the 
user enters the path of the 
corresponding source-code 

file on the local host 
machine. 

Pre-populated in accordance with 
the item selected in the Metric Table 

View when this dialog is activated.  
This represents the original location 

of the particular source-code file 
when the application was built. 
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Figure 11 - Modify Path Substitutions Dialog – Select File 

 

 
Figure 12 - Select Directory For File Dialog 
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Figure 13 - Completed New Path Entry 

 

Filtering of items shown in the Metric Table View can achieved by using the “Define 

View Filters” dialog also activated via a context-menu by holding down the right-
mouse button anywhere in the table area.  When the context menu appears near the 
location of the cursor, the user must select the “Define View Filters” menu item to 
activate the “Define View Filters” dialog (ref Figure 14, “Define View Filters Dialog”). 
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Figure 14 - Define View Filters Dialog 

 
 

13.6.1.2 Case Studies of Using the O|SS GUI to Analyze Experiment Results 
 
Run the O|SS GUI passing the name of the experiment database (.openss) filename 
using the “-f <database name>“ command-line option or using the “File->Load O|SS 
Experiment” menu item once the application is launched.  
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13.6.1.2.1 Using the O|SS GUI to Analyze “pcsamp” Experiment Results 
 
Upon loading the “pcsamp” experiment the default view appears showing a bar 
graph of the time distribution across the application functions attributable to the 
recorded PC values.  These values are also shown in the Metric Table View below 
the bar graph (ref Figure 15, “pcsamp experiment default view”). 
 

 
Figure 15 - pcsamp experiment default view 

Generate the “Statements” view for the Metric Table View by selecting the 
“Statements” option in the “View” combo-box. 
 
Define a filter for the Metric Table View to only display the statements in the 
“main.cpp” source-code file by activating the context-menu available by pressing the 
right-mouse button (ref Figure 17, “Activate Define View Filters Dialog”).   
 
Within the “Define View Filters” dialog select “Function (defining location)” from the 
“Column Name” combo-box and enter “main.cpp” in the “Filter Expression” text 
entry area (ref Figure 18, “Define Filter for Metric Table View”).  Finally, 
immediately apply the filter and close the “Define View Filters” dialog by pressing 
the “Apply” button. 
 
Select one of the table cells under the “Function (defining location)” column to load 
the “main.cpp” file in the Source-Code View and center the display at the line 
number of the item selected.  Maximize the size of the Source-Code View to examine 
the metric value annotations (ref Figure 19, “Source-Code View with Metric Value 
Annotations”). 
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Let’s examine the source-code associated with the experiment being discussed in 
this example (ref Figure 16, “Source-Code Snippet - normal (Gaussian) 
distribution”).  Lines 25 and 26 initializes the random number generator based on 
the Mersenne Twister algorithm.  Line 32 creates an instance of the 
std::normal_distribution template class to generate random numbers of the default 
template parameter ‘double’ type according to the Normal (or Gaussian) random 
number distribution where the mean is 5 and the standard deviation is 2.  Line 36 is 
a FOR loop to cause some large number of iterations to allow the periodic sampling 
of the collector to produce a valid statistical sample.  Line 37 calls the operator() of 
the std::normal_distribution class to generate the next random number in the 
distribution and computes the nearest integer value.  Based on values produces 
from the Normal distribution specified, the switch statement at line 38 jumps to one 
of the case branches at lines 39 to 49 invoking one of the f0() to f10() functions.  For 
this Normal distribution there may be branches to the default case. 
 

 
Figure 16 - Source-Code Snippet - normal (Gaussian) distribution 

 
Based on the Normal distribution specified, the results look as expected for the 
sampling characteristics of the collector at the time the experiment was run.  The 
colors used as the background fill for lines of code having metric value annotations 
indicate the relative magnitude of time spent at the line of code.  From low to high 
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relative magnitude the colors range from green (light and dark) to yellow (light and 
dark) to red (light and dark). 
 

 
Figure 17 - Activate Define View Filters Dialog 

 
 

  
Figure 18 - Define Filter for Metric Table View 
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Figure 19 - Source-Code View with Metric Value Annotations 

Let’s look at an alternate implementation using a uniform distribution.  The source-
code associated with the experiment being discussed in this example (ref Figure 20, 
“Source-Code Snippet – uniform distribution”).  Lines 24 and 25 initializes the 
random number generator based on the Mersenne Twister algorithm.  Line 32 
creates an instance of the std::uniform_int_distribution template class to generate 
random numbers of the default template parameter ‘int’ type over the closed 
interval [ 0, 10 ].  Line 34 declares a variable named ‘value’ and initializes to zero.  
Line 36 is a FOR loop to facilitate some large number of iterations to allow the 
periodic sampling of the collector to hopefully produce valid statistical samples.  
Line 37 calls the operator() of the std::uniform_int_distribution class to generate the 
next random number in the distribution.  Since the random number should be in the 
closed interval [ 0, 10 ] the switch statement at line 38 should invoke one of the case 
branches at lines 39 to 49 invoking one of the f0() to f10() functions.  The default 
branch should never be called in this implementation as all possible values of 
‘randomNum’ are covered by the case branches and is provided to eliminate 
compiler warnings. 
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Figure 20 - Source-Code Snippet - uniform distribution 

 
 
Based on the uniform distribution specified, the results look as expected for the 
sampling characteristics of the collector at the time the experiment was run.  The 
annotated metric values shown in the Source Code View along with the color-coded 
background to the source-code indicate that each case of the switch statement is 
executed at about the same frequency and are highlighted with the same green color 
(ref Figure 21, “Source-Code View with Metric Value Annotations – uniform 
distribution”). 
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Figure 21 - Source-Code View with Metric Value Annotations – uniform distribution 

 

13.6.1.2.2 Using the O|SS GUI to Analyze “usertime” Experiment Results 
 
Upon loading the “usertime” experiment the default view appears showing a bar 
graph of the exclusive time distribution across the application functions attributable 
to the recorded PC values.  These values are also shown in the Metric Table View 
below the bar graph (ref Figure 22, “usertime experiment default view”). 
 
In order to configure the views to see just the statements within the main source file 
(main.cpp), configure the application similar to the steps discussed for the “pcsamp” 
experiment and shown in Figures 15-17 (ref. Figure 23, “Source-Code View with 
Metric Value Annotations (usertime)”).  Since the source-code algorithm is expected 
to exhibit characteristics of a normal (or Gaussian) distribution having a mean of 5 
and standard deviation of 2, the results look similar to those observed with the 
“pcsamp” experiment (ref Figure 19, “Source-Code View with Metric Value 
Annotations”). 
 
Unlike the “pcsamp” experiment, the “usertime” experiment collector records call 
stacks for each sample.  Thus, the O|SS GUI takes advantage of the availability of the 
call stack information to construct a calltree of all caller-callee pairs that had 
occurred during any particular experiment.  The user can generate the calltree 
graph and table by selecting the “CallTree” option from the “Mode” combo-box (ref 
Figure 24, “Calltree Graph and Table Views” and Figure 25, “Calltree Graph Zoomed 
into ‘f1’ to ‘f10’ Functions”). 
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Figure 22 - usertime experiment default view 

 
 
 

 
Figure 23 - Source-Code View with Metric Value Annotations (usertime) 
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Figure 24 - Calltree Graph and Table Views 

 
 
 

 
Figure 25 - Calltree Graph Zoomed into ‘f1’ to ‘f10’ Functions 
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13.6.1.2.3 Using the O|SS GUI to Analyze “hwc” Experiment Results 
 
Upon loading the “hwc” experiment the default view appears showing a bar graph of 
the hardware counter threshold exceeded counts across the application functions 
attributable to the recorded PC values.  These values are also shown in the Metric 
Table View below the bar graph (ref Figure 26, “hwc experiment default view”). 
 

 
Figure 218 - hwc experiment default view 

 

13.6.1.2.4 Using the O|SS GUI to Analyze “hwctime” Experiment Results 
 
Upon loading the “hwctime” experiment the default view appears showing a bar 
graph of the hardware counter threshold exceeded counts across the application 
functions attributable to the recorded PC values.  These values are also shown in the 
Metric Table View below the bar graph (ref Figure 27, “hwctime experiment default 
view”). 
 
The hwctime experiment default view is a function-level view using the exclusive-
time metric.  In order to see a statement level view, select “Statements” in the “View” 
combo-box.  Consequently, a new graph tab is added to the Metric Plot View titled 
“Exclusive Counts (Statements)” and the Metric Table View shows the metric values 
for the statement-level view using the exclusive-time metric (ref Figure 28, 
“hwctime exclusive-time metric statement-level view”).  Clicking on the “Exclusive 
Counts (Statements)” tab shows the bar graph of the hardware counter threshold 
exceeded counts across the application source-code statements attributable to the 
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recorded PC values.  If there are too many statements (or any other view type) listed 
in the x-axis, the labels will only show if they can be legibly displayed.  Otherwise, 
only by scrolling the mouse-wheel to zoom into the graph area and once the labels 
can be displayed without overlapping will they be displayed (ref Figure 29, “zoomed 
graph view now showing x-axis labels”).  Figure 29 has also been panned to just 
show the statements occurring in the main.cpp file.  The label for a statement-level 
view is “<source-code filename>, <source-code line-number>”.  So all the statements 
in a particular source-code file will be listed together. 
 

 
Figure 219 - hwctime experiment default view 
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Figure 28 - hwctime exclusive-time metric statement-level view 

 
 
 

 
Figure 29 - zoomed graph view now showing x-axis labels 

 
The screenshot in Figure 30, “HW counter values annotations for statement-view” 
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Figure 30 - HW counter values annotations for statement-view 

 
 

13.6.1.2.5 Using the O|SS GUI to Analyze “hwcsamp” Experiment Results 
 
Upon loading the “hwcsamp” experiment the default view appears showing a bar 
graph of the hardware counter counts across the application functions attributable 
to the recorded PC values.   For each function there is a stacked bar graph of each of 
the hardware counters configured for use when the experiment was performed.  
These values are also shown in the Metric Table View below the bar graph (ref 
Figure 31, “hwcsamp experiment default view”). 
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Figure 31 - hwcsamp experiment default view 

The application being examined is a C++ program which performs a matrix-matrix 
multiplication problem A = B * C using six different combinations of nested for 
loops: 
 

 Nested FOR I, J, K loops 
 Nested FOR I, K, J loops 
 Nested FOR J, I, K loops 
 Nested FOR J, K, I loops 
 Nested FOR K, I, J loops 
 Nested FOR K, J, I loops 

 
The source-code for this was obtained from the following website:  
 

http://people.sc.fsu.edu/~jburkardt/cpp_src/mxm/mxm.html 
 
For this experiment the following three PAPI events were configured: 
 

 PAPI_TOT_CYC - Total cycles 
 PAPI_TOT_INS - Instructions issued 
 PAPI_L1_DCM - Level 1 data cache misses 

 
The output from the “osshwcsamp” experiment execution can be seen in Figure 32, 
“osshwcsamp experiment output”. 
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This example demonstrates how important it is to improve spatial and temporal 
locality of memory access.  Proper alignment of the code and data also helps but this 
example doesn’t demonstrate that aspect.  The six nested FOR loop variants exhibit 
different behavior affecting the L1 cache.  If the programmer can identify ways to 
improve L1 cache usage this also improves the usage of the other cache levels and 
thus application performance. 
 

Figure 32 - osshwcsamp experiment output 

 
The “mxm” application calculates megaFLOPS for each of the six variants of nested 
FOR loop ordering.  The highest megaFLOPS values computed by “mxm” are for the 
JKI and KJI variants.  These are also the variants that show the lowest CPU cycles, 
instructions issued and Level 1 data cache misses (ref Figure 31, “hwcsamp 
experiment default view”).  Figure 31 also shows the exclusive time to run each of 
the six FOR loop variants.  The “usertime” experiment can be used to get the similar 

 

$ osshwcsamp "./mxm 1024 1024 1024" PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_L1_DCM  

[openss]: hwcsamp using default sampling rate: "100".  

[openss]: hwcsamp using user specified papi events: "PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_L1_DCM"  

Creating topology file for frontend host eluveitie  

Generated topology file: ./cbtfAutoTopology  

Running hwcsamp collector.  

Program: ./mxm 1024 1024 1024  

Number of mrnet backends: 1  

Topology file used: ./cbtfAutoTopology  

executing sequential program: cbtfrun -c hwcsamp --mrnet  ./mxm 1024 1024 1024  

07 December 2017 07:57:01 PM  

 

MXM:  

  C++ version  

  Compute matrix-matrix product A = B * C  

 

  Matrix B is 1024 by 1024  

  Matrix C is 1024 by 1024  

  Matrix A will be 1024 by 1024  

 

  Number of floating point operations = 2.14748e+09  

  Estimated CPU time is 59652.3 seconds.  

 

  Method     Cpu Seconds       MegaFlopS  

  ------  --------------  --------------  

  IKJ            13.0446         164.626  

  IJK            3.45972         620.711  

  JIK            4.14068          518.63  

  JKI           0.646093          3323.8  

  KIJ            12.9603         165.697  

  KJI           0.856215         2508.11  

 

MXM:  

  Normal end of execution.  

 

07 December 2017 07:57:36 PM  

All Threads are finished.  

default view for /devel/oss-tests/matrix-multiplication-ijk/mxm-hwcsamp-46.openss  

[openss]: The restored experiment identifier is:  -x 1  

Performance data spans 35.128076 seconds  from 2017/12/07 19:57:01 to 2017/12/07 19:57:36  

 

Exclusive    % of CPU  papi_tot_cyc  papi_tot_ins  papi_l1_dcm Comp.  papi_tot_cyc%  Function (defining location)  

 CPU time        Time Intensity  

in  

 seconds.  

13.040000   37.129841  34201150429   9675496317  2893834791 0.282900     36.881472  mxm_ikj(int, int, int, double*, double*) (mxm: main.cpp,539)  

12.960000   36.902050  34166036674   9678560525  2790517607 0.283280     36.843606  mxm_kij(int, int, int, double*, double*) (mxm: main.cpp,796)  

 4.140000   11.788155  11000097217   7528536962  1126413804 0.684406     11.862167  mxm_jik(int, int, int, double*, double*) (mxm: main.cpp,632)  

 3.460000    9.851936   9262387573   7528557181  1217726533 0.812810      9.988275  mxm_ijk(int, int, int, double*, double*) (mxm: main.cpp,452)  

 0.850000    2.420273   2261301881   4309294480   135765248 1.905670      2.438519  mxm_kji(int, int, int, double*, double*) (mxm: main.cpp,882)  

 0.640000    1.822323   1769278061   4275332490   134423696 2.416428      1.907935  mxm_jki(int, int, int, double*, double*) (mxm: main.cpp,710)  

 0.020000    0.056948     53392125     74010256     4177386 1.386164      0.057576  __GI_memset (libc-2.19.so: memset.S,53)  

 0.010000    0.028474     18963464     28387634       14802 1.496965      0.020450  matgen(int, int, int*) (mxm: main.cpp,364)  

35.120000  100.000000  92732607424  43098175845  8302873867 0.464758    100.000000  Report Summary 
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exclusive time results (ref Figure 34, “exclusive times for nested FOR loop variants 
using the usertime experiment”). 
Using the data collected from the PAPI_TOT_INS and PAPI_TOT_CYCLES events, the 
Instructions Per Cycle (IPC), also referred to as Computational Intensity (CI), can be 
calculated using the following formula: 
 

Instructions Per Cycle (IPC) = PAPI_TOT_INS / PAPI_TOT_CYCLES 
 

Using the data shown in Figure 31, “hwcsamp experiment default view” or in Figure 
32, “osshwcsamp experiment output”, the Instructions Per Cycle (IPC) or 
Computational Intensity (CI), can be calculated.  Table 1, “matrix-matrix 
multiplication FOR loop variant comparison”, provides a comparison of the IPC 
values for each of the six FOR loop variants. 
 

Metric IJK IKJ JIK JKI KIJ KJI 
PAPI_TOT_INS 752855718

1 
9675496317 7528536962 

427533249
0 

9678560525 
430929448
0 

PAPI_TOT_CY
C 

926238757

3 

3420115042

9 

1100009721

7 

176927806

1 

3416603667

4 

226130188

1 

IPC 0.813 0.283 0.684 2.416 0.283 1.906 

MFLOPS 620.711 164.626 620.711 3323.8 165.697 2508.11 

Table 1- matrix-matrix multiplication FOR loop variant comparison 

The source-code for the JKI and KJI variants are shown in Figure 33, “JKI / KJI 
variant source-code”.   There has been a slight modification to the source-code 
provided by John Burkardt in the reference cited above.  The difference is the loop 
to initialize the array ‘a’ to zeros has been replaced with std::fill(). 
 
 

double  mxm_jki ( int n1, int n2, int n3, 

                  double b[], double c[] ) 

{ 

  double* a = new double[n1*n3]; 

   

  std::fill( a, a+n1*n3, 0 ); 

 

  double cpu_seconds = cpu_time(); 

 

  for ( j = 0; j < n3; j++ ) 

  { 

    for ( k = 0; k < n2; k++ ) 

    { 

      for ( i = 0; i < n1; i++ ) 

      { 

        a[i+j*n1] += ( b[i+k*n1] * 

c[k+j*n2] ); 

      } 

    } 

  } 

 

  cpu_seconds = cpu_time() – cpu_seconds; 

 

  delete[] a; 

 

  return cpu_seconds; 

} 

 

 

double mxm_kji ( int n1, int n2, int n3, 

                 double b[], double c[] ) 

{ 

  double* a = new double[n1*n3]; 

   

  std::fill( a, a+n1*n3, 0 );  
 

  double cpu_seconds = cpu_time(); 

 

  for ( k = 0; k < n2; k++ ) 

  { 

    for ( j = 0; j < n3; j++ ) 

    { 

      for ( i = 0; i < n1; i++ ) 

      { 

        a[i+j*n1] += ( b[i+k*n1] * 

c[k+j*n2] ); 

      } 

    } 

  } 

 

  cpu_seconds = cpu_time() – cpu_seconds; 

 

  delete[] a;  
 

  return cpu_seconds; 

} 
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Figure 33 - JKI / KJI variant source-code 
 

 
Figure 34 - exclusive times for nested FOR loop variants using the usertime experiment 

 

13.6.1.2.6 Using the O|SS GUI to Analyze “omptp” Experiment Results 
 
Upon loading the “omptp” experiment the default view appears showing the 
exclusive time metric values for the functions view (ref Figure 35, “omptp 
experiment default view”).  Currently there is no graph generated in the Metric Plot 
View. 
 

 
Figure 35 - omptp experiment default view 
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A calltree graph can be generated by selecting the “CallTree” option in the “Mode” 
combo-box.  After processing all call stacks recorded from the experiment and 
stored in the database file, a directed graph is displayed in the Metric Plot View.  The 
directed graph has functions as the nodes and the edges show the path from the 
caller function to callee function (ref Figure 36, “calltree graph showing caller-callee 
relationships”). 
 
A load balance metric view can be generated by selecting the “Load Balance” option 
in the “Mode” combo-box.  The load balance view shows which threads have the 
minimum and maximum time for each function as well as which thread is closest to 
the average time (ref Figure 37, “omptp load balance view”). 
 
 
 

 
Figure 36 - calltree graph showing caller-callee relationships 
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Figure 37 - omptp load balance view 

 
 

13.6.1.2.7 Using the O|SS GUI to Analyze “mem” Experiment Results 
 
Upon loading the “mem” experiment the default view appears showing a line graph 
of the new high-water marks along the experiment timeline.   There is also a table 
view shown in the Metric Table View (ref Figure 38, “mem experiment default 
view”) showing detailed memory event information.  Figure 39, “source-code with 
10 memory leaks” shows the source-code in which all memory allocations are 
leaked and Figure 40, “source-code with 5 memory leaks” shows the source-code in 
which half the memory allocations are leaked. 
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Figure 38 - mem experiment default view 

 
 
 
 
 

Figure 39 – 
source-code with 10 memory leaks 

 
 
 
 
 
 
 
Figure 40 – 

source-code with 5 memory leaks 

Observe the Metric Table View in Figure 41, “ten memory leaks associated with 
Figure 39 source-code” which shows the trace metric view listing all leaked memory 
allocations.  There are a total of 10 memory leaks.  Upon the selection of one of the 
cells under the “Functions (defining location)” column the associated source-code (if 
available) will be shown in the Source-Code View underneath the Metric Table View.  
Figure 41 shows that line 24 of the main.cpp file was selected which caused the 
main.cpp file to be loaded into the Source-Code View and the view centered at line 
24. 
 

 

    for (int i=0; i<10; ++i) { 

        char* buffer = (char *) malloc( dis(mt) ); 

 

        usleep( sleepdis(mt)*1000*1000 ); 

    } 

    for (int i=0; i<10; ++i) {  

        const int allocation( dis(mt) );  

        char* buffer = (char *) malloc( allocation );  

 

        usleep( sleepdis(mt)*1000*1000 );  

        if ( i % 2 == 0 ) {  

            free( buffer );  

        }  

    } 
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Figure 41 – ten memory leaks associated with Figure 39 source-code 

 
Observe the Metric Table View in Figure 41, “five memory leaks associated with 
Figure 40 source-code” which shows the trace metric view listing a total of five 
leaked memory allocations.  Upon the selection of one of the cells under the 
“Functions (defining location)” column the associated source-code (if available) will 
be shown in the Source-Code View underneath the Metric Table View.  Figure 42 
shows that line 27 of the main.cpp file was selected which caused the main.cpp file 
to be loaded into the Source-Code View and the view centered at line 27.  
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Figure 42 – five memory leaks associated with Figure 40 source-code 

 

13.6.1.2.8 Using the O|SS GUI to Analyze “io” Experiment Results 
 
Upon loading the “io” experiment the default view appears showing the exclusive 
time metric values for the functions view.  Currently there is no graph generated in 
the Metric Plot View.  However, a calltree graph showing all the caller-callee 
relationships captured during the experiment execution can be generated and 
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode” 
combo-box (ref Figure 43, “time metric view (with calltree graph)”). 
 
For the calculation of metric values, the following I/O events (functions in the GNU C 
Library “libc”) are monitored by default:  close, creat, creat64, dup, dup2, lseek, 
lseek64, open, open64, pipe, pread, pread64, pwrite, pwrite64, read, readv, write, 
writev.  A subset of these can be specified when the “ossio” convenience script is 
executed. 
 
Additional views of possible interest to help point out imbalance of processing 
between processes or ranks are the Compare By Process (ref Figure 44, “compare by 
process view (with calltree graph)”) and Compare By Rank (ref Figure 45, “compare 
by rank view (with calltree graph)”) views.  These are generated by selecting the 
“Compare By Process” or “Compare By Rank” option in the “Mode” combo-box.  In 
addition, the Load Balance view allows the user to see the minimum, maximum and 
average times for each function captured during the experiment execution.  Along 
with the minimum and maximum time values the associated component name is 
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identified.  For the average time value the nearest component is identified by name 
(ref Figure 46, “load balance view (with calltree graph)”). 
 

 
Figure 43 - time metric view (with calltree graph) 

 

 
Figure 44 - compare by process view (with calltree graph) 
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Figure 45 - compare by rank view (with calltree graph) 

 
 

 
Figure 46 - load balance view (with calltree graph) 
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13.6.1.2.9 Using the O|SS GUI to Analyze “iop” Experiment Results 
 
Upon loading the “iop” experiment the default view appears showing the exclusive 
time metric values for the functions view.  Currently there is no graph generated in 
the Metric Plot View.  However, a calltree graph showing all the caller-callee 
relationships captured during the experiment execution can be generated and 
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode” 
combo-box (ref Figure 47, “iop experiment time metric view (with calltree graph)”).  
 
For the calculation of metric values, the following I/O events (functions in the GNU C 
Library “libc”) are monitored by default:  close, creat, creat64, dup, dup2, lseek, 
lseek64, open, open64, pipe, pread, pread64, pwrite, pwrite64, read, readv, write, 
writev.   A subset of these can be specified when the “ossiop” convenience script is 
executed. 
 

 
Figure 47 - iop experiment time metric view (with calltree graph) 

 
Additional views of possible interest to help point out imbalance of processing 
between processes or ranks are the Compare By Process (ref Figure 48, “iop 
experiment compare by process view (with calltree graph)”) and Compare By Rank 
(ref Figure 49, “iop experiment compare by rank view (with calltree graph)”) views.  
These are generated by selecting the “Compare By Process” or “Compare By Rank” 
option in the “Mode” combo-box.  In addition, the Load Balance view allows the user 
to see the minimum, maximum and average times for each function captured during 
the experiment execution.  Along with the minimum and maximum time values the 
associated component name is identified.  For the average time value the nearest 
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component is identified by name (ref Figure 50, “iop experiment load balance view 
(with calltree graph)”). 
 

 
Figure 420 - iop experiment compare by process view (with calltree graph) 
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Figure 49 – iop experiment compare by rank view (with calltree graph) 

 

 
Figure 50 – iop experiment load balance view (with calltree graph) 
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13.6.1.2.10 Using the O|SS GUI to Analyze “iot” Experiment Results 
 
The “iot” experiment provides extended I/O tracing capability that the “io” and “iop” 
experiments do not.  The “iot” experiment collects additional information regarding 
a traced function call, the function parameters and the return value.  For many of the 
traced I/O functions the return value is the number of bytes read or written.  Since 
the I/O trace includes the time of the call and duration, the exact order of events can 
be ascertained. 
 
Upon loading the “iot” experiment, the default view appears showing the I/O event 
timeline and exclusive time metric values for the functions view.  The I/O event 
timeline appears in the Metric Plot View and maps each I/O event along a timeline 
covering the entire time duration of the performance data collected during the 
experiment execution. 
 
The following I/O events (functions in the GNU C Library “libc”) are monitored by 
default:  close, creat, creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, 
pread64, pwrite, pwrite64, read, readv, write, writev.   A subset of these can be 
specified when the “ossiot” convenience script is executed. 
 
Additional views of interest to help point out imbalance of processing between 
processes or ranks are the Compare By Process (ref Figure 52, “iot experiment 
compare by process view”) and Compare By Rank (ref Figure 53, “iot experiment 
compare by rank view”) views.  These are generated by selecting the “Compare By 
Process” or “Compare By Rank” option in the “Mode” combo-box.  In addition, the 
Load Balance view allows the user to see the minimum, maximum and average 
times for each function captured during the experiment execution.  Along with the 
minimum and maximum time values the associated component name is identified.  
For the average time value the nearest component is identified by name (ref Figure 
54, “iot experiment load balance view”). 
 
The calltree graph showing all the caller-callee relationships captured during the 
experiment execution can be generated and displayed in the Metric Plot View by 
selecting the “CallTree” option in the “Mode” combo-box (ref Figure 55, “iot 
experiment calltree graph”). 
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Figure 51 - iot experiment default view 

 
 
 

 
Figure 52 - iot experiment compare by process view 
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Figure 53 - iot experiment compare by rank view 

 
 

 
Figure 54 - iot experiment load balance view 
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Figure 55 - iot experiment calltree graph 

 
 
 

13.6.1.2.11 Using the O|SS GUI to Analyze “mpi” Experiment Results 
 
Upon loading the “mpi” experiment the default view appears showing the exclusive 
time metric values for the functions view.  Currently there is no graph generated in 
the Metric Plot View.  However, a calltree graph showing all the caller-callee 
relationships captured during the experiment execution can be generated and 
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode” 
combo-box (ref Figure 56, “mpi experiment default view (with calltree graph)”). 
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Figure 56 - mpi experiment default view (with calltree graph) 

 
Additional views of possible interest to help point out imbalance of processing 
between processes or ranks are the Compare By Process (ref Figure 57, “compare by 
process view (with calltree graph)”); Compare By Rank (ref Figure 58, “compare by 
rank view (with calltree graph)”) views; and Compare (ref Figure 59, “compare view 
(with calltree graph)”) views.  These are generated by selecting the “Compare By 
Process”, “Compare By Rank” or “Compare” option in the “Mode” combo-box.  In 
addition, the Load Balance view allows the user to see the minimum, maximum and 
average times for each function captured during the experiment execution.  Along 
with the minimum and maximum time values the associated component name is 
identified.  For the average time value the nearest component is identified by name 
(ref Figure 60, “load balance view (with calltree graph)”). 
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Figure 57 - compare by process view (with calltree graph) 

 
 
 
 

 
Figure 58 - compare by rank view (with calltree graph) 
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Figure 59 - compare view (with calltree graph) 

 
 

 
Figure 60 - load balance view (with calltree graph) 

 

13.6.1.2.12 Using the O|SS GUI to Analyze “mpip” Experiment Results 
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Upon loading the “mpip” experiment the default view appears showing the exclusive 
time metric values for the functions view.  Currently there is no graph generated in 
the Metric Plot View.  However, a calltree graph showing all the caller-callee 
relationships captured during the experiment execution can be generated and 
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode” 
combo-box (ref Figure 61, “mpip experiment default view (with calltree graph)”). 
 

 
Figure 61 - mpip experiment default view (with calltree graph) 

 
Additional views of possible interest to help point out imbalance of processing 
between processes or ranks are the Compare By Process (ref Figure 62, “compare by 
process view (with calltree graph)”); Compare By Rank (ref Figure 63, “compare by 
rank view (with calltree graph)”) views; and Compare (ref Figure 64, “compare view 
(with calltree graph)”) views.  These are generated by selecting the “Compare By 
Process”, “Compare By Rank” or “Compare” option in the “Mode” combo-box.  In 
addition, the Load Balance view allows the user to see the minimum, maximum and 
average times for each function captured during the experiment execution.  Along 
with the minimum and maximum time values the associated component name is 
identified.  For the average time value the nearest component is identified by name 
(ref Figure 65, “load balance view (with calltree graph)”). 
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Figure 62 - compare by process view (with calltree graph) 

 
 

 
Figure 63 - compare by rank view (with calltree graph) 
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Figure 64 - compare view (with calltree graph) 

 
 

 
Figure 65 - load balance view (with calltree graph) 
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13.6.1.2.12 Using the O|SS GUI to Analyze “mpit” Experiment Results 
 
Upon loading the “mpit” experiment the default view appears showing the MPI 
event timeline and exclusive time metric values for the functions view (ref Figure 
66, “mpit experiment default view”). 
 

 
Figure 66 - mpit experiment default view 

 
The MPI event timeline shows every MPI function call that occurred within the given 
graph time range.  For the default view, the graph time range is the full experiment 
time span.  Each MPI function is drawn as a rounded rectangle where the left edge is 
at the time the MPI function was called and the right edge is when the MPI function 
call completed.  Thus, the length of the rectangle can provide visual cues as to the 
magnitude of the MPI call duration. 
 
Select the “Trace” option from the “Mode” combo-box to show a list of detailed 
information regarding each MPI event in the Metric Table View - the MPI function 
name, the time the function was invoked and completed (in milliseconds from the 
relative beginning of the experiment), the duration (in milliseconds), the rank from 
which the MPI function was invoked, the destination rank, size of the message (in 
bytes) and the MPI function return value (ref Figure 67, “MPI event list in Metric 
Table View”). 
 
The graph time range can be manipulated by holding the left-mouse button and 
scrolling the mouse wheel forward to zoom into the graph and scrolling the mouse 
wheel backward to zoom out.  The graph range can be panned to the left or right by 
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holding the left-mouse button down and sliding the mouse to the left or right.  As the 
visible time range is updated by the user, the list of MPI events in the Metric Table 
View is updated to match the visible time range (ref Figure 68, “MPI event list in 
Metric Table View (filtered to graph range – from experiment origin)”) and (ref 
Figure 69, “MPI event list in Metric Table View (filtered to graph range – at 
experiment end range)”). 
 
 

 
Figure 67 - MPI event list in Metric Table View 
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Figure 68 - MPI event list in Metric Table View (filtered to graph range – from experiment origin) 

 
Figure 621 - MPI event list in Metric Table View (filtered to graph range – at experiment end range) 

 
Once the MPI event list is available in the Metric Table View, if an item under the 
“Time Begin (ms)” or “Time End (ms)” table column is selected, the corresponding 
MPI event in the graph timeline is highlighted inside a slightly larger rounded 
yellow rectangle (ref Figure 70, “locating MPI event in graph timeline”).  In addition, 
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as can be seen in Figure 70, a dashed bounding rectangle is also drawn to help locate 
the event within a crowded event timeline (ref Figure 71, “locating MPI event in a 
crowded MPI event timeline”). 
 
The dashed bounding rectangle remains visible for 10 seconds during which time 
the graph may be zoomed into the area being highlighted (ref Figure 72 – “Using 
highlighting cues to zoom into selected event”).  For the “Time Begin (ms)” item 
selected in Figure 70, once the graph has been zoomed to bring the particular MPI 
event into closer view, it can be seen that the event is an MPI_WaitAll call.  
Sometimes even after the graph has been zoomed to the fullest extent the name of 
the MPI function call may not be visible because the MPI function rectangle is still 
too small to have visible text.  However, as the graph range is manipulated, in this 
case by zooming into the graph (i.e. reducing the visible graph range), the contents 
of the Metric Table View are filtered to the visible graph range so that the applicable 
MPI function name may be determined (ref Figure 72, “Using highlighting cues to 
zoom into selected event”). 
 
 
 
 

 
Figure 70 - locating MPI event in graph timeline 

 
 

graph subrange 
bounding rectangle 

yellow 
highlighting 
rectangle 
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Figure 71 - locating MPI event in a crowded MPI event timeline 

 

 
Figure 72 - Using highlighting cues to zoom into selected event 

 
 
 

yellow 
highlighting 
rectangle 

 

graph subrange 
bounding 
rectangle 
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13.6.1.2.13 Using the O|SS GUI to Analyze “pthreads” Experiment Results 
 
Upon loading the “pthreads” experiment the default view appears showing the 
exclusive time metric values for the functions view.  Currently there is no graph 
generated in the Metric Plot View.  However, a calltree graph showing all the caller-
callee relationships captured during the experiment execution can be generated and 
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode” 
combo-box (ref Figure 73, “pthreads experiment default view (with calltree 
graph)”). 
 

 
Figure 73 - pthreads experiment default view (with calltree graph) 

 

13.6.1.2.14 Using the O|SS GUI to Analyze Performance of NVIDIA CUDA Applications 
 
To demonstrate how the new GUI can be used to view CPU and GPU activity within 
an application and generate summary metric results and detailed CUDA event lists 
two different examples will be discussed. 
 
The default view for the CUDA experiment can be seen in Figure 74.  As seen here 
the user changed the main window configuration to completely close the 
“Experiment Panel” normally visible on the left-hand side of the main window so 
that the right-hand panels take the full width of the main window.  This is 
accomplished by using the “handles” in the border area between two panels (ref. the 
annotation in Figure 74 and Figure 75 for a zoomed in view of the splitter handle 
between the Metric Plot and Metric Table Views). 
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Figure 74 - Default View for the GEMM Experiment 

 

 
Figure 75 - Zoomed View of Panel Splitter Handles 

For the screenshot shown in Figure 76 one can see the CUDA events in the graph timeline. The CUDA 
events are currently placed on the CPU graph of the CPU + GPU graph view.  The rational for placing 
them on the CPU graph is so that it does not obstruct the GPU sample counter histogram and the user 
can clearly see the magnitude of each histogram bar as there should be a direct relationship with 
CUDA event activity.  As discussed previously a red pastel colored rectangle corresponds to a Data 
Transfer event and a green pastel colored rectangle to a Kernel Execution event.  Thus, for the graph 
shown in Figure 6 there are two Data Transfer events, followed by 5 Kernel Execution events, 
followed by one Data Transfer event (see annotations on screenshot).  There is another annotation 
linking one of the Kernel Execution events in the Details View to the corresponding graph item in the 
CUDA timeline.  The “Time Begin (ms)” value of the Kernel Execution event will be the x-axis position 
of the left-edge of the Kernel Execution event rectangle on the graph timeline and the “Time End 
(ms)” value will be the position of the right edge of the Kernel Execution event rectangle.  This 
screenshot represents the “Details – All Events” view in the area below the Metric Plot View.  The 
additional two screenshots show the “Details – Data Transfers” and “Details – Kernel Executions” 
views that just contain CUDA Data Transfer or CUDA Kernel Execution events respectively (ref. 

Panel splitter “handle” locations 

Panel splitter “handle” 
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Figures 77 and 78). 

 
 
 
 
 

 
Figure 76 - CUDA Events in Graph Timeline and Details Mode View 

 
For the Data Transfer and Kernel Execution Details views many more columns are 
displayed showing all the available event information.  For the All Events Details 
view only the common set of event information is shown.  
 
As discussed previously the metric values displayed in the “Metric” mode or the 
events listed in the various “Details” mode views use the visible time range in the 
graph timeline as input to the metric computations or filtering logic for which CUDA 
events to show. 
 
 

1 Data Transfer 
Event 

5 Kernel 
Execution 

Events 

2 Data Transfer 
Events 
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Figure 77 - Data Transfer Details View 

 
 

 
Figure 78 - Kernel Execution Details View 

 
Another CUDA example will be discussed starting with the performance data 
collection by running the “osscuda” convenience script on a CUDA program which 
executes several different implementations of matrix multiplication using various 
performance optimization techniques to demonstrate performance differences, 
including: 

1. Tiling 

2. Memory coalescing 

3. Avoiding memory bank conflicts 

4. Increase floating portion by outer product. 

5. Loop unrolling 

6. Prefetching 

A discussion of the matrix multiplication problem, the various performance 
optimization techniques used in the application and source-code can be found at 
https://sites.google.com/site/5kk70gpu/matrixmul-example. 

 

https://sites.google.com/site/5kk70gpu/matrixmul-example
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$ osscuda "./matrixmul"  
[openss]: cuda counting all instructions for CPU and GPU.  
[openss]: cuda using default periodic sampling rate (10 ms).  
[openss]: cuda configuration: "interval=10000000,PAPI_TOT_INS,inst_executed"  
Creating topology file for frontend host eluv  
Generated topology file: ./cbtfAutoTopology  
Running cuda collector.  
Program: ./matrixmul  
Number of mrnet backends: 1  
Topology file used: ./cbtfAutoTopology  
executing sequential program: cbtfrun -c cuda --mrnet ./matrixmul  
[Matrix Multiply Using CUDA] - Starting...  
GPU Device 0: "GeForce GTX 1060" with compute capability 6.1  
 
[CUDA 5632:0] CUPTI_metrics_start(): The selected CUDA device doesn't support continuous GPU event sampling. GPU events 
will be sampled at CUDA kernel entry and exit only (not peridiocally). This also implies CUDA kernel execution will be 
serialized, possibly exhibiting different temporal behavior than when executed without performance monitoring.  
Naive CPU (Golden Reference)  
Processing time: 279.404175 (ms), GFLOPS: 0.360278  
threads: x=16  y=16  
grid: x=24  y=16  
Naive GPU  
Processing time: 1.555232 (ms), GFLOPS: 64.725580  
Total Errors = 0  
Tiling GPU  
Processing time: 0.944896 (ms), GFLOPS: 106.533736  
Total Errors = 0  
Global mem coalescing GPU  
Processing time: 1.168640 (ms), GFLOPS: 86.137128  
Total Errors = 0  
Remove shared mem bank conflict GPU  
Processing time: 0.853728 (ms), GFLOPS: 117.910264  
Total Errors = 0  
Threads perform computation optimization GPU  
Processing time: 0.825312 (ms), GFLOPS: 121.969984  
Total Errors = 0  
Loop unrolling GPU  
Processing time: 0.862624 (ms), GFLOPS: 116.694296  
Total Errors = 0  
Prefetching GPU  
Processing time: 1.037664 (ms), GFLOPS: 97.009520  
Total Errors = 0  
default view for /home/gschultz/Downloads/exercises/cuda/matrixMul/matrixmul-cuda-3.openss  
[openss]: The restored experiment identifier is:  -x 1  
Performance data spans 0.461198 ms  from 2017/02/16 23:26:30 to 2017/02/16 23:26:31  
 
Exclusive       % of  Exclusive  Function (defining location)  
Time (ms)      Total      Count  
           Exclusive  
                Time  
 0.605867  32.275192          1 matrixMul_coalescing(float*, float*, float*, int, int) (matrixmul: matrixMul_coalescing.cuh,31)  
 0.496201  26.433165          1  matrixMul_naive(float*, float*, float*, int, int) (matrixmul: matrixMul_naive.cuh,17)  
 0.257925  13.739944          1  matrixMul_tiling(float*, float*, float*, int, int) (matrixmul: matrixMul_tiling.cuh,31)  
 0.211493  11.266461          1 matrixMul_noBankConflict(float*, float*, float*, int, int) (matrixmul: 
matrixMul_noBankConflict.cuh,32)  
 0.108675   5.789235          1 matrixMul_prefetch(float*, float*, float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31)  
 0.107011   5.700592          1 matrixMul_compOpt(float*, float*, float*, int, int) (matrixmul: matrixMul_compOpt.cuh,31)  
 0.090019   4.795410          1  matrixMul_unroll(float*, float*, float*, int, int) (matrixmul: matrixMul_unroll.cuh,32) 
 

Upon completion of the CUDA experiment the O|SS experiment database will be in 
the same directory as the profiled application.  For this run it is in the file named 
“matrixmul-cuda-3.openss”.  First let’s open the experiment in the O|SS CLI: 
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opens -cli -f matrixmul-cuda-3.openss 
 

 
Once the CLI has loaded the experiment the following series of commands are issued 
to produce metric data: 
 
expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 
expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 
expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 
expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 
 
The following is a capture of the session: 
 
 

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)        Kernel        Kernel      Time 

              Execution     Execution      (ms) 

            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.605867      0.605867      0.605867  0.605867 matrixMul_coalescing(float*, float*, 

float*, int, int) (matrixmul: matrixMul_coalescing.cuh,31) 

 0.496201      0.496201      0.496201  0.496201 matrixMul_naive(float*, float*, float*, 

int, int) (matrixmul: matrixMul_naive.cuh,17) 

 0.257925      0.257925      0.257925  0.257925 matrixMul_tiling(float*, float*, float*, 

int, int) (matrixmul: matrixMul_tiling.cuh,31) 

 0.211493      0.211493      0.211493  0.211493 matrixMul_noBankConflict(float*, float*, 

float*, int, int) (matrixmul: matrixMul_noBankConflict.cuh,32) 

 0.108675      0.108675      0.108675  0.108675 matrixMul_prefetch(float*, float*, 

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31) 

 0.107011      0.107011      0.107011  0.107011 matrixMul_compOpt(float*, float*, float*, 

int, int) (matrixmul: matrixMul_compOpt.cuh,31) 

 0.090019      0.090019      0.090019  0.090019 matrixMul_unroll(float*, float*, float*, 

int, int) (matrixmul: matrixMul_unroll.cuh,32) 

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)          Data          Data      Time 

               Transfer      Transfer      (ms) 

            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.973283      0.973283      0.973283  0.046347 runTest(int, char**) (matrixmul: 

matrixMul.cu,163) 

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)        Kernel        Kernel      Time 

              Execution     Execution      (ms) 

            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.108675      0.108675      0.108675  0.108675 matrixMul_prefetch(float*, float*, 

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31) 

 0.090019      0.090019      0.090019  0.090019 matrixMul_unroll(float*, float*, float*, 

int, int) (matrixmul: matrixMul_unroll.cuh,32) 

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981 

 

Exclusive      Min CUDA      Max CUDA   Average  Function (defining location) 

Time (ms)          Data          Data      Time 

               Transfer      Transfer      (ms) 
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            Time Across   Time Across 

           ThreadIds(ms)  ThreadIds(ms) 

 

 0.287658      0.287658      0.287658  0.047943 runTest(int, char**) (matrixmul: 

matrixMul.cu,163) 

 

 
Now let’s launch the new GUI automatically loading the same experiment database: 
 
 
openss-gui –f matrixmul-cuda-3.openss 
 

 
The series of screenshots shown in Figures 79-82 show the view configuration to 
achieve the same performance metric results in the GUI as obtained using the CLI. 
 

 
Figure 79 - “expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104” 
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Figure 80 - "expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I432.892:444.104" 

 

 
Figure 81 - "expview -vexec -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981" 
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Figure 82 - "expview -vxfer -mexclusive_time,threadmin,threadmax,avg  -I441.384:443.981" 

 
Each screenshot caption indicates the corresponding “expview” command in the 
O|SS CLI. 
 
These screenshots demonstrate that the user can alter the column ordering by 
holding the left-mouse button when the mouse cursor is over one of the columns 
and dragging it into a new position.  The columns were re-ordered to match the 
ordering of the CLI views. 
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14   Special System Support (Static Executables) 

 

14.1 Cray and Blue Gene  
 
The normal mode of operation with respect to running experiments in O|SS doesn’t 
work when the system shared library support is limited.  Users must link the 
collectors into the static executable.  O|SS currently has static support on Cray and 
the Blue Gene P/Q platforms.  Users must relink the application with the osslink 
command to add the O|SS collectors and support libraries into their application. 
 
The osslink command is a script that will help with linking.  Calls to it usually are 
embedded inside an application’s makefile.  The user generally needs to locate the 
makefile target that creates the actual static executable and create a collector target 
that links in the selected collector.  This is an example for re-linking the smg2000 
application: 
 

smg2000: smg2000.o 
   @echo "Linking" $@ "... " 
   ${CC} –o smg2000 smg2000.o ${LFLAGS} 
 
smg2000-pcsamp: smg2000.o 
   @echo "Linking" $@ "... " 
   osslink –v ‐c pcsamp ${CC} ­o smg2000-pcsamp smg2000.o ${LFLAGS} 
 
smg2000-usertime: smg2000.o 
   @echo "Linking" $@ "... " 
   osslink ‐v ‐c usertime ${CC} -o smg2000-usertime smg2000.o ${LFLAGS} 
 
smg2000­hwcsamp: smg2000.o 
   @echo "Linking" $@ "... " 
   osslink ‐v ‐c hwcsamp ${CC} ­o smg2000-hwcsamp smg2000.o ${LFLAGS} 
 
smg2000-io: smg2000.o  
   @echo "Linking" $@ "... " 
   osslink ‐v ‐c io ${CC} ­o smg2000­io smg2000.o ${LFLAGS} 
 
smg2000-iot: smg2000.o 
   @echo "Linking" $@ "... " 
   osslink ‐v ‐c iot ${CC} ­o smg2000­iot smg2000.o ${LFLAGS} 
 
smg2000-mpi: smg2000.o 
   @echo "Linking" $@ "... " 
   osslink ‐v ‐c mpi ${CC} –o smg2000­mpi smg2000.o ${LFLAGS} 

 
Running the re-linked executable will cause the application to write the raw data 
files to the location that the environment variable OPENSS_RAWDATA_DIR specifies.  
Normally, in the cluster environment in which shared/dynamic executables are run, 
the conversion from raw data to an O|SS database happens under the hood.  
However, in this case users must employ the ossutil command to manually create 
the database file.  Of course, users can add the ossutil command to a batch script to 
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eliminate manually issuing the command.  Once the O|SS database files are created, 
users can view them normally with the GUI or CLI. 
 
Here’s an example of a job script that will execute these steps: 
 

#PBS ­q debug 
#PBS ­N smg2000-pcsamp 
… 
# must have a clean raw data directory each run 
rm ­rf /home/USER/smg2000/test/raw 
mkdir /home/USER/smg2000/test/raw 
 
setenv OPENSS_RAWDATA_DIR /home/USER/smg2000/test/raw 
setenv OPENSS_DB_DIR /home/USER/smg2000/test/ 
 
cd /home/jgalaro/smg2000/test 
 
# needs –b to have the original executable path available and match where   
# the application was run when doing ossutil 
aprun ­b ­n 16 /home/USER/smg2000/test/smg2000­pcsamp 
 
# creates a X.0.openss database file, please  
# load the module pointing to openspeedshop before accessing ossutil 
ossutil /home/jgalaro/smg2000/test/raw 

 
The executable path that is used to process symbols after the run is complete must 
match where the executable was run.  The executable path must match the path in 
the raw data that is written to the directory that OPENSS_RAWDATA_DIR 
represents.  If the aprun “-b” option is not used, then the executable is run in a 
temporary system directory and the raw data reflects that directory path for the 
executable instead of the path where the executable is located when the job is 
initiated.  As a result, ossutil will be unable to resolve the symbols. 
 
There have been recent changes to the shared library support in O|SS.  Dynamic 
shared library support is now available in newer Cray and Blue Gene operating 
systems.  There is support for both shared and static binaries on the Cray and Blue 
Gene Q platforms. 
 

14.1.1 osslink Command Information  
 
The osslink command links the O|SS collectors and runtime libraries into the static 
executable and manages setting the appropriate libraries based on the collector 
value input to the command. Here is the help output for osslink:  
 
osslink --help 
 
Usage: /opt/osscbtf_cmake_only_july10/bin/osslink -c collector [options] compiler file ... 
 
  -h, --help 
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  -c, --collector  <collector name> 
Where collector is the name of the O|SS collector to link into the application.  See the 
openss man page for a description of the available experiments provided by O|SS. This is a 
mandatory option. 
 
  -i | --mpitype 
 
For MPI experiments, set the OPENSS_MPI_IMPLEMENTATION value to the MPI implementation 
specified.  Valid options are: 
        mpich 
        mpich2 
        mvapich 
        mvapich2 
        openmpi 
        mpt 
        lam 
        lampi 
 
  -v, --verbose 

 

14.1.2 Cray-Specific Static aprun Information  
 
Note: In the above execution of the statically linked executable, the –b option must 
be added to the aprun call.  The option is needed because O|SS stores information 
about the executable location when it is running.  Without the –b option the 
executable is run in a temporary location that is unavailable when the raw data 
information is converted into the O|SS database file. 

 
14.1.3 Changing parameters to the experiments  
 
Note: When running the statically linked executable with the O|SS collectors linked 
in, the workflow is different.  Since the more flexible convenience scripts can’t be 
used, users must set environment variables to change the arguments to the 
experiments. 
 
Examples of the environment variables that can be changed are as follows: 
 

Environment Variable Represents Experiment Type 
OPENSS_PCSAMP_RATE Sampling Rate. pcsamp 
OPENSS_USERTIME_RATE Sampling Rate. usertime 
OPENSS_HWC_EVENT PAPI or Native Event 

Name. 
hwc 

OPENSS_HWC_THRESHOLD How many event 
occurrences before 
sample taken. 

hwc 

OPENSS_HWCSAMP_EVENTS List of PAPI or Native 
Event Names. 

hwcsamp 

OPENSS_HWCSAMP_RATE Sampling Rate. hwcsamp 
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OPENSS_HWCTIME_EVENT PAPI or Native Event 
Name. 

hwctime 

OPENSS_HWCTIME_THRESHOLD How many event 
occurrences before 
sample taken. 

hwctime 

OPENSS_IO_TRACED List of I/O functions 
to collect data for. 

io 

OPENSS_IOT_TRACED List of I/O functions 
to collect data for. 

iot 

OPENSS_MPI_TRACED List of MPI functions 
to collect data for. 

mpi 

OPENSS_MPIT_TRACED List of MPI functions 
to collect data for. 

mpit 
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15   Setup and Build for O|SS 
 
O|SS is set up to work with a variety of processor types, including Intel, AMD, Intel 
Phi, PPC and ARM architectures.  It has been tested on many Linux Distributions, 
including SLES, SUSE, RHEL, Fedora Core, CentOS, Debian, Ubuntu and many others.  
It has been installed on IBM Blue Gene and Cray systems.  The O|SS website contains 
information on special builds and usage instructions. 
Build information can be found on the O|SS website:  

http://www.openspeedshop.org 
 

Build guidelines are described in the following sections.  We recommend using 
spack to build O|SS if at all possible.  It is the easiest, cleanest method compared to 
the previous install-tool mechanism.   Spack also creates the runtime environment 
module file as well.   This makes it much easier to build and use O|SS. 
 
 

15.1 Installing O|SS with Spack 

Spack is a multi-platform package manager that builds and installs multiple versions and 

configurations of software. It works on Linux, macOS, and many supercomputers. Spack 

is non-destructive: installing a new version of a package does not break existing 

installations, so many configurations of the same package can coexist. Most importantly, 

Spack is simple. It offers a simple spec syntax so that users can specify versions and 

configuration options concisely. Spack is also simple for package authors: package files 

are written in pure Python, and specs allow package authors to maintain a single file for 

many different builds of the same package.  If you’re new to spack and want to start 

using it, see Getting Started, or refer to the full manual below. 

O|SS can be built with spack by downloading the spack package source, as described 
in the O|SS Spack Build Guide.  It is possible to build O|SS with one spack install 
command.  Spack will download all the dependent packages that O|SS needs, build 
and install them.  After the dependent packages are built, spack will download, 
build, and install O|SS.   Spack creates module file for all the packages that it builds.   
The instructions below identify where to find the module file and how to load it.   
 
Spack allows for enabling and disabling O|SS optional build arguments/parameters 
via a spack feature named variants.   For O|SS, the main variants are MPI 
implementation identifiers which are used to build the MPI collectors for those MPI 
implementations.   The spack build command:   

spack install openspeedshop +openmpi +mvapich2 
will build O|SS with all the collectors, including MPI collectors that will work on 
OpenMPI and Mvapich2 based applications.   Without those variants, all the non-mpi 
specific experiments will be built, but not the MPI collectors (no ossmpi, ossmpip, 
and ossmpit support). 
 

http://www.openspeedshop.org/
https://spack.readthedocs.io/en/latest/getting_started.html
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Please use the install information in the O|SS Spack Build guide, which can be found 
on this webpage: https://openspeedshop.org/documentation 
 

15.2 Installing O|SS with the install-tool command 
 
O|SS comes with a set of bash install scripts that will build O|SS and any components 
it needs from source tarballs.  First it will check to see if the correct supporting 
software is installed on the system. If the needed software isn’t installed, it will ask 
to build it for the user.  The only thing users must do is provide a few arguments for 
the install script.  For a normal setup, just specify the directory to install in, what 
build task is desired and the location of the MPI and QT installs.  For example: 

Build only the krell-root 
 
./install-tool --build-krell-root  

--krell-root-prefix /opt/krellroot_v2.4.0  
--with-openmpi /opt/openmpi-1.8.2 

Build cbtf components using the krell-root 
 
./install-tool --build-cbtf-all  

--cbtf-prefix /opt/cbtf_only_v2.4.0  
--krell-root-prefix /opt/krellroot_v2.4.0  
--with-openmpi /opt/openmpi-1.8.2  
--with-cupti /usr/local/cuda-6.5/extras/CUPTI  
--with-cuda /usr/local/cuda-6.5 

 

Build only OSS using the cbtf components and the krell-root 
 
./install-tool --build-oss  

--cbtf-prefix /opt/cbtf_only_v2.4.0  
--krell-root-prefix /opt/krellroot_v2.4.0  
--openss-prefix /opt/osscbtf_v2.4.0  
--with-openmpi /opt/openmpi-1.8.2  
--with-cupti /usr/local/cuda-6.5/extras/CUPTI  
--with-cuda /usr/local/cuda-6.5 

 
After the install has successfully completed, a few important environment variables 
must be set.  Set a variable for the install location, so it can be reused.  If O|SS was 
installed with more than one MPI version, specify which to use with 
OPENSS_MPI_IMPLEMENATION.  Lastly, add the O|SS and Krell externals (root) bin 
directory to your PATH and add lib64 directories to your LD_LIBRARY_PATH.  See 
the sections below for examples of the necessary environment variables that must 
be set. 
 

https://openspeedshop.org/documentation
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15.3 Execution Runtime Environment Setup 
 
If O|SS was built with Spack, the runtime environment setup files are generated for 
you.   Just load the module file created for O|SS and your environment is initialized 
for use. 
 
If using the install-tool mechanism, then this section gives an example of a module 
file, softenv file and dotkit that can be used to set up the O|SS execution 
environments.   
 
NOTE: For versions 2.3.0 and beyond the old O|SS module files will need 
updating because these versions now use a multicast network that is 
incorporated into the Component Based Tool Framework (CBTF) components.  
The new module file needs new settings to set up and operate the CBTF 
components and the multicast network.  New module example files are listed 
below. 
 
Also: For builds of O|SS done with a compiler installed in a non-standard 
location (a module was loaded for the compiler), please set up the library path 
to that compiler’s libraries in the O|SS module file.  See an example below. 
 
15.3.1 Example module file 
 
Here is an example of a module file used for a cluster installation.  Use module load 
<filename of module file> to activate the O|SS runtime environment: 
 
#%Module1.0###################################################################
##  
##  
## openss modulefile  
##  
proc ModulesHelp { } {  
        global version openss  
 
        puts stderr "\topenss - loads the OpenSpeedShop software & application environment"  
        puts stderr "\n\tThis adds $oss/* to several of the"  
        puts stderr "\tenvironment variables."  
        puts stderr "\n\tVersion $version\n"  
}  
 
#  NOTE -------------------------------------------------------------  
#  The paths may need adjustment for different library naming schemes  
#  NOTE -------------------------------------------------------------  
#  
 
module-whatis   "Loads the OpenSpeedShop runtime environment."  
 
# for Tcl script use only  
set     version         2.4.0.latest  
 
# Set up variables to reference later for the krell root, cbtf, and OpenSpeedShop proper  
set    base        /home/fred/openss/power  
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set     root            ${base}/krellroot_v2.4.0.latest  
set     cbtf            ${base}/cbtf_v2.4.0.latest  
set     cbtfk           ${base}/cbtf_v2.4.0.latest  
set     oss             ${base}/osscbtf_v2.4.0.latest  
set     qtgraph         ${base}/QtGraph-1.0.0  
set     graphviz        ${base}/graphviz-2.41.0  
 
#  XPLAT_RSH is needed for MRNet which is now needed for use in CBTF  
setenv        XPLAT_RSH    ssh  
 
#  For the mpi experiments only - specify the MPI implementation of your  
#  application that will be run with OpenSpeedShop.   These are the  
#  mpi, mpit, and mpip experiments.  All other experiment types will  
#  ignore this setting.  It is only needed for mpi, mpit, and mpip.  
setenv          CBTF_MPI_IMPLEMENTATION    openmpi  
setenv          OPENSS_MPI_IMPLEMENTATION    openmpi  
 
#  This is needed if you use the --offline argument following the  
#  convenience scripts, for example:   osspcsamp --offline "mpirun -np 4 ./nbody"  
#  This is the offline mode of operation which is now built into the  
#  CBTF based version of OpenSpeedShop  
setenv          OPENSS_RAWDATA_DIR    .  
 
# Only need these CBTF specific variables for situations where the environment is not passed  
setenv          MRNET_COMM_PATH $cbtfk/sbin/cbtf_mrnet_commnode  
setenv          CBTF_MRNET_BACKEND_PATH $cbtfk/sbin/cbtf_libcbtf_mrnet_backend  
 
# Set up the paths for the OSS/CBTF version of OpenSpeedShop  
prepend-path    PATH            $root/bin  
prepend-path    PATH            $cbtf/bin  
prepend-path    PATH            $cbtfk/sbin  
prepend-path    PATH            $cbtfk/bin  
prepend-path    PATH            $oss/bin  
prepend-path    MANPATH            $oss/share/man  
 
# Set up the dyninst runtime library path for the OSS/CBTF version of OpenSpeedShop  
# This is required for finding loops and gathering symbol table information.  
setenv DYNINSTAPI_RT_LIB $root/lib/libdyninstAPI_RT.so  
 
# Set up the library paths for the OSS/CBTF version of OpenSpeedShop  
prepend-path LD_LIBRARY_PATH $root/lib64  
prepend-path LD_LIBRARY_PATH $root/lib  
prepend-path LD_LIBRARY_PATH $cbtf/lib64  
prepend-path LD_LIBRARY_PATH $cbtfk/lib64  
prepend-path LD_LIBRARY_PATH $oss/lib64  
prepend-path LD_LIBRARY_PATH $qtgraph/lib/5.6.1  
prepend-path LD_LIBRARY_PATH $graphviz/lib  
prepend-path LD_LIBRARY_PATH /usr/local/cuda-8.0/extras/CUPTI/lib64  
 
# Set up the python path so that the python scripting API can find  
# the openss python module files.  
setenv PYTHONPATH $oss/lib64/openspeedshop 

 
Here is an example module file for a Cray installation: 
#%Module1.0###################################################################
##  
##  
## oss cbtf 2.4.0 modulefile  
##  
proc ModulesHelp { } {  
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        global version openspeedshop-cbtf  
 
        puts stderr "\topenspeedshop-cbtf - Loads the OpenSpeedShop software target back-end (be) and front-end 
(fe) execution environment for Cray"  
        puts stderr "\n\tVersion $version\n"  
}  
 
module-whatis   "Loads the OpenSpeedShop target back-end node (be) and front-end (fe) execution 
environment."  
 
 
# for Tcl script use only  
set     version         2.4.0  
set     root_prefix /p/home/galarowi/openss/krellroot_v2.4.0  
set    cbtf_prefix /p/home/galarowi/openss/cbtf_v2.4.0  
set    oss_prefix /p/home/galarowi/openss/osscbtf_v2.4.0  
# Path to the qt3 toolkit  
set    qt /p/home/galarowi/openss/krellroot_v2.4.0/qt3  
# Path to the libraries needed for the qt4/qt5 toolkit needed for the new Qt4/Qt5 based gui  
set    graphviz    /p/home/galarowi/openss/graphviz-2.40.1  
set    qtgraph        /p/home/galarowi/openss/QtGraph-1.0.0  
#set    papi        /opt/cray/papi/5.4.3.1  
 
setenv  OPENSS_DOC_DIR $oss_prefix/share/doc/packages/OpenSpeedShop  
 
#  This is needed if you use the --offline argument following the  
#  convenience scripts, for example:   osspcsamp --offline "mpirun -np 4 ./nbody"  
#  This is the offline mode of operation which is now built into the  
#  CBTF based version of OpenSpeedShop  
setenv  OPENSS_RAWDATA_DIR         .  
 
#  For the mpi experiments only - specify the MPI implementation of your  
#  application that will be run with OpenSpeedShop.   These are the  
#  mpi, mpit, and mpip experiments.  All other experiment types will  
#  ignore this setting.  It is only needed for mpi, mpit, and mpip.  
setenv  CBTF_MPI_IMPLEMENTATION    mpich  
setenv  OPENSS_MPI_IMPLEMENTATION  mpich  
 
#  XPLAT_RSH is needed for MRNet which is now needed for use in CBTF  
setenv  XPLAT_RSH                  ssh  
 
# Only need these CBTF specific variables for situations where the environment is not passed  
setenv MRNET_COMM_PATH $cbtf_prefix/sbin/cbtf_mrnet_commnode  
setenv CBTF_MRNET_BACKEND_PATH $cbtf_prefix/sbin/cbtf_libcbtf_mrnet_backend  
 
# oss_prefix_target/bin must come first to  
# find the osslink in the target directory  
 
#prepend-path    PATH                    $papi/bin  
prepend-path    PATH                    $root_prefix/bin  
prepend-path    PATH                    $oss_prefix/bin  
prepend-path    PATH                    $cbtf_prefix/bin  
prepend-path    PATH                    $cbtf_prefix/sbin  
prepend-path    MANPATH                 $oss_prefix/share/man  
 
eval set  [ array get env HOME ]  
set     ownmoddir       $HOME/privatemodules  
 
# Set up the dyninst runtime library path for the OSS/CBTF version of OpenSpeedShop  
# This is required for finding loops and gathering symbol table information.  
setenv DYNINSTAPI_RT_LIB $root_prefix/lib64/libdyninstAPI_RT.so  
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# Might need this if you use the system installed papi, here as a hint  
#prepend-path LD_LIBRARY_PATH $papi/lib64  
 
# Setup the library paths for the runtime environment  
prepend-path LD_LIBRARY_PATH $root_prefix/lib  
prepend-path LD_LIBRARY_PATH $root_prefix/lib64  
prepend-path LD_LIBRARY_PATH $cbtf_prefix/lib64  
prepend-path LD_LIBRARY_PATH $oss_prefix/lib64  
 
# Setup the library paths for the qt3 runtime environment  
prepend-path LD_LIBRARY_PATH $qt/lib64  
# Setup the library paths for the libraries needed for the qt4/qt5 new GUI runtime environment  
prepend-path LD_LIBRARY_PATH $graphviz/lib  
prepend-path LD_LIBRARY_PATH $qtgraph/lib64/4.8.6 

 
 

 
15.3.2 Example softenv file 
 
This is an example of a softenv file used for a O|SS offline version Blue Gene/Q 
installation.  Use the “resoft <filename of softenv file>” command to activate the 
O|SS runtime environment: 
 
# The O|SS .soft file. 
# Remember to type "resoft" after working on this file. 
 
OSS = /home/projects/oss/oss 
KROOT = /home/projects/krellroot 
TARCH = bgq 
 
# Set up OSS environment variables 
 
# Find the executable portions of O|SS (order is important here) 
PATH += $KROOT/$TARCH/bin 
PATH += $KROOT/bin 
PATH += $OSS/$TARCH/bin 
PATH += $OSS/bin 
 
# Find the libraries for O|SS (order is important here) 
LD_LIBRARY_PATH += $KROOT/$TARCH/lib64 
LD_LIBRARY_PATH += $KROOT/lib64 
LD_LIBRARY_PATH += $KROOT/lib 
LD_LIBRARY_PATH += $OSS/$TARCH/lib64 
LD_LIBRARY_PATH += $OSS/lib64 
 
# Find the runtime collectors 
OPENSS_PLUGIN_PATH = $OSS/$TARCH/lib64/openspeedshop 
 
# Find Dyninst for generation of per-loop statistics 
DYNINSTAPI_RT_LIB  $KROOT/lib64/libdyninstAPI_RT.so 
 
# Tell the tool what the application MPI implementation is 
# Needed if supporting multiple implementations and running the "mpi", "mpit", or "mpiotf" experiments 
OPENSS_MPI_IMPLEMENTATION = mpich2 
 
# Paths to documentation and man pages 
OPENSS_DOC_DIR = $OSS/share/doc/packages/OpenSpeedShop 
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MANPATH = $OSS/share/man 
 
# Use the basic environment. 
@default 

 
15.3.3 Example dotkit file 
 
Here is an example of a dotkit file used for a 64-bit cluster platform original offline 
version O|SS installation, where all components were installed into the same prefix. 
It is not generalized to support platforms other than the 64-bit cluster it was written 
for.  Use the “use <filename of dotkit file>” command to activate the O|SS runtime 
environment.  Note: Do not include the “.dk” portion of the filename when using the 
“use” command. 
 
#c performance/profile 
#d O|SS (Version 2.4.0) 
dk_setenv OPENSS /usr/global/tools/openspeedshop/oss-dev/OSS_2.4.0 
dk_setenv KROOT /usr/global/tools/openspeedshop/oss-dev/krellroot_2.4.0 
dk_setenv CBTF /usr/global/tools/openspeedshop/oss-dev/cbtf_2.4.0 
#  XPLAT_RSH is needed for MRNet which is now needed for use in CBTF  
dk_setenv  XPLAT_RSH    ssh 
# If cuda present, then we need hooks to the CUPTI interface 
dk_setenv CUDA_PATH /usr/global/tools/cuda-8.0 
# If the new Qt4/Qt5 GUI was built, we the paths to graphviz and QtGraph 
dk_setenv QTGRAPH /usr/ global/tools/openspeedshop/oss-dev/QtGraph-1.0.0 
dk_setenv GRAPHVIZ /usr/ global/tools/openspeedshop/oss-dev/graphviz-2.40.1 
 
#  For the mpi experiments only - specify the MPI implementation of your  
#  application that will be run with OpenSpeedShop.   These are the  
#  mpi, mpit, and mpip experiments.  All other experiment types will  
#  ignore this setting.  It is only needed for mpi, mpit, and mpip.  
dk_setenv  OPENSS_MPI_IMPLEMENTATION mvapich2  
 
dk_setenv OPENSS_PLUGIN_PATH $OPENSS/lib64/openspeedshop 
dk_setenv OPENSS_DOC $OPENSS/share/doc/packages/OpenSpeedShop/ 
 
# Find Dyninst for generation of per-loop statistics 
dk_setenv DYNINSTAPI_RT_LIB        $KROOT/lib64/libdyninstAPI_RT.so 
 
dk_alter PATH            $KROOT/bin 
dk_alter PATH            $OPENSS/bin 
 
dk_alter PATH            $CBTF/bin  
dk_alter PATH            $CBTF/sbin 
dk_alter LD_LIBRARY_PATH $CBTF/lib64 
dk_alter LD_LIBRARY_PATH $KROOT/lib64 
dk_alter LD_LIBRARY_PATH $KROOT/lib 
 
dk_alter LD_LIBRARY_PATH $OPENSS/lib64 
dk_alter LD_LIBRARY_PATH $QTGRAPH/lib/5.6.1  
dk_alter LD_LIBRARY_PATH $GRAPHVIZ/lib  
dk_alter LD_LIBRARY_PATH $CUDA_PATH/extras/CUPTI/lib64  
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16 Additional Information and Documentation Sources 
 

16.1 Final Experiment Overview 
 
In the table below we match up a few general questions users may ask with the 
experiments they may want to run to find answers. 
 

Where does my code spend most of its time? 

 Flat profiles (pcsamp) 
 Getting inclusive/exclusive timings with call paths (usertime) 
 Identifying hot call paths (usertime + HP analysis) 

How do I analyze cache performance? 

 Measure memory performance using hardware counters (hwc) 
 Compare to flat profiles (custom comparison) 
 Compare multiple hardware counters (N x hwc, hwcsamp) 

How to identify I/O problems? 

 Study time spent in I/O routines (io, iot and lightweight iop) 
 Compare runs under different scenarios (custom comparisons) 

How to identify memory problems? 

 Study time spent in memory allocation/de-allocation routines (mem) 
 Look for load imbalance (LB view) and outliers (CA view) 

How do I find parallel inefficiencies in OpenMP and/or threaded applications? 

 Study time spent in POSIX thread routines (pthreads) 
 Look for load imbalance (LB view) and outliers (CA view) 

How do I find parallel inefficiencies in MPI applications? 

 Study time spent in MPI routines (mpi, mpit, and lightweight mpip) 
 Look for load imbalance (LB view) and outliers (CA view) 

How do I find parallel inefficiencies in NVIDIA CUDA applications? 

 Study time spent in CUDA routines and the CUDA event execution trace. (cuda) 

 

16.2 Additional Documentation  
 
The Python scripting API documentation can be found at 
http://www.openspeedshop.org/docs/pyscripting_doc or in the 
…/share/doc/packages/openspeedshop/pyscripting_doc folder in the install 
directory. 
  
There also are man pages for openss and every convenience script.  There’s also a 
quick-start guide available for download from http://www.openspeedshop.org. 
 
There is an O|SS Forum-type email alias where users can ask questions and read 
previous posts: oss-questions@openspeedshop.org.  Use this URL to sign up: 
https://groups.google.com/a/krellinst.org/forum/?hl=en - !forum/oss-questions 
 
There also is an email list to which users can send questions without joining the 
group: oss-contact@openspeedshop.org. 
 

http://www.openspeedshop.org/docs/pyscripting_doc
http://www.openspeedshop.org/
mailto:oss-questions@openspeedshop.org
https://groups.google.com/a/krellinst.org/forum/?hl=en#!forum/oss-questions
mailto:oss-contact@openspeedshop.org
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17 Convenience Script Basic Usage Reference Information 
 
This section provides a quick overview of the convenience scripts available to either 
compare experiment data with other experiment data or to gather performance information 
for each of the various performance metric types that O|SS supports. 

17.1 Suggested Workflow 
We recommend an O|SS workflow consisting of two phases: gathering the performance data 
using the convenience scripts, then using the GUI or CLI to view the data. 

17.2 Convenience Scripts 
Users are encouraged to employ the convenience scripts (for dynamically linked 
applications) that hide some of the underlying options for running experiments. The full 
command syntax can be found in the User’s Guide. The script names correspond to the 
experiment types and are: osspcsamp, ossusertime, osshwc, osshwcsamp, osshwctime, 
ossio, ossiot, ossmpi, ossmpit, ossiop, ossmem, ossomptp, osspthreads, ossmpip and 
osscuda, plus an osscompare script.  Note: If using the offline operating mode, be sure to 
set OPENSS_RAWDATA_DIR. (See KEY ENVIRONMENT VARIABLES section for 
information.) 

O|SS no longer gathers loop information by default, the “--loops” option is required for the 
loop level information to be gathered and subsequently viewed.   For example:  osspcsamp 
--loops “mpirun -np 256 ./smg2000 -n 5 5 5” 

O|SS will gather information about the vector instructions that were executed in the 
application run, provided that a sample was taken at the address that corresponds to a 
vector instruction.   There are three options that will enable this feature: 

 --vinstr128 Find vector instructions with operand sizes that are 128 bits or greater 

 --vinstr256 Find vector instructions with operand sizes that are 256 bits or greater 

 --vinstr512 Find vector instructions with operand sizes that are 512 bits or greater 

For example:  osspcsamp –vinstr512 “mpirun -np 256 ./smg2000 -n 5 5 5” 

When running O|SS, use the same syntax that is used to run the 
application/executable outside of O|SS, but enclosed in quotes; for example: 

Using MPI drivers like mpirun:  
      osspcsamp “mpirun -np 512 ./smg2000 -n 5 5 5” 
Using SLURM/srun: 
       osspcsamp “srun -N 64 -n 512 ./smg2000 -n 5 5 5” 

 
Redirection to/from files inside quotes can be problematic.   See the convenience 
script “man pages for more information. 
 

17.3 Report and Database Creation 
 
Running the pcsamp experiment on the sequential program named mexe, with the 
command:  
osspcsamp mexe  
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results in a default report and the creation of a SQLite database file: 
mexe-pcsamp.openss 
in the current directory.  
 
Here’s the report: 
% CPU Time  CPU time   Function 
48.990         11.650              f3 (mexe: m.c, 24)  
33.478           7.960               f2 (mexe: m.c,15)  
17.451           4.150               f1 (mexe: m.c,6)  
 0.084             0.020              work(mexe:m.c,33) 
 
 

To access alternative views in the GUI, use the command: 
openss –f mexe-pcsamp.openss  
to load the database file.  Then use the GUI toolbar to select desired views.  

When using the CLI, the command: 
openss –cli –f mexe-pcsamp.openss  
loads the database file. Then use the expview command options for desired views. 

 
17.4 osscompare: Compare Database Files 
 
General form: 
osscompare “<db_file1>, < db_file2>[,<db_file>...]” [ time | percent | <other 
metrics>] [rows=nn] [viewtype=functions| statements | linkedobjects ] > [ oname = 
<csv filename> ] 
 
Where: 

“<db_file>” represents an O|SS database file created by running an O|SS 
experiment on an application. 
 
[ time | percent | <other metrics>] represent the metric that the comparison 
will use to differentiate the performance information for each experiment 
database. 
  
[rows=nn] indicates how many rows of output you want to have listed. 
 
[viewtype=functions| statements | linkedobjects] selects the granularity of 
the view output.  The comparison is either done at the function, statement, or 
library view level.  Function level is the default granularity. 
 
[ oname = <csv filename> ] Name the output filename when comma 
separated list output is requested. 
 

Example:  
osscompare “smg-run1.openss,smg-run2.openss” 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osscompare “smg-run1.openss,smg-run2.openss” percent rows=10 
 

Please type “man osscompare” for more details. 
 

17.5 osspcsamp: Program Counter Experiment 
 
General form: 
osspcsamp “<command> < args>” [ high | low | default | <sampling rate>]  

Sequential job example: 
osspcsamp “smg2000 –n 50 50 50” 
 
Parallel job example: 
osspcsamp “mpirun –np 128 smg2000 –n 50 50 50” 
 
Additional arguments: 

high: twice the default sampling rate (samples per second) 
low: half the default sampling rate 
default: default sampling rate is 100 
<sampling rate>: integer value sampling rate 
 

17.6 ossusertime: Call Path Experiment 
 

General form: 
ossusertime “<command> < args>” [ high | low | default | <sampling rate>]  

Sequential job example: 
ossusertime “smg2000 –n 50 50 50”  
 

Parallel job example: 
ossusertime “mpirun –np 64 smg2000 –n 50 50 50” 
 
Additional arguments: 

high: twice the default sampling rate (samples per second) 
low: half the default sampling rate 
default: default sampling rate is 35 
<sampling rate>: integer value sampling rate 
 

17.7 osshwc, osshwctime: HWC Experiments 
 
General form: 
osshwc[time] “<command> < args>” [ default | <PAPI_event> | <PAPI threshold> | 
<PAPI_event><PAPI threshold> ] 
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Sequential job example: 
osshwc[time] “smg2000 –n 50 50 50”  
 

Parallel job example: 
osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50”  
 

Additional arguments: 
default: event (PAPI_TOT_CYC), threshold (10000) 
<PAPI_event>: PAPI event name 
<PAPI threshold>: PAPI integer threshold 

 
17.8 osshwcsamp: HWC Experiment 
 
General form: 
osshwcsamp “<command>< args>” [ default | <PAPI_event_list>| 
<sampling_rate> ]  

Sequential job example:  
osshwcsamp “smg2000 –n 50 50 50” 
 

Parallel job examples: 
osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50” 
osshwcsamp “srun –N 32 –n 128 sweep3d.mpi” PAPI_L1_DCM,PAPI_L1_DCA 200 
 

Additional arguments: 
default: events(PAPI_TOT_CYC and PAPI_FP_OPS), sampling_rate is 100  
<PAPI_event_list>: Comma separated PAPI event list  
<sampling_rate>: integer value sampling rate 
 

17.9 ossio, ossiot: I/O Experiments 
 

General form: 
ossio[t] “<command> < args>” [ default | f_t_list ] 

Sequential job example: 
ossio[t] “smg2000 –n 50 50 50” 
 

Parallel job example: 
ossio[t] “mpirun –np 128 smg2000 –n 50 50 50” 
 
Additional arguments: 
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default: trace all I/O functions 
< f_t_list>: Comma-separated list of I/O functions to trace; one or more of the 
following: close, creat, creat64, dup, dup2, lseek, lseek64, open, open64, 
pipe, pread, pread64, pwrite, pwrite64, read, readv, write and writev 

 

 

17.10 ossmpi, ossmpip, ossmpit: MPI Experiments 
 
General form: 
ossmpi[p|t] “<mpirun><mpiargs><command><args>” [ default | f_t_list ] 
 
Parallel job example:  
ossmpi[p|t] “mpirun –np 128 smg2000 –n 50 50 50” 
 

Additional arguments:  
default: trace all MPI functions 
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero 
or more of: MPI_Allgather, .... MPI_Waitsome and/or zero or more of the 
MPI group categories: 
 

MPI Category                                                        Argument 
All MPI Functions 
Collective Communicators  
Persistent Communicators  
Synchronous Point to Point  
Asynchronous Point to Point  
Process Topologies  
Groups Contexts 
Communicators  
Environment  
Datatypes 
MPI File I/O 

all 
collective_com  
persistent_com  
synchronous_p2p  
asynchronous_p2p  
process_topologies 
graphs_contexts_comms  
environment  
datatypes 
fileio 

 
 

 

17.11 ossmem: Memory Analysis Experiment 
 
General form: 
ossmem “<command> < args>” [default | f_t_list ] 
 
Sequential job example:  
ossmem “smg2000 –n 50 50 50” 
 
Parallel job example:  
ossmem “mpirun –np 128 smg2000 –n 50 50 50” 
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Additional arguments:  

default: trace all supported memory functions 
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or 
more of: malloc, free, memalign, posix_mem align, calloc and realloc 

 

17.12 ossomptp: OpenMP Specific Profiling Experiment 
 
General form: 
ossomptp “<command> < args>” 
 
Sequential job example:  
ossomptp “openmp_stress < stress.input” 
 
Parallel job example:  
ossomptp “mpirun –np 128 openMP_MD” 
 

17.13 osspthreads: POSIX Thread Analysis Experiment 
 

General form: 
osspthreads “<command> < args>” [default | f_t_list ] 
 
Sequential job example:  
osspthreads “smg2000 –n 50 50 50” 
 
Parallel job example:  
osspthreads “mpirun –np 128 smg2000 –n 50 50 50” 
 
Additional arguments:  

default: trace all POSIX thread functions 
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or 
more of: pthread_create, pthread_mutex_init, pthread_mutex_destroy, 
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock, 
pthread_cond_init, pthread_cond_destroy, pthread_cond_signal, 
pthread_cond_broadcast, pthread_cond_wait, and 
pthread_cond_timedwait 

 

17.14 osscuda: NVIDIA CUDA Tracing Experiment 
 

General form: 
osscuda “<command> < args>”  
 
Sequential job example:  
osscuda “eigenvalues --matrix-size=4096” 
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Parallel job example:  
osscuda “mpirun -np 64 -npernode 1 lmp_linux -sf gpu < in.lj” 
 

17.15 cbtfsummary:  Overview/Summary Multiple Metric Experiment 
 

General form: 
cbtfsummary “<command> < args>”  
 
Sequential job example:  
cbtfsummary “./matmul < matmul.input” 
 
Parallel job example:  
osscuda “mpirun –np 128 smg2000 –n 50 50 50” 

 
17.16 Key Environment Variables 
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Execution Related Variables Description 

OPENSS_RAWDATA_DIR Used on cluster systems where a /tmp file 
system is unique on each node. It specifies the 
location of a shared file system path which is 
required for O|SS to save the “raw” data files on 
distributed systems. 
OPENSS_RAWDATA_DIR=”shared file system 
path” Example: export 
OPENSS_RAWDATA_DIR=/lustre4/fsys/userid 

OPENSS_ENABLE_MPI_PCONTROL Activates the MPI_Pcontrol function recognition; 
otherwise O|SS will ignore MPI_Pcontrol function 
calls. 

OPENSS_DATABASE_ONLY When running the O|SS convenience scripts, only 
create the database file and do NOT put out the 
default report.   Used to reduce the size of the 
batch file output files if user is not interested in 
looking at the default report. 

OPENSS_RAWDATA_ONLY When running the O|SS convenience scripts, only 
gather the performance information into the 
OPENSS_RAWDATA_DIR directory, but do NOT 
create the database file and do NOT put out the 
default report. 

OPENSS_DB_DIR Specifies the path to where O|SS will build the 
database file. On a file system without file locking 
enabled, the SQLite component cannot create the 
database file. This variable is used to specify a 
path to a file system with locking enabled for the 
database file creation. This usually occurs on 
Lustre file systems that don’t have locking 
enabled. OPENSS_DB_DIR=”file system 
path” Example: export 
OPENSS_DB_DIR=/opt/filesys/userid 
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OPENSS_MPI_IMPLEMENTATION Specifies the MPI implementation the application 
is using; only needed for the mpi, mpit, and mpip 
experiments. These are the currently supported 
MPI implementations: openmpi, lampi, mpich, 
mpich2, mpt, lam, mvapich, mvapich2. For 
Cray, IBM and Intel MPI implementations, use 
mpich2. 
OPENSS_MPI_IMPLEMENTATION=”MPI impl. 
name” Example:  
export 
OPENSS_MPI_IMPLEMENTATION=openmpi 
In most cases, O|SS can auto-detect the MPI in 
use. 

OPENSS_DEFER_VIEW Allow overriding display of the default view for 
cases where users may not want or need it 
displayed. 

CBTF_CSVDATA_DIR Sets directory path for the location for the 
cbtfsummary experiment csv files. 
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Appendix A:   cbtfsummary csv file format 
 

 

Application and Host/Rank/Thread Information 

 

DESCRIPTION 

Of Data (Rows 

1­2) 

Host that the 

data was  

obtained 

from 

Process Id for 

this data 

MPI rank for 

this data 

Thread 

id for this 

data 

POSIX thread id 
Application  

Name 

Total time in 

Seconds 

Row 1: header 

information 
host pid rank tid posix_tid executable total_time_seconds 

Row 2: data 

matching row 

1 header 

localhost 19879 1 3 140376294303616 lulesh2.0 4.909129 

 

 

 

Information in row 1 (header) and 2 (values corresponding to the header): 

 

 Host that the data was obtained from  

 Process Id 

 MPI rank 

 OpenMP thread Id 

 POSIX thread Id 

 Application name 

 Application run time in seconds 
 

Notes on Row 1 - 2: 

 The host, process, etc. information is currently always in the first two rows of the 

csv file 

 

Potential Derived/Non-Derived Information Displayed in Report Form: 

 The host, process, etc. information is currently always in the first two rows of the 

csv file 

 

 

getrusage type Information 

 
DESCRIPTION 

Of Data (Rows 3­4) 
Maximum resident storage size User time in seconds System time in seconds 

Row 3: header information maxrss_bytes utime_seconds stime_seconds 

Row 4: data matching row 3 

header 
45644 1.839830 0.539242 
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Information in row 3 (header) and 4 (values corresponding to the header): 

 

 Maximum resident storage size (high water mark) obtained from getrusage 

 User time seconds obtained from getrusage 

 System time in seconds obtained from getrusage 
 

Notes on Row 3 - 4: 

 The rusage information is currently always in the first third and fourth rows of the 

csv file 

 

 

PAPI dmem (Dynamic Memory) Information 

 

DESCRIPTION 

Of Data (Rows 5­6) 

Dynamic memory 

size 

Dynamic resident 

memory usage 

Dynamic memory usage 

high water mark 

Dynamic 

memory usage 

that was in 

shared memory 

Dynamic memory usage 

that was in heap memory 

Row 5: header 

information 
dmem_size dmem_resident dmem_high_water_mark dmem_shared dmem_heap 

Row 6: data 

matching row 1 

header 

301568 30952 45644 12100 38176 

 

Information in row 5 (header) and 6 (values corresponding to the header): 

 Dynamic memory sized obtained from the papi dmem interface 

 Dynamic memory resident size obtained from the papi dmem interface 

 Dynamic memory high water mark obtained from the papi dmem interface 

 Dynamic memory usage that was in shared memory obtained from the papi dmem 

interface 

 Dynamic memory usage that was in heap memory obtained from the papi dmem 

interface 

 

Notes on Row 5 – 6: 

 The papi dmem information is currently always in the first fifth and sixth rows of 

the csv file 

 

 

POSIX I/O Information 

 

 
DESCRIPTION 

Of Data (I/O if 

present) 

Time spent in POSIX 

I/O calls 

Time spent in POSIX 

read  

I/O calls 

Time spent in POSIX 

write 

 I/O calls 

Number of bytes via 

POSIX read I/O calls 

Number of bytes via 

POSIX write I/O calls 

I/O Row 1: header 

information 
io_total_time read_time write_time read_bytes writebytes 
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I/O Row 2: data 

matching row 1 

header 

0.000120 0.000059 0.000061 13618 1961 

 

Information in I/O row 1 (header) and I/O row 2 (values corresponding to the header): 

 Time spent in POSIX I/O calls obtained from cbtf I/O wrappers 

 Time spent in POSIX read I/O calls obtained from cbtf I/O wrappers 

 Time spent in POSIX write I/O calls obtained from cbtf I/O wrappers 

 Number of bytes read via POSIX read I/O calls obtained from cbtf I/O wrappers 

 Number of bytes written via POSIX write I/O calls obtained from cbtf I/O 
wrappers 

 

Notes on I/O Rows: 

    • If I/O is present this information will (currently) show up in row 7 and 8 of the csv 

file 

 

 

POSIX Memory Allocation Call Information 

 
DESCRIPTION 

Of Data (mem rows) 

Time spent in allocation 

(malloc, calloc, realloc, etc) calls 
Number of allocation calls Number of bytes allocated 

Mem Row 1: header information allocation_time allocation_calls allocation_bytes 

Mem Row 2: data matching row 1 

header 
0.000001 5 317 

 

 

Information in mem row 1 (header) and  mem row 2 (values corresponding to the 

header): 

 Time spent in allocation (malloc, calloc, realloc, etc) calls obtained from cbtf 
mem wrappers 

 Number of allocation (malloc, calloc, realloc, etc) calls obtained from cbtf mem 
wrappers 

 Number of bytes allocated via allocation (malloc, calloc, realloc, etc) calls 
obtained from cbtf mem wrappers 

 

Notes on Row mem rows: 

    • TBD 

 

 

 

POSIX Memory Free Call Information 

 
DESCRIPTION 

Of Data (Mem free rows) 
Time spent inf free calls Number of calls to free 

Mem free row 1: header information free_time free_calls 

Mem free row 2: data matching row 1 header 0.000001 1 
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Information in mem free row 1 (header) and mem free row 2 (values corresponding to the 

header): 

 Time spent in memory free calls obtained from cbtf mem wrappers 

 Number of free calls obtained from cbtf mem wrappers 

 

Notes on mem free rows: 

    • TBD 

 

 

 

MPI Function Call Information 

 
DESCRIPTION 

Of Data (MPI rows) 
Total time spent in MPI functions 

MPI Row 1: header information total_mpi_time 

MPI Row 2: data matching row 1 header 0.340121 

 

 

Information in MPI row 1 (header) and MPI row 2 (values corresponding to the header): 

 Time spent in MPI function calls obtained from cbtf mpi wrappers 

 

 

Notes on MPI rows: 

    •  This could be refined in the future to contain timing by MPI categories. 

 

 

Hardware Counter Event Count Information 

 

DESCRIPTION 

Of Data (HWC 

Rows) 

PAPI counter 

for total cycles 

PAPI counter 

for total 

instructions 

PAPI counter 

for load 

instructions 

PAPI counter 

for level 3 

total cache 

misses 

PAPI counter for 

level 2 total cache 

misses 

PAPI counter 

for level 1 

total cache 

misses 

More papi 

counters……. 

HWC row 1: 

header 

information 

PAPI_TOT_CYC PAPI_TOT_INS PAPI_LD_INS PAPI_L3_TCM PAPI_L2_TCM PAPI_L1_TCM … 

HWC row 2: 

data matching 

row 1 header 

6100004039 5511171256 1950917099 9663853 20989452 77687293 . . . 

 

 

Information in HWC row 1 (header) and HWC row 2 (values corresponding to the 

header): 

 Hardware counter event occurrences obtained from cbtf hardware counter 

collectors 
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 List of default hardware counters that are cycled through and used if they are 
found to be available on the system the application is running on: 

◦ PAPI_TOT_CYC Total cycles 

◦ PAPI_TOT_INS Total instructions 

◦ PAPI_LD_INS Load instructions 

◦ PAPI_VEC_DP Double precision vector/SIMD instructions 

◦ PAPI_DP_OPS Double precision floating point operations 

◦ PAPI_FDV_OPS Floating point divide operations 

◦ PAPI_FP_INS  Floating point instructions 

◦ PAPI_FP_OPS Floating point operations 

◦ PAPI_L3_TCM Level 3 cache misses 

◦ PAPI_L2_TCM Level 2 cache misses 

◦ PAPI_L1_TCM Level 1 cache misses 

◦ PAPI_TLB_IM Instruction translation lookaside buffer misses 

◦ PAPI_REF_CYC Reference clock cycles 

◦ PAPI_REF_NS 

◦ PAPI_FUL_CCY Cycles with maximum instructions completed 

◦ PAPI_RES_STL Cycles stalled on any resource 

 

Notes on HWC rows: 

    •  This could be refined in the future to contain timing by MPI categories. 

 

OpenMP Time Information 

 
DESCRIPTION 

Of Data 

(OpenMP 

Rows ) 

Implicit Task 

Time 
Serial time  Barrier time Barrier wait time Idle time 

 

OpenMP Row 

1: header 

information 

implicit_task_time serial_time barrier_time wait_barrier_time idle_time 

 

OpenMP Row 

2: data 

matching row 

1 header 

4.903256 0.006370 0.0 0.0 18446694400.000000 

 

 

 

Information in OpenMP row 1 (header) and OpenMP row 2 (values corresponding to the 

header): 

 Implicit task time obtained from cbtf omptp based OpenMP wrappers 

 Serial task time obtained from cbtf omptp based OpenMP wrappers 

 Barrier task time obtained from cbtf omptp based OpenMP wrappers 

 Wait Barrier task time obtained from cbtf omptp based OpenMP wrappers 

 Idle task time obtained from cbtf omptp based OpenMP wrappers 

 

 

Notes on OpenMP rows: 
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    •  TBD 

 


