

Open|SpeedShop Reference Guide

September 30, 2018
Version 2.4.0

Contributions from Krell Institute, LANL, LLNL, SNL

 2

Table of Contents

About this Manual .. 7

1 Introduction to Open|SpeedShop ... 9
1.1 Basic Concepts, Interface, Workflow .. 9

1.1.1 Common Terminology .. 9
1.1.2 Concept of an Experiment .. 11

1.2 Performance Experiments Overview .. 11
1.2.1 Individual Experiment Descriptions ... 11
1.2.2 Synopsis of the Summary Experiment ... 13
1.2.3 Synopsis of the Sampling Experiments .. 13
1.2.4 Synopsis of the Tracing Experiments ... 14
1.2.5 Parallel Experiment Support .. 15
1.2.6 Vector instruction detection (AVX512 instruction detection) 15

1.3 Running an O|SS Experiment ... 16
1.4 How to Gather and Understand Profiles .. 22
1.5 Description of the Granularity of views available in O|SS 22
2.1 Overview/Summary (cbtfsummary) Experiment ... 24

2.1.1 Summary (cbtfsummary) experiment performance data gathering 24
2.1.2 Summary/Overview CSV directory structure and CSV file format definitions 25
2.1.3 Summary/Overview Report Generation ... 27

3.1 Program Counter Sampling (pcsamp) Experiment .. 28
3.1.1 Program Counter Sampling (pcsamp) experiment performance data gathering . 29

3.1.1.1 Program Counter Sampling (pcsamp) experiment parameters ... 29
3.1.2 Viewing Program Counter Sampling (pcsamp) experiment performance data via
GUI ... 29
3.1.3 Viewing Program Counter Sampling (pcsamp) experiment performance data via
CLI .. 30

3.1.3.1 Vector Instruction view example (Intel based platforms only) .. 33
4.1 Call Path Profiling (usertime) Experiment.. 35

4.1.1 Call Path Profiling (usertime) experiment performance data gathering 35
4.1.2 Viewing Call Path Profiling (usertime) experiment performance data via GUI 36
4.1.3 Viewing Call Path Profiling (usertime) experiment performance data via CLI 39
4.1.4 Call Path Profiling (usertime) experiment function inline display............................... 42

4.1.4.1 Call Path Profiling (usertime) experiment function inline display: Specific Kokkos
Example: .. 46
4.1.4.2 Call Path Profiling (usertime) experiment function inline display: Specific Raja
Example: .. 47

5 How to Relate Data to Architectural Properties ... 49
5.1 Hardware Counter Experiment (hwc) .. 50

5.1.1 Hardware Counter Threshold (hwc) experiment performance data gathering 51
5.1.2 Viewing Hardware Counter Threshold (hwc) experiment performance data via
GUI ... 51
5.1.3 Viewing Hardware Counter Threshold (hwc) experiment performance data via
CLI .. 53

5.2 Hardware Counter Time Experiment (hwctime) .. 54

 3

5.2.1 Hardware Counter Time Threshold (hwctime) experiment performance data
gathering .. 55
5.2.2 Viewing Hardware Counter Threshold (hwctime) experiment performance data
via GUI ... 56
5.2.3 Viewing Hardware Counter Time Threshold (hwctime) experiment performance
data via CLI .. 58

5.3 Hardware Counter Sampling (hwcsamp) Experiment ... 61
5.3.1 Hardware Counter Sampling (hwcsamp) experiment performance data gathering
 ... 63

5.3.1.1 Hardware Counter Sampling (hwcsamp) experiment parameters 63
5.3.2 Viewing Hardware Counter Sampling (hwcsamp) experiment performance data
via GUI ... 63

5.3.2.1 Getting the PAPI counter as the GUI Source Annotation Metric ... 64
5.3.2.2 Viewing Hardware Counter Sampling Data via GUI.. 65

5.3.3 Viewing Hardware Counter Sampling (hwcsamp) experiment performance data
via CLI .. 66

5.3.3.1 Job Script and osshwcsamp command .. 67
5.3.3.2 osshwcsamp experiment default CLI view .. 67
5.3.3.2 osshwcsamp experiment Status command and CLI view .. 69
5.3.3.3 osshwcsamp experiment Load Balance command and CLI view ... 69
5.3.3.4 osshwcsamp experiment Linked Object command and CLI view .. 69
5.3.3.5 osshwcsamp experiment displaying only the hwcsamp PAPI events CLI view 70

6 I/O Tracing and I/O Profiling .. 70
6.1 O|SS I/O Tracing General Usage .. 70
6.2 I/O Base Tracing (io) experiment .. 70

6.2.1 I/O Base Tracing (io) experiment performance data gathering 71
6.2.2 Viewing I/O Base Tracing (io) experiment performance data via CLI 71
6.2.3 Viewing I/O Base Tracing (io) experiment performance data via GUI 71

6.3 I/O Extended Tracing (iot) experiment ... 71
6.3.1 I/O Extended Tracing (iot) experiment performance data gathering 71
6.3.2 Viewing I/O Extended Tracing (iot) experiment performance data via GUI 72
6.3.3 Viewing I/O Extended Tracing (iot) experiment performance data via CLI............ 74

6.4 I/O Lightweight Profiling (iop) General Usage .. 77
6.4.1 I/O Profiling (iop) experiment performance data gathering .. 77
6.4.2 Viewing I/O Profiling (iop) experiment performance data via GUI 77
6.4.3 Viewing I/O Profiling (iop) experiment performance data via CLI 79

7 Applying Experiments to Parallel Codes .. 81

8 MPI Tracing Experiments (mpi, mpit, mpip) ... 83
8.1 MPI Tracing Experiment (mpi) ... 92

8.1.1 MPI Tracing Experiment (mpi) performance data gathering ... 93
8.1.2 Viewing MPI Tracing Experiment (mpi) performance data via GUI 93
8.1.3 MPI Viewing Tracing Experiment (mpi) performance data via CLI 93

8.2 MPI Tracing Experiments (mpit).. 95
8.2.1 MPI Tracing Experiments (mpit) performance data gathering 95
8.2.2 Viewing MPI Tracing Experiments (mpit) performance data via GUI 96
8.2.3 Viewing MPI Tracing Experiments (mpit) performance data via CLI 96

8.3 MPI Tracing Experiments (mpip)... 98
8.3.1 MPI Tracing Experiments (mpip) performance data gathering 98
8.3.3 MPI Viewing Tracing Experiments (mpip) performance data via GUI 101

 4

9 Threading Analysis Section .. 103
9.1 Threading Specific Experiment (pthreads)... 104

9.1.1 Threading Specific (pthreads) experiment performance data gathering
(osspthreads) .. 105
9.1.2 Viewing Threading Specific (pthreads) experiment performance data via GUI . 106
9.1.3 Viewing Threading Specific (pthreads) experiment performance data via CLI .. 107

9.2 OpenMP Related Performance Analysis.. 109
9.2.1 OpenMP Thread Wait Detection using OMPT interface 109
9.2.1.1 Augmentation of O|SS sampling experiments ... 109
9.2.2 O|SS OpenMP specific profiling experiment (omptp) ... 113

9.2.2.1 OpenMP Specific (omptp) experiment performance data gathering (ossomptp)
 .. 113
9.2.2.2 Viewing OpenMP Specific (omptp) experiment performance data via GUI 113
9.2.2.3 Viewing OpenMP Specific (omptp) experiment performance data via CLI 113

9.3 Hybrid (OpenMP and MPI) Performance Analysis .. 114
9.3.1 Focus on individual Rank to get Load Balance for Underlying Threads 115
9.3.2 Clearing Focus on individual Rank to get back to default behavior 117

10 GPU Performance Analysis ... 119
10.1 NVIDIA CUDA Analysis Section ... 119

10.1.1 NVIDIA CUDA Tracing (cuda) experiment performance data gathering (osscuda)
 .. 119
10.1.2 NVIDIA CUDA Experiment Performance Data Viewing using the new GUI 121
10.1.3 NVIDIA CUDA GUI Main Window User Interface Layout ... 121
10.1.4 Using the NVIDIA CUDA GUI to Analyze Application Performance 125
10.1.5 Viewing NVIDIA CUDA Tracing (cuda) experiment performance data via CLI 134

11 Memory Analysis Techniques .. 140
11.1 Memory Analysis Tracing (mem) experiment performance data gathering
(ossmem) .. 140
11.2 Viewing Memory Analysis Tracing (mem) experiment performance data via
CLI ... 141
11.3 Viewing Memory Analysis Tracing (mem) experiment performance data via
GUI .. 143

12 Advanced Analysis Techniques ... 146
12.1 Comparison Script Argument Description .. 147

12.1.1 osscompare metric argument ... 147
12.1.2 osscompare rows of output argument ... 148
12.1.3 osscompare output name argument. .. 148
12.1.4 osscompare view type or granularity argument. .. 149

13 O|SS User Interfaces .. 149
13.1 Command Line Interface Basics ... 150

13.1.2 CLI Metric Expressions and Derived Types ... 151
13.1.3 CLI Automatically Generated Derived Metrics and CLI Derived Metric Names 153

13.1.3.1 Computational Intensity ... 154
13.1.3.2 Level 1 Data Cache Miss Ratio ... 154

13.2 CLI Batch Scripting ... 154
13.3 Python Scripting ... 155
13.4 MPI_Pcontrol Support ... 155

 5

13.5 Qt3 Legacy Graphical User Interface Basics ... 155
13.5.1 Basic Initial View – Default View ... 156
13.5.1.1 Icon ToolBar ... 156
13.5.1.2 View/Display Choice Selection.. 157
13.5.2 Preferences - How to change preferences ... 158
13.5.2.1 Disabling or enabling the preference for Save/Reuse views in CLI. 161

13.6 Next Generation O|SS GUI Application ... 163
13.6.1 Introduction .. 163

13.6.1.1 Main Window User Interface Layout ... 164
13.6.1.2 Case Studies of Using the O|SS GUI to Analyze Experiment Results 176

14 Special System Support (Static Executables) .. 227
14.1 Cray and Blue Gene .. 227
14.1.1 osslink Command Information ... 228
14.1.2 Cray-Specific Static aprun Information .. 229
14.1.3 Changing parameters to the experiments ... 229

15 Setup and Build for O|SS .. 231
15.1 Installing O|SS with Spack .. 231
15.2 Installing O|SS with the install-tool command .. 232

Build only the krell-root ... 232
Build cbtf components using the krell-root .. 232
Build only OSS using the cbtf components and the krell-root ... 232

15.3 Execution Runtime Environment Setup .. 233
15.3.1 Example module file .. 233
15.3.2 Example softenv file .. 236
15.3.3 Example dotkit file ... 237

16 Additional Information and Documentation Sources 238
16.1 Final Experiment Overview ... 238
16.2 Additional Documentation .. 238

17 Convenience Script Basic Usage Reference Information 240
17.1 Suggested Workflow .. 240
17.2 Convenience Scripts ... 240
17.3 Report and Database Creation.. 240
17.4 osscompare: Compare Database Files .. 241
17.5 osspcsamp: Program Counter Experiment ... 242
17.6 ossusertime: Call Path Experiment ... 242
17.7 osshwc, osshwctime: HWC Experiments ... 242
17.8 osshwcsamp: HWC Experiment .. 243
17.9 ossio, ossiot: I/O Experiments .. 243
17.10 ossmpi, ossmpip, ossmpit: MPI Experiments .. 244
17.11 ossmem: Memory Analysis Experiment .. 244
17.12 ossomptp: OpenMP Specific Profiling Experiment .. 245
17.13 osspthreads: POSIX Thread Analysis Experiment ... 245
17.14 osscuda: NVIDIA CUDA Tracing Experiment .. 245
17.15 cbtfsummary: Overview/Summary Multiple Metric Experiment 246
17.16 Key Environment Variables .. 246

Execution Related Variables .. 247
OPENSS_RAWDATA_DIR ... 247
OPENSS_ENABLE_MPI_PCONTROL .. 247

 6

OPENSS_DATABASE_ONLY .. 247
OPENSS_RAWDATA_ONLY ... 247
OPENSS_DB_DIR .. 247
OPENSS_MPI_IMPLEMENTATION .. 248
OPENSS_DEFER_VIEW .. 248
CBTF_CSVDATA_DIR .. 248

Appendix A: cbtfsummary csv file format .. 249

 7

About this Manual

Open|SpeedShop is an open-source multi-platform Linux performance tool to
support performance analysis of applications running on both single-node and
large-scale Intel, AMD, ARM, Intel Phi, PPC, Power and GPU processor-based systems
and on Cray and IBM Blue Gene platforms.

This reference guide provides basic O|SS information. It’s designed to help users
understand the general O|SS experiments available to analyze application code.
Extensive information is provided about how to employ these experiments and view
performance information in practical ways, arming users to optimize and analyze
their codes.

O|SS is a community effort with direct support from the Department of Energy
National Nuclear Security Administration (DOE NNSA). It builds on a broad list of
community infrastructures, most notably Dyninst and MRNet (Multicast Reduction
Network) from the University of Wisconsin at Madison, the Libmonitor profiling tool
from Rice University, and the Performance Application Programming Interface
(PAPI) from the University of Tennessee at Knoxville.

O|SS is designed with usability in mind and is for application developers and
computer scientists. The base functionality includes:

 High level Overview/Summary
 Program Counter Sampling
 Support for Call Stack Analysis
 Hardware Performance Counter Sampling and Threshold based
 MPI Lightweight Profiling and Tracing
 I/O Lightweight Profiling and Tracing
 Memory Trace Analysis
 OpenMP Profiling and Analysis
 POSIX Thread Trace Analysis
 NVIDIA CUDA Event Tracing and Hardware Counter Information

O|SS also is modular and extensible. It supports several levels of plugins, letting
users add their own performance experiments.

The O|SS infrastructure and base components are released as open-source code
primarily under LGPL. Highlights include:

 No need to recompile the user’s application to get performance data at
the function and library level. The debug option “-g” needed for
statement, loop, and vector instruction level information.

 Comprehensive performance analysis for sequential, multithreaded
and MPI applications

 8

 Intel Only AVX512: Detection and display of vector instructions with
512 bit operands, showing address, opcode, time spent, and hardware
maximum operand size for the vector instruction.

 Support for both first analysis steps and deeper analysis options for
performance experts

 Easy-to-use GUI and fully scriptable through a command line interface
and Python

 Supports Linux Systems and Clusters with Intel, AMD, ARM, and
Power processors

 Extensible through new performance-analysis plugins, ensuring
consistent look and feel

 In production use on all major cluster platforms at Los Alamos,
Lawrence Livermore and Sandia national laboratories and at other
sites around the world

Features include:

 Four user interface options: batch, command line, GUI and Python
scripting API

 Supports multi-platform single-system image (SSI) and traditional
clusters

 See the performance data in several levels of granularity:
o Per library, per function, per loop, per statement and per

vector instruction (only on Intel platforms – helps in AVX512
detection)

 Scales to large numbers of processes, threads and ranks
 Performance data viewable using multiple customizable means
 Performance experiment data and symbol information can be saved

and restored for post-experiment analysis
 Performance data viewable for all of an application’s lifetime or for

smaller time slices
 Performance results comparable for processes, threads or ranks

between a previous experiment and the current experiment
 GUI context-sensitive help.
 Interactive CLI help facility, which lists the CLI commands, syntax and

typical usage
 Option to automatically group like-performing processes, threads or

ranks

 9

1 Introduction to Open|SpeedShop

Open|SpeedShop (O|SS) is an open-source performance analysis tool framework. It
provides all the most common performance analysis steps in one tool via a common
shared interface. It’s easily extendable by writing plugins to collect and display
performance data. It also comes with built-in experiments to gather and display
several types of performance information.

The existing O|SS experiments all work on unmodified application binaries. It has
been tested on a variety of Linux clusters and supports Cray and IBM Blue Gene
systems.

1.1 Basic Concepts, Interface, Workflow

Users can examine the results of O|SS
performance tests, called experiments, in three
ways: a GUI, a command line interface, or
through Python libraries. Users also can apply
these options to start experiments or start
them by launching convenience scripts via the
command line. For example, to commence a convenience script for the pcsamp
experiment (Program Counter Sampling), the user executes the command:
 osspcsamp “<application>”
where <application> is the executable under study along with any arguments. The
convenience scripts then will create a database of results from that experiment.

The user can examine any database
in the GUI with the command:
 openss –f <db file>
The GUI will provide simple
graphics to help users understand
the results and will relate the data
back to the source code when
possible.

1.1.1 Common Terminology

Technical terms can have multiple and/or context-sensitive meanings. This section
explains and clarifies terms used in this document, especially with respect to O|SS
tools.

Experiment: A set of collectors and an executable or executables joined to

 10

generate performance information that viewable in human-readable
form.

Focused Experiment: The current experiment that commands operate on.
Users may run or view multiple experiments simultaneously, and unless
a particular experiment is specified, the focused experiment will be
used. Experiments are given enumerations, called experiment IDs, for
identification.

Component(s): A component is a somewhat self-contained code section in
the O|SS performance tool. This section does a set of specifically related
tasks for the tool. For example, the GUI component does all the tasks
related to displaying O|SS wizards, experiment creation, and results
using a graphical user interface. The CLI component does similar
functions but uses the interactive command-line delivery method.

Collector: The portion of the tool containing logic that gathers the
performance metric. The collector part of the code is included in the
experiment plugin.

Metric: The measurement the collector/experiment gathers. A metric could
be a time, an occurrence counter or other property that reflects in some
way on the application’s performance and that a collector directly
gathers during a performance experiment at application runtime.

Offline: An O|SS operating mode. This mode of operation uses a link
override mechanism that lets performance data-gathering via
libmonitor link O|SS performance data-gathering software components
into the user application. For this operating mode, the application must
be run from start-up to completion. The performance results may be
viewed after the application terminates normally.

Param: User-set values that control the way each collector behaves. The
parameter or param may cause the collector to perform various
operations at certain time intervals or it may cause a collector to
measure certain types of data. Although O|SS provides a standard way
to set a parameter, it is up to the individual collector to decide what to
do with that information. Documentation for each collector includes
details about the available parameters.

Framework: The set of API functions that lets the user interface manage
performance experiment creation and viewing. It connects the user
interface and the cluster support and dynamic instrumentation
components.

Plugin: A portion (library) of the performance tool that can be loaded and
included in the tool at startup. Plugin development requires a tool-
specific interface (API) so that it and the tool it’s to go into can
interact. Plugins normally are placed in a specific directory so tools
know where to find them.

Target: The application or part of the application O|SS is running the
experiment on. O|SS gives options that describe file names, host names,
thread identifiers, rank identifiers and process identifiers, letting the
user fine-tune what is targeted.

 11

Granularity: O|SS gathers and displays data at five levels. The first four
levels are most common and apply across all platforms. Those base
levels are: per function, per statement, per loop, and per library.
Recently, the vector instruction level was added for Intel platforms only.
This allows users to tell what statements in their programs were
vectorized, what the vector instructions are, the address of the vector
instructions and the time spent executing the vector instruction.

1.1.2 Concept of an Experiment

In an O|SS experiment, a performance data collector gathers performance
measurement data for a particular area of interest. The collector, which is a small
dynamic or static object library, also contains functions that can interpret the
gathered data into a human-understandable form. The experiment definition also
includes the application under examination and how often the data will be collected
(the sampling rate). The application’s symbol information is saved into the
experiment output file so that users can generate reports from the performance
data file alone. The application itself need not be present to view the performance
data at a later time.

1.2 Performance Experiments Overview

O|SS refers to the different performance measurements as experiments. Each
experiment can measure and analyze different aspects of a code’s performance. The
user chooses the experiment type or type of data gathered. Any experiment may be
applied to any application, except for applying MPI-specific experiments to non-MPI
applications.

Each experiment consists of collectors and views. The collectors define specific
performance data sources, such as program counter samples, call stack samples,
hardware counters or library routine tracings. Views specify how the performance
data is aggregated and presented to the user. It is possible to implement multiple
collectors per experiment.

1.2.1 Individual Experiment Descriptions

The following table provides a quick overview of the experiment types that come
with O|SS.

Experiment Experiment Description

 12

summary Creates comma separated list (csv) files containing application level
overview performance information on MPI, OpenMP, I/O, Memory usage,
and hardware performance counters. Currently, this experiment is
accessed via the cbtfsummary command.

pcsamp Periodically samples the program counters, providing a low-overhead view
of where time is spent in the user application.

usertime Periodically samples the call path, letting the user view inclusive and
exclusive time spent in application routines. It also lets the user see which
routines called specific routines. Several views are available, including the
“hot” path.

hwc Counts hardware events (including clock cycles, graduated instructions,
instruction and data cache, TLB misses and floating-point operations) at the
machine instruction, source line and function levels.

hwcsamp Similar to hwc, except sampling is based on time, not PAPI event overflows.
Up to six events may be sampled during the same experiment.

hwctime Similar to hwc, except it also includes call path sampling. 

io Accumulated wall-clock durations of input/output (I/O) system calls: read,
readv, write, writev, open, close, dup, pipe, creat and others. Shows call
paths for each unique I/O call path.

iop Lightweight I/O profiling: Accumulated wall-clock durations of I/O system
calls, including read, readv, write, writev, open, close, dup, pipe, creat and
others, but doesn’t record individual call information.

iot Similar to io, except it gathers more information, such as bytes moved, file
names, etc.

mpi Captures the time spent in and the number of times each MPI function is
called. Shows call paths for each MPI unique call path.

mpip Lightweight MPI profiling: Captures the time spent in and the number of
times each MPI function is called. Shows call paths for each MPI unique call
path, but doesn’t record individual call information.

mpit Records each MPI function call event with specific data for display via a
graphical user interface (GUI) or a command line interface (CLI). Trace
format option displays the data for each call, showing its start and end times.

mem** Tracks a potential memory allocation call that is not later destroyed (i.e., a
leak). Records any memory allocation event that sets a new high-water mark
for allocated memory current thread or process. Creates an event for each
unique call path to a traced memory call and records the total number of
times this call path was followed; the maximum allocation size, the minimum
allocation size, and the total allocation; the total time spent in the call path;

 13

and the start time for the first call.

pthreads Captures the time spent in each POSIX thread function and the number of
times each is called. Shows call paths for each POSIX thread function’s
unique call path.

omptp Reports task idle, barrier, and barrier wait times per OpenMP thread and
attributes those times to the OpenMP parallel regions.

cuda* Captures the NVIDIA CUDA events that occur during the application
execution and reports times spent for each event, along with the arguments
for each event, in an event-by-event trace.

* Not presently available in O|SS offline mode.

**If run in offline mode, the memory experiment performance data is not reduced in
the manner it is in the default mode because the filters are not called during offline
mode.

1.2.2 Synopsis of the Summary Experiment

Currently, the summary experiment is accessed through a CBTF driver script
named: cbtfsummary. The arguments to this script are similar to that of the O|SS
convenience scripts, but the underlying infrastructure is somewhat different. This
is explained in more detail in section 2.1.

The summary experiment gathers high-level information for a number of
performance metrics, such as: MPI, OpenMP, Hardware counters, I/O, and Memory
information. In the future, CUDA and sampling information may be added.

The summary experiment produces comma separated list (CSV) files of information
for each thread of execution whose contents include application meta-data and
performance information like timing and counts for the above mentioned metrics.
The CBTF_CSVDATA_DIR environment variable can be used to set the directory path
location for the cbtfsummary experiment csv files.

1.2.3 Synopsis of the Sampling Experiments

The program counter sampling (pcsamp), call path profiling (usertime), and
hardware counter experiments (hwc, hwctime, hwcsamp) all use a form of
sampling-based performance information-gathering techniques.

Program counter sampling (pcsamp) records the program counter (PC) in the
specified user application by interrupting it at a user-defined time interval (with a
default setting of 100 times a second at). This experiment provides a low-overhead
overview of the application’s time distribution. Its lightweight overview provides a
good first step for analyzing an application’s performance.

 14

The call path profiling (usertime experiment) gathers the PC sampling information
and records call stacks for each sample. This allows later display of application call
path information and inclusive and exclusive timing data (see section 4.2). Use this
experiment to find hot call paths (call paths that take the most time) and see who is
calling whom.

The hardware counter experiments (hwc, hwctime, hwcsamp) access data like cache
and TLB misses. The hwc and hwctime experiments sample hardware counter
events based on an event threshold. The default event is PAPI_TOT_CYC overflows.
(See chapter 5 for more information on PAPI and hardware counter-related
experiments.) Instead of using a threshold, the hwcsamp experiment samples up to
six events based on a sample time, similar to the usertime and pcsamp experiments.
The hwcsamp experiment default events are PAPI_FP_OPS and PAPI_TOT_CYC.

1.2.4 Synopsis of the Tracing Experiments

Input/output tracing and profiling (io, iot, iop), MPI tracing (mpi, mpip, mpit),
memory tracing (mem) and POSIX thread tracing (pthread) all use a form of tracing
or wrapping of function names to record performance information. Tracing
experiments do not use timers or thresholds to interrupt the application. Instead
they intercept function calls of interest with a wrapper function that records timing
and function argument information, calls the original function, and records this
information for later viewing with O|SS’s user interface tools.

The I/O tracing experiments (io, iot) record all POSIX I/O event invocations. They
both provide aggregated and individual timings, while the iot experiment also
provides argument information for each call. Use the I/O profiling experiment (iop)
to get a more lightweight overview of application I/O usage. It records the
invocation of all POSIX I/O events and accumulates the information, but does not
save individual call information as the io and iot experiments do. That makes the
iop experiment database smaller and the iop experiment faster than with the io and
iot experiments.

The memory tracing experiment (mem) records invocation of all tracked memory
function calls, also referred to as events. It provides aggregated and individual
timings along with argument information for each call.

The MPI tracing experiments (mpi, mpit) record invocation of all MPI routines along
with aggregated and individual timings. The mpit experiment also provides
argument information for each call. Use the MPI profiling experiment (mpip) to get
a more lightweight overview of application MPI usage. It records and accumulates
the invocation of all MPI function call events, but does not save individual call
information as the mpi and mpit experiments do. That makes the mpip experiment
database smaller and the mpip experiment faster than with the mpi and mpit
experiments.

 15

The POSIX thread tracing experiment (pthreads) records invocation of all tracked
POSIX thread-related function calls, also referred to as events. The pthreads
experiment provides aggregated and individual timings and argument information
for each call.

1.2.5 Parallel Experiment Support

O|SS supports MPI and threaded codes and it has been tested with various MPI
implementations. Thread support is based on POSIX threads and OpenMP is
supported in numerous ways, including via POSIX threads, OpenMP wait time
sampling experiment augmentation and the omptp OpenMP profiling experiment.

Any O|SS experiment can be applied to any parallel application. This means you can
run the program counter sampling experiment on a non-parallel application as well
as an MPI or threaded application. Experiment data collectors are automatically
applied to all tasks/threads. Default views aggregate (sum performance data) across
all tasks/threads but data from individual tasks/threads are available. MPI calls are
wrapped and MPI function elapsed time and parameter information is displayed.

1.2.6 Vector instruction detection (AVX512 instruction detection)

O|SS version 2.4.0 supports vector instruction detection to allow users to find what
portions of their application are being executed with vector instructions. This
feature is only supported on Intel processors.

The original effort was to detect Intel instructions that have 512 vector length
arguments, i.e. AVX512 instructions. O|SS has broadened the original objective and
now detects vector instructions in general and can report vector instructions of
various vector lengths, where AVX512 is a special case of the general detection.
This gives the O|SS tool flexibility to handle possible future architectural changes
and report more categories for existing systems.

This functionality was implemented by using the gathered/sampled addresses to
search through the executable during post processing the executable using the
Dyninst API. The sampled addresses, which were gathered during the application
execution, are matched with instruction at that address. The instruction must be
one that Dyninst identifies as being in the vector category. The operands are
examined for their size and the largest size is recorded and subsequently reporting
in the O|SS command line interface tool (CLI). See section 1.5 Description of the
Granularity of views available in O|SS for the view command information and section
3.1.3.1 Vector Instruction view example (Intel based platforms only) for additional
information.

 16

A convenience script option is required to gather this information, as statically
scanning the application is necessary to detect the vector instruction information.
The vector instructions will be detected if they are present on Intel based platforms.

1.3 Running an O|SS Experiment

First, consider what parameters you want to measure, then choose the appropriate
experiment to run. You may want to start with the pcsamp experiment since it is
lightweight and will give an overview of timing for the entire application. Once you
have selected the experiment to run, you can launch it with either the wizard in the
GUI or with command-line convenience scripts.

For example, say the user decides to run the pcsamp experiment on SMG2000, a
semi-coarsening multigrid solver MPI application. On the command line, issue the
command:

> osspcsamp “mpirun –np 256 smg2000 –n 60 60 60”

Where “mpirun –np 256 smg2000 –n 60 60 60” is a typical MPI command normally
used to launch the smg2000 application. The MPI driver script or executable,
mpirun, is used to launch SMG2000 on 256 processors and “-n 60 60 60” is passed
as an argument to SMG2000.

Here’s an example of an MPI SMG2000 pcsamp experiment run from a SLURM-
based system using “srun” as the MPI driver, along with the application and
experiment output:

> osspcsamp "srun -n 256 ./smg2000 -n 60 60 60"

[openss]: pcsamp experiment using the pcsamp experiment default sampling rate: "100".
[openss]: pcsamp experiment calling openss.
[openss]: Setting up offline raw data directory in /p/lscratchrzb/fred/offline-oss
[openss]: Running offline pcsamp experiment using the command:
"srun -ppdebug -n 256 /collab/usr/global/tools/openspeedshop/oss-
dev/x8664/oss_offline_v2.1u6/bin/ossrun -c pcsamp ./smg2000 -n 60 60 60"

Running with these driver parameters:
 (nx, ny, nz) = (60, 60, 60)
 (Px, Py, Pz) = (256, 1, 1)
 (bx, by, bz) = (1, 1, 1)
 (cx, cy, cz) = (1.000000, 1.000000, 1.000000)
 (n_pre, n_post) = (1, 1)
 dim = 3
 solver ID = 0
===
Struct Interface:
===
Struct Interface:
 wall clock time = 0.020830 seconds
 cpu clock time = 0.030000 seconds

 17

===
Setup phase times:
===
SMG Setup:
 wall clock time = 0.451188 seconds
 cpu clock time = 0.460000 seconds
===
Solve phase times:
===
SMG Solve:
 wall clock time = 2.707334 seconds
 cpu clock time = 2.720000 seconds
Iterations = 7
Final Relative Residual Norm = 1.446921e-07
[openss]: Converting raw data from /p/lscratchrzb/fred/offline-oss into temp file X.0.openss
Processing raw data for smg2000 ...
Processing processes and threads ...
Processing performance data ...
Processing symbols ...
Resolving symbols for /g/g24/fred/demos/workshop_demos/mpi/smg2000/test/smg2000
Resolving symbols for /lib64/ld-2.12.so
Resolving symbols for /collab/usr/global/tools/openspeedshop/oss-
dev/x8664/oss_offline_v2.1u6/lib64/openspeedshop/pcsamp-rt-offline.so
Resolving symbols for /collab/usr/global/tools/openspeedshop/oss-
dev/x8664/krellroot_v2.1u6/lib64/libmonitor.so.0.0.0
Resolving symbols for /usr/local/tools/mvapich-gnu-1.2/lib/shared/libmpich.so.1.0
Resolving symbols for /lib64/libc-2.12.so
Resolving symbols for /lib64/libpthread-2.12.so
Resolving symbols for /usr/lib64/libpsm_infinipath.so.1.14
Resolving symbols for /usr/lib64/libinfinipath.so.4.0
Updating database with symbols ...
Finished ...

[openss]: Restoring and displaying default view for:
/g/g24/fred/demos/workshop_demos/mpi/smg2000/test/smg2000-pcsamp.openss
[openss]: The restored experiment identifier is: -x 1

Exclusive % of CPU Function (defining location)
 CPU time Time
 in
 seconds.
272.1200 34.202 hypre_SMGResidual (smg2000: smg_residual.c,152)
195.0000 24.509 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 80.0100 10.056 psm_mq_ipeek (libpsm_infinipath.so.1.14)
 70.7600 8.893 ips_ptl_poll (libpsm_infinipath.so.1.14)
 16.1300 2.027 hypre_SemiInterp (smg2000: semi_interp.c,126)
 15.5600 1.955 __psmi_poll_internal (libpsm_infinipath.so.1.14)
 14.2300 1.788 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 6.5700 0.825 hypre_SMGAxpy (smg2000: smg_axpy.c,27)
 6.0600 0.761 MPIR_Pack_Hvector (libmpich.so.1.0: dmpipk.c,31)
 5.9500 0.747 ipath_dwordcpy (libinfinipath.so.4.0)
 5.7900 0.727 MPID_DeviceCheck (libmpich.so.1.0: psmcheck.c,35)
 …
 …

When the application completes, a default report will be printed on screen.
Performance information gathered during experiment execution will be stored in a
database called smg2000-pcsamp.openss. Users can use the O|SS GUI to analyze the

 18

data in detail. Run the openss command to load that database file or open the file
directly using the “-f” option:

> openss –f smg2000-pcsamp.openss

Here are basic examples of how to use the GUI to view the output database file
created by the convenience script.

 19

Users can choose to view data at Function, Statement, Linked Object, or Loop
granularity levels. To switch from one view type to another, first select the view
granularity (Function, Statement, Linked Object, or Loop), and then select the
type of view. For the default views, select the “D” icon.

View Type Choices (D for Default
selected and shown)
LB: Load Balance, CA: Cluster Analysis,
and others available.

View Granularity Choices (Function
level selected)

Statement, Library, and Loop
level are available.

 20

Users can manipulate the windows within the GUI and double-click functions or
statements to see the source code directly:

Statement Level Granularity
Selected

Statement in program that took the
most time.

 21

Use window controls to split/arrange
windows.
Vertical split was used here.

Double Click to open Source
View and focus on source line

(291)

 22

1.4 How to Gather and Understand Profiles

A profile is the aggregated measurements collected during an experiment. Profiles
examine code sections over time. They are advantageous because they reduce the
size of performance data, which typically are collected with low overhead, providing
a good overview of an application’s operations.

The disadvantage of using a profile is that users must know beforehand how to
aggregate the collected data. Since they provide more of an overview, profiles also
omit performance details for individual events. There also could be an issue in
which selecting an inappropriate sampling frequency skews profile results.

Statistical performance analysis is a standard profiling technique. It involves
interrupting execution of the application at periodic intervals to record the
execution (program counter value) location. It also can be used to collect additional
data such as stack traces or hardware counters. Again, the advantage of this method
is its low overhead. It is useful for getting an overview of the program and finding
hotspots (time-intensive areas) within the program.

The sampling experiments available in O|SS include program counter sampling, call
path profiling and hardware counter. The program counter sampling experiment
(osspcsamp) provides approximate CPU time for each line and function in the
program. The call path profiling experiment (ossusertime) provides inclusive vs.
exclusive CPU time (see section 4.2) and includes call stacks. There are a number of
Hardware Counter experiments (osshwc, osshwctime) that sample hardware
counter overflows, plus osshwcsamp that can periodically sample up to six
hardware counter events.

1.5 Description of the Granularity of views available in O|SS

Several base views are available for viewing of O|SS performance data through the
command line interface (CLI) tool. The sampling experiments data lends itself to
be viewed in more granularity than the tracing experiments due to the type of data
metrics collected by O|SS. With sampling data, O|SS can display the performance
information by library, by function, by loop, and by statement. Additionally, O|SS
will gather information about vector instructions on Intel platforms only. That data
is display per vector instruction.

Performance information gathered using tracing techniques is function based and
therefore is only shown in per function granularity.

A summary of what to expect in O|SS performance views is as follows:

 Per library (linked object) (expview -vlinkedobjects in CLI)

 23

o Counts, time spent are displayed on a per library or executable basis.
This can give a good overview of the balance of MPI library time to
base application time

 Per function (expview -vfunctions in CLI)
o Counts, time spent, percentages are displayed on a per function basis.

This allows the user to know which functions in the program are
taking the most time, have the hardware counter hits, etc.

 Per loop (expview -vloops in CLI)
o Display performance information based on loop granularity. Loops

are determined via static binary analysis during the post process and
performance information is attributed to the loop statements.

 Per statement (expview –vstatements in CLI)
o Display performance information for each statement where O|SS

collected information. This allows the user to know which statements
in their program took the most time.

 Per vector instruction (expview -vvectorinstrs in CLI)
o Intel platforms only
o Display performance information based on vector instruction,

showing the address, instruction opcode, and maximum hardware
operand size.

 24

2.1 Overview/Summary (cbtfsummary) Experiment

The summary experiment gathers high-level information for a number of
performance metrics, such as:

 Time spent in MPI routines
 Time spent in OpenMP

o Idle time
o Barrier wait time
o Barrier time
o Implicit task time
o Serial time

 Hardware counters
o Cycles through a number of hardware counters and multiplexes

 Time spent in I/O
 Memory information

o Dynamic memory size
o Dynamic memory resident size
o Dynamic memory high water mark
o Dynamic memory shared size
o Dynamic memory heap size

 In the future, CUDA, kokkos, and sampling information may be added.

Currently, the summary experiment is accessed through a CBTF driver script
named: cbtfsummary. The arguments to this script are similar to that of the O|SS
convenience scripts, but the underlying infrastructure is somewhat different. The
cbtfsummary convenience script does not create a database files like the
oss<experiment name> convenience script. cbtfsummary is intended to be highly
scalable, therefore it produces comma separated list (CSV) files of information for
each thread of execution whose contents include application meta-data and
performance information like timing and counts for the above mentioned metrics.

The format of the csv files is described in section 2.1.2 and is subject to change as it
is under development.

2.1.1 Summary (cbtfsummary) experiment performance data gathering

The summary experiment convenience script is “cbtfsummary”. Here’s how to use
it to gather overview information about your application run.

cbtfsummary “how you normally run your application”

An example of a summary experiment run on the nbody application is as follows:

> setenv CBTF_CSVDATA_DIR ./sierra_csvdata
> cbtfsummary “jsrun –n 16 ./nbody”

 25

The first line defines where the csv files will be written. The second line runs the
application, nbody in this case. cbtfsummary gathers the performance information
and writes the csv files, one for each thread of execution to the directory specified
by CBTF_CSVDATA_DIR. If CBTF_CSVDATA_DIR is not specified, then the files are
written to /tmp.

2.1.2 Summary/Overview CSV directory structure and CSV file format definitions

Currently, the cbtfsummary experiment provides high level performance information

related to MPI, OpenMP, POSIX I/O, POSIX memory, and hardware counters. See

Appendix A for a detailed of the description of the cvs file contents for the cbtfsummary

experiment. As cbtfsummary is in active development there are possible changes
are coming for the cbtfsummary functionality. User feedback is appreciated.

There is a debug option that is recognized by the cbtfsummary which causes the tool
to show what the summary collector is writing to the csv files. For illustration, the
example run below shows what is available.

Example run:

$ CBTF_SHOW_CSVDATA=1 cbtfsummary "mpirun -np 2 ./nbody-openmpi"
Iteration 50 of 50...
[17018,0] host,pid,rank,tid,posix_tid,executable,total_time_seconds
[17018,0] localhost.localdomain,17018,1,0,140353435236160,nbody-openmpi,3.650807
[17018,0] maxrss_bytes,utime_seconds,stime_seconds
[17018,0] 8348,3.377000,0.083000
[17018,0] dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap
[17018,0] 127356,7844,8348,4516,76136
[17018,0] allocation_time,allocation_calls,allocation_bytes
[17018,0] 0.000050,65,181172
[17018,0] free_time,free_calls
[17018,0] 0.000036,61
[17018,0] total_mpi_time
[17018,0] 0.368264
[17018,0]
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL
[17018,0]
17533265404,38594596124,16423184578,161232,816220,2925356,26860,649765196,915336617
8,6696100928
[17017,0] host,pid,rank,tid,posix_tid,executable,total_time_seconds
[17017,0] localhost.localdomain,17017,0,0,140684808259392,nbody-openmpi,3.651217
[17017,0] maxrss_bytes,utime_seconds,stime_seconds
[17017,0] 8316,3.375000,0.082000
[17017,0] dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap
[17017,0] 127356,7840,8316,4520,76136
[17017,0] allocation_time,allocation_calls,allocation_bytes
[17017,0] 0.000037,67,341172
[17017,0] free_time,free_calls
[17017,0] 0.000027,63

 26

[17017,0] total_mpi_time
[17017,0] 0.340121
[17017,0]
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL
[17017,0]
17532945468,38099297260,16219346728,129228,1072288,2938000,23824,649522092,90207017
90,6668198566
All Threads are finished.

cbtfsummary creates these named folders in the directory specified by
CBTF_CSVDATA_DIR or in the default /tmp location. Each time cbtfsummary is run
a new directory is created with an increasing integer appended so that the previous
runs data is not destroyed.

$ ls -ld ./nbody-openmpi-overview-csvdata-*
drwxrwxr-x. 4 fred fred 4096 Jun 13 16:51 ./nbody-openmpi-overview-csvdata-0
drwxrwxr-x. 4 fred fred 4096 Jun 13 23:14 ./nbody-openmpi-overview-csvdata-1
drwxrwxr-x. 4 fred fred 4096 Jun 13 23:30 ./nbody-openmpi-overview-csvdata-2
drwxrwxr-x. 4 fred fred 4096 Jun 13 23:30 ./nbody-openmpi-overview-csvdata-3
drwxrwxr-x. 4 fred fred 4096 Jun 14 13:16 ./nbody-openmpi-overview-csvdata-4

Each of the above directories represents one run of cbtfsummary. To view the cvs
files from one run, examine the directory of interest.

$ ls -latr nbody-openmpi-overview-csvdata-4
total 48
drwxrwxr-x. 2 fred fred 4096 Jun 14 13:16 localhost.localdomain-1
drwxrwxr-x. 2 fred fred 4096 Jun 14 13:16 localhost.localdomain-0
drwxrwxr-x. 4 fred fred 4096 Jun 14 13:16 .
drwxrwxr-x. 24 fred fred 32768 Jun 14 13:22 ..

$ ls -latr nbody-openmpi-overview-csvdata-4/*
nbody-openmpi-overview-csvdata-4/localhost.localdomain-1:
total 12
-rw-rw-r--. 1 fred fred 635 Jun 14 13:16 nbody-openmpi-1-0.csv
nbody-openmpi-overview-csvdata-4/localhost.localdomain-0:
total 12
-rw-rw-r--. 1 fred fred 636 Jun 14 13:16 nbody-openmpi-0-0.csv

A cat of csv files shows the contents of the csv files.
$ cat nbody-openmpi-overview-csvdata-4/*/*csv
host,pid,rank,tid,posix_tid,executable,total_time_seconds
localhost.localdomain,17017,0,0,140684808259392,nbody-openmpi,3.651217
maxrss_bytes,utime_seconds,stime_seconds
8316,3.375000,0.082000
dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap
127356,7840,8316,4520,76136
allocation_time,allocation_calls,allocation_bytes
0.000037,67,341172
free_time,free_calls
0.000027,63

 27

total_mpi_time
0.340121
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL
17532945468,38099297260,16219346728,129228,1072288,2938000,23824,649522092,90207017
90,6668198566
host,pid,rank,tid,posix_tid,executable,total_time_seconds
localhost.localdomain,17018,1,0,140353435236160,nbody-openmpi,3.650807
maxrss_bytes,utime_seconds,stime_seconds
8348,3.377000,0.083000
dmem_size,dmem_resident,dmem_high_water_mark,dmem_shared,dmem_heap
127356,7844,8348,4516,76136
allocation_time,allocation_calls,allocation_bytes
0.000050,65,181172
free_time,free_calls
0.000036,61
total_mpi_time
0.368264
PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_LD_INS,PAPI_L3_TCM,PAPI_L2_TCM,PAPI_L1_TCM,PAPI_TLB_IM,
PAPI_REF_CYC,PAPI_FUL_CCY,PAPI_RES_STL
17533265404,38594596124,16423184578,161232,816220,2925356,26860,649765196,915336617
8,6696100928

2.1.3 Summary/Overview Report Generation

After cbtfsummary experiment completes, a human readable, formatted report is
created containing the minimum, maximum, and average values for the data metrics
described above, in section 2.1.2. The report will be displayed to standard out
(stdout) and a file will be created with the identical information and file will be
placed in the directory from which the cbtfsummary experiment was run.

The following example and report is from a cbtfsummary experiment on the nbody
application using 72 ranks. The commands used were:

export CBTF_CSVDATA_DIR=/lustre/scratchb/Fredrick
cbtsummary “mpirun –np 72 ./nbody”

The cbtfsummary experiment created csv files for each of the rank and wrote the
files into the directory path: /lustre/scratchb/fredrick. This directory structure
and csv files can be mined by other tools, if desired.

The cbtfsummary report from the example run is shown below.

 28

Metrics for 0 72
metric name max min avg
dmem_high_water_mark 41832 43680 43779
dmem_resident 19588 12992 13452
dmem_size 224712 294248 306507
dmem_shared 7188 7240 7548
dmem_heap 78508 71836 71989
read_time 0.000000 0.000000 0.000000
read_bytes 0 0 0
io_total_time 0.000051 0.000011 0.000021
write_bytes 0 0 0
write_time 0.000000 0.000000 0.000000
allocation_calls 173 93 125
allocation_time 0.000138 0.000042 0.000067
allocation_bytes 1056651 12803 60898
free_calls 98 74 76
free_time 0.000011 0.000005 0.000009
total_mpi_time 9.929802 9.620426 9.748008
PAPI_DP_OPS 152486080 146049884 1268564188
PAPI_TOT_INS 1097995836 1083669158 557419126
PAPI_VEC_DP 152486080 146049884 149964029
PAPI_TOT_CYC 878111892 869962518 876642689
PAPI_LD_INS 503700340 491832406 149964029
maxrss_bytes 44104 37516 43779
stime_seconds 1.184613 0.111020 1.354460
utime_seconds 0.372336 0.377667 0.363017
total_time_seconds 9.996704 10.016452 9.885804

3.1 Program Counter Sampling (pcsamp) Experiment

A flat profile will answer the basic question, “Where does my code spend its time?”
O|SS displays this as a list of code elements of varying granularity – statements,
functions and libraries (linked objects) – with the time spent at each function. Flat
profiling can be done through sampling, letting the user avoid the overhead of direct
measurements. But users must request a sufficient number of samples (sampling
rate) to get an accurate result.

The profile displays the time spent per function or per statement, helping identify
critical, computationally intensive code regions. While viewing this, the user must
ask:

 Are those the functions/statements that were expected relative to
consuming the most time?

 Does this match the computational kernels?
 Are any runtime functions consuming a lot of time?

The goal is to identify components that are bottlenecks. To do this, view the profile
aggregated by shared (linked) objects, ensuring the correct or expected modules are
present, then analyze the impact of those support and/or runtime libraries.

 29

3.1.1 Program Counter Sampling (pcsamp) experiment performance data gathering

The program counter sampling experiment convenience script is “osspcsamp”.
Here’s how to use it to gather address values in which O|SS periodically interrupted
the application and took an address sample:

osspcsamp “how you normally run your application” < sampling rate>

An example of flat profiling would be to run the program counter sampling in O|SS.
We will run the convenience script on our test program, SMG2000:

> osspcsamp “mpirun –np 256 smg2000 –n 50 50 50”

It is recommended that users compile their code with the –g option to see the
statements in the sampling. Sampling frequency is an optional parameter, with
settings of high (200 samples per second), low (50 samples per second) and default
(100 samples per second). To run the same experiment with the high sampling rate,
issue the command:

> osspcsamp “mpirun –np 256 smg2000 –n 50 50 50” high

3.1.1.1 Program Counter Sampling (pcsamp) experiment parameters

The pcsamp experiment is timer-based: A timer periodically interrupts the
processor and the address in the program counter is read and saved each time. This
allows O|SS to map those address values back to the source when a user views the
pcsamp performance information via the CLI or GUI tool.

In the next example, the user chooses to sample only 45 times a second instead of
the default 100. One reason for this would be to save database size; a lower
sampling rate may still give an accurate portrayal of application behavior.

osspcsamp “how you normally run your application” 45

3.1.2 Viewing Program Counter Sampling (pcsamp) experiment performance data via
GUI

To view results of this flat profile in the O|SS GUI, use the “openss –f <database
filename>” command.

 30

3.1.3 Viewing Program Counter Sampling (pcsamp) experiment performance data via
CLI

After running a program counter experiment via the command:

osspcsamp “mpirun –np 4 ./smg2000 –n 65 65 65”
the user can use the following command to open the newly created database file and
view the data in the CLI:

openss –cli –f smg2000-pcsamp-0.openss
Once inside the CLI, several commands can be used to view this performance
information. Here are some examples:

For the default view, use the expview command with no arguments.

openss>>expview

Exclusive % of CPU Function (defining location)
 CPU time Time
 in
 seconds.
 7.640000 41.657579 hypre_SMGResidual (smg2000: smg_residual.c,152)
 4.840000 26.390403 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 0.800000 4.362050 mca_btl_vader_check_fboxes (libmpi.so.12.0.2: btl_vader_fbox.h,184)
 0.450000 2.453653 unpack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_unpack.h,34)
 0.400000 2.181025 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.370000 2.017448 __memcpy_ssse3_back (libc-2.17.so)
 0.350000 1.908397 pack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_pack.h,35)
 0.330000 1.799346 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 0.310000 1.690294 opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)
 0.180000 0.981461 opal_sys_timer_get_cycles (libopen-pal.so.13.0.2: timer.h,43)

 31

…
…

To view performance information by statement granularity, use the –v statements
argument to expview. The top of the resulting list shows the statement in the
application that took the most time for this particular SMG2000 run. Results may
vary when running on other platforms and/or with different SMG2000 arguments
or different compiler options.

openss>>expview -v statements

Exclusive % of CPU Statement Location (Line Number)
 CPU time Time
 in
 seconds.
 5.790000 35.304878 smg_residual.c(289)
 1.410000 8.597561 cyclic_reduction.c(1130)
 1.080000 6.585366 smg_residual.c(238)
 0.830000 5.060976 cyclic_reduction.c(910)
 0.690000 4.207317 cyclic_reduction.c(999)
 0.420000 2.560976 cyclic_reduction.c(1061)
 0.410000 2.500000 smg_residual.c(287)
 0.330000 2.012195 cyclic_reduction.c(853)
 0.260000 1.585366 opal_datatype_unpack.h(59)
 0.260000 1.585366 cyclic_reduction.c(1000)
 0.240000 1.463415 btl_vader_fbox.h(197)
 0.230000 1.402439 semi_restrict.c(262)
 0.200000 1.219512 opal_datatype_pack.h(60)
 0.180000 1.097561 cyclic_reduction.c(1131)
 0.150000 0.914634 semi_interp.c(294)
…
…

Use the –v linkedobjects argument to expview to see performance data for SMG2000
at the library (linked object) granularity. This tells how much time was spent in
each of the libraries from which O|SS took program counter samples.

This view gives strictly an overview of where time was spent from the library
perspective. If the MPI library time is very high, it may indicate that this run was
using MPI ineffectively. This may indicate load imbalance.

openss>>expview -v linkedobjects

Exclusive % of CPU LinkedObject
 CPU time Time
 in
 seconds.
14.180000 76.981542 smg2000
 1.860000 10.097720 libmpi.so.12.0.2
 1.630000 8.849077 libopen-pal.so.13.0.2
 0.740000 4.017372 libc-2.17.so
 0.010000 0.054289 ld-2.17.so

 32

openss>>

Users also can apply –v loops as an argument to view time spent at the loop level of
granularity. For example, the first line in the display shows that a loop starting at
line 204 in smg_residual.c was the one consuming the most time. O|SS cannot
accurately determine the loops end statement, so only the starting line number is
displayed.

openss>>expview -v loops

Exclusive % of CPU Loop Start Location (Line Number)
 CPU time Time
 in
 seconds.
 7.640000 32.345470 smg_residual.c(204)
 2.240000 9.483489 cyclic_reduction.c(1022)
 2.140000 9.060119 cyclic_reduction.c(882)
 0.790000 3.344623 btl_vader_fbox.h(188)
 0.550000 2.328535 cyclic_reduction.c(1034)
 0.430000 1.820491 cyclic_reduction.c(851)
 0.430000 1.820491 cyclic_reduction.c(851)
 0.430000 1.820491 cyclic_reduction.c(851)
 0.430000 1.820491 cyclic_reduction.c(835)
 0.410000 1.735817 opal_datatype_unpack.h(58)
…
…

Another useful CLI command is expstatus, which provides a summary of metadata
for the O|SS experiment. This command displays the experiment’s metadata. What
host it was run on, the time of the experiment, number and details about the MPI
ranks, threads, and/or processes involved in the experiment.

openss>>expstatus

 Experiment definition
{ # ExpId is 1, Status is Terminated, Saved database is smg2000-pcsamp-0.openss
 Performance data spans 4.773728 seconds from 2016/11/22 07:43:30 to 2016/11/22 07:43:35
 Executables Involved:
 smg2000
 Currently Specified Components:
 -h localhost -p 8090 -t 0 -r 1 (smg2000)
 -h localhost -p 8091 -t 0 -r 2 (smg2000)
 -h localhost -p 8092 -t 0 -r 3 (smg2000)
 -h localhost -p 8089 -t 0 -r 0 (smg2000)
 Previously Used Data Collectors:
 pcsamp
 Metrics:
 pcsamp::percent
 pcsamp::threadAverage
 pcsamp::threadMax
 pcsamp::threadMin
 pcsamp::time

 33

 Parameter Values:
 pcsamp::sampling_rate = 100
 Available Views:
 pcsamp

3.1.3.1 Vector Instruction view example (Intel based platforms only)

Show the vector instruction detection data gathered by O|SS in a CLI optional view.
The performance data below overlaps due to the length of the line needed to show
the complete output.

O|SS will gather information about the vector instructions that were executed in the
application run, provided that a sample was taken at the address that corresponds
to a vector instruction. There are three options that will enable this feature:

 --vinstr128 Find vector instructions with operand sizes that are 128 bits or greater

 --vinstr256 Find vector instructions with operand sizes that are 256 bits or greater

 --vinstr512 Find vector instructions with operand sizes that are 512 bits or greater

For example: osspcsamp –vinstr512 “mpirun -np 256 ./smg2000 -n 5 5 5”

This example was generated with --vinstr128 and the view shows the time spent,
percentage of time attributed to the instruction, name of the library or executable,
vector instruction opcode and operands, and the maximum operand size for this
instruction. The maximum operand size is the physical machine operand size, not
the actual vector size at runtime. That is an extension that is not available at this
time.

openss>>expview -vvectorinstr -f test_HPCCG

Exclusive CPU % of CPU Vector Instr Location (Line Number/Addr : OpCode : Max Operand Size (bits))
 time in Time
 seconds.
2394.11000000 21.84626194 0x20007000 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm7 : 128
2374.39000000 21.66631687 0x2000703a (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm11 : 128
2333.83000000 21.29620674 0x2000701d (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm9 : 128
 450.93000000 4.11473779 0x20006ffa (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vfmadd231pd %xmm6,0x0(%rdx,%rbx,8),%xmm4 : 128
 427.65000000 3.90230771 0x20007b8e (waxpby : test_HPCCG) : waxpby.cpp(57) : movsd %xmm0,0x0(%rax,%rbx,8) : 128
 414.81000000 3.78514267 0x20007033 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vfmadd231pd %xmm10,0x20(%rdx,%rbx,8),%xmm2 : 128
 387.50000000 3.53593883 0x20006fe4 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vmovsd %xmm0,0x0(%rsi,%rdi,8),%xmm5 : 128
 382.54000000 3.49067881 0x20007016 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vfmadd231pd %xmm8,0x10(%rdx,%rbx,8),%xmm3 : 128
 330.18000000 3.01289363 0x20007b88 (waxpby : test_HPCCG) : waxpby.cpp(57) :
vfmadd213sd %xmm2,0x0(%rcx,%rbx,8),%xmm0 : 128
 167.85000000 1.53163182 0x2000707d (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vmovsd %xmm0,0x0(%rsi,%rbx,8),%xmm2 : 128
 163.58000000 1.49266806 0x2000704b (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vfmadd231pd %xmm12,0x30(%rdx,%rbx,8),%xmm1 : 128
 133.74000000 1.22037796 0x20007067 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) :
vunpckhpd %xmm2,%xmm2,%xmm4 : 128

 34

 98.77000000 0.90127659 0x20007082 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) :
vmulsd %xmm2,0x0(%rdx,%rbp,8),%xmm3 : 128
 95.85000000 0.87463158 0x20007063 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) :
vaddpd %xmm3,%xmm1,%xmm2 : 128
 59.83000000 0.54594895 0x20007ba2 (waxpby : test_HPCCG) : waxpby.cpp(57) : movsd %xmm1,0x8(%rax,%rbx,8) : 128
 55.69000000 0.50817144 0x20006f42 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) :
vxorpd %xmm1,%xmm1,%xmm1 : 128
 43.98000000 0.40131765 0x2000700b (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : vmovhpd
0x0(%rsi,%rdi,8),%xmm7,%xmm8 : 128
 42.12000000 0.38434514 0x20007045 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : vmovhpd
0x0(%rsi,%rdi,8),%xmm11,%xmm12 : 128
 40.88000000 0.37303014 0x2000706b (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) :
vaddsd %xmm2,%xmm4,%xmm1 : 128
 37.10000000 0.33853763 0x20006fef (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(74) : vmovhpd
0x0(%rsi,%rdi,8),%xmm5,%xmm6 : 128
 35.36000000 0.32266012 0x200089e6 (ddot : test_HPCCG) : ddot.cpp(56) :
vfmadd231pd %ymm6,0x40(%rax,%rdx,8),%ymm1 : 256
 32.86000000 0.29984761 0x20007b94 (waxpby : test_HPCCG) : waxpby.cpp(57) :
vmovsd %xmm0,0x8(%rdx,%rbx,8),%xmm1 : 128
 32.50000000 0.29656261 0x200089ed (ddot : test_HPCCG) : ddot.cpp(56) :
vfmadd231pd %ymm7,0x60(%rax,%rdx,8),%ymm0 : 256
 32.10000000 0.29291261 0x200089d9 (ddot : test_HPCCG) : ddot.cpp(56) :
vfmadd231pd %ymm4,0x0(%rax,%rdx,8),%ymm3 : 256
 31.34000000 0.28597761 0x200089df (ddot : test_HPCCG) : ddot.cpp(56) :
vfmadd231pd %ymm5,0x20(%rax,%rdx,8),%ymm2 : 256
 30.28000000 0.27630510 0x20007b82 (waxpby : test_HPCCG) : waxpby.cpp(57) :
…
…
 8.54000000 0.07792753 0x20006fd2 (HPC_sparsemv : test_HPCCG) : HPC_sparsemv.cpp(64) :
vmovdqa %xmm0,%xmm0,%xmm2 : 128
 8.53000000 0.07783628 0x2000870e (ddot : test_HPCCG) : ddot.cpp(51) : vmovupd %ymm0,0x40(%rax,%rdi,8),%ymm6 :
256
 8.41000000 0.07674128 0x2000871c (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm4,%ymm4,%ymm3 : 256
 7.92000000 0.07227003 0x20008707 (ddot : test_HPCCG) : ddot.cpp(51) : vmovupd %ymm0,0x20(%rax,%rdi,8),%ymm5 :
256
 7.72000000 0.07044503 0x20007b08 (waxpby : test_HPCCG) : waxpby.cpp(57) :
vfmadd213pd %ymm0,0x0(%rcx,%rcx,8),%ymm1 : 256
 3.52000000 0.03212001 0x2000606c (generate_matrix : test_HPCCG) : generate_matrix.cpp(121) :
movsd %xmm0,(%edx) : 128
 2.80000000 0.02555001 0x20008726 (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm6,%ymm6,%ymm1 : 256
 2.73000000 0.02491126 0x20007b0e (waxpby : test_HPCCG) : waxpby.cpp(57) : movupd %ymm1,0x0(%rdx,%rcx,8) : 256
 2.63000000 0.02399876 0x2000872b (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm7,%ymm7,%ymm0 : 256
 2.30000000 0.02098751 0x20008721 (ddot : test_HPCCG) : ddot.cpp(51) : vfmadd231pd %ymm5,%ymm5,%ymm2 : 256
 1.40000000 0.01277500 0x20007b9b (waxpby : test_HPCCG) : waxpby.cpp(57) :
vfmadd213sd %xmm2,0x8(%rcx,%rbx,8),%xmm1 : 128
…
…
 0.01000000 0.00009125 0x20006123 (generate_matrix : test_HPCCG) : generate_matrix.cpp(136) :
vcvtsi2sd %xmm3,%xmm1 : 128
 0.01000000 0.00009125 0x20008a66 (ddot : test_HPCCG) : ddot.cpp(56) : vmulpd %ymm1,0x0(%rax,%rdx,8),%ymm2 :
256
openss>>

 35

4.1 Call Path Profiling (usertime) Experiment

The call path profiling (usertime) experiment can add
information that is missing from the flat profiles. It can
distinguish routines called from multiple callers and
understand the call invocation history, providing context for
the performance data. It also gathers stack traces for each
performance sample and only aggregates samples with equal
stack traces. This simplifies the user’s view by showing the
caller/callee relationship. It also can highlight the hot call
paths, the routes through the application that take the most
time.

The call path profiling experiment also provides inclusive
and exclusive time. Exclusive time is spent inside a function
only, for example, in the graphic shown at the right, function
B (blue box). Inclusive time is spent inside a function and its
children, for example, the full chain of function C, D and E
(yellow box).

The call path profiling experiment is similar to the program
counter sampling experiment in that it collects program
counter information. The difference is the call path profiling
experiment collects call stack information at every sample.
There are, of course, tradeoffs: The user gets additional context information from
the call stacks but incurs higher overhead with a necessarily lower sampling rate.

4.1.1 Call Path Profiling (usertime) experiment performance data gathering

We can use the O|SS convenience script to run the call path profiling experiment on
our test program, SMG2000:

> ossusertime “mpirun –np 256 smg2000 –n 50 50 50”

Again, we recommend that users compile their code with the –g option to see the
statements in the sampling. Sampling frequency also is an optional parameter in the
usertime experiment, with settings of high (70 samples per second), low (18
samples per second) and default (35 samples per second). Note that these sample
rates are lower than the pcsamp experiment because more data are collected. To
run the same experiment with the low sampling rate, simply issue the command:

> ossusertime “mpirun –np 256 smg2000 –n 50 50 50” low

Here is an example run of a usertime experiment with full output:

 36

ossusertime "mpirun -np 4 ./smg2000 -n 65 65 65"
[openss]: usertime experiment using the default sampling rate: "35".
Creating topology file for frontend host localhost
Generated topology file: ./cbtfAutoTopology
Running usertime collector.
Program: mpirun -np 4 ./smg2000 -n 65 65 65
Number of mrnet backends: 4
Topology file used: ./cbtfAutoTopology
executing mpi program: mpirun -np 4 cbtfrun --mpi --mrnet -c usertime ./smg2000 -n 65 65 65
Running with these driver parameters:
 (nx, ny, nz) = (65, 65, 65)
 (Px, Py, Pz) = (4, 1, 1)
 (bx, by, bz) = (1, 1, 1)
 (cx, cy, cz) = (1.000000, 1.000000, 1.000000)
 (n_pre, n_post) = (1, 1)
 dim = 3
 solver ID = 0
===
Struct Interface:
===
Struct Interface:
 wall clock time = 0.023957 seconds
 cpu clock time = 0.030000 seconds
===
Setup phase times:
===
SMG Setup:
 wall clock time = 0.594738 seconds
 cpu clock time = 0.590000 seconds
===
Solve phase times:
===
SMG Solve:
 wall clock time = 4.306247 seconds
 cpu clock time = 4.280000 seconds

Iterations = 7
Final Relative Residual Norm = 1.760588e-07

All Threads are finished.
default view for ./smg2000-usertime-14.openss
[openss]: The restored experiment identifier is: -x 1
Performance data spans 5.271756 seconds from 2016/11/11 08:06:12 to 2016/11/11 08:06:17

Exclusive Inclusive % of Function (defining location)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
 9.000000 9.800000 45.718433 hypre_SMGResidual (smg2000: smg_residual.c,152)
 4.171428 7.057143 21.190131 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 0.542857 0.571429 2.757620 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.514286 1.542857 2.612482 mca_btl_vader_check_fboxes (libmpi.so.12.0.2: btl_vader_fbox.h,184)
 0.514286 0.942857 2.612482 pack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_pack.h,35)
 0.485714 0.485714 2.467344 __memcpy_ssse3_back (libc-2.17.so)
 0.457143 0.514286 2.322206 unpack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_unpack.h,34)
 0.314286 2.314286 1.596517 opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)
 0.285714 0.314286 1.451379 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 0.257143 0.257143 1.306241 hypre_StructAxpy (smg2000: struct_axpy.c,25)
 0.228571 0.228571 1.161103 hypre_SMGAxpy (smg2000: smg_axpy.c,27)
 0.171429 0.171429 0.870827 hypre_SMGSetStructVectorConstantValues (smg2000: smg.c,379)

4.1.2 Viewing Call Path Profiling (usertime) experiment performance data via GUI

 37

Users can view results of this experiment in the O|SS GUI. The view is similar to that
in pcsamp but in this case the inclusive CPU time also is shown.

Below, the Exclusive CPU time is shown on highlighted lines that indicate relatively
high CPU times.

While performance tools will highlight potential bottlenecks and hot areas, it is still
up to the user to interpret most data in the correct context and to note code areas
they may want to probe further. If the inclusive and exclusive times are similar, it

 38

means the child executions are insignificant (with respect to CPU time) and profiling
below this layer may not be useful. If the inclusive time is significantly greater than
the exclusive time, then users should focus their attention on execution times for the
children.

The stack trace views in O|SS are similar to the well-known Unix profiling tool gprof.

 39

4.1.3 Viewing Call Path Profiling (usertime) experiment performance data via CLI

This table describes information included in the usertime experiment default view.

Column Name Column Definition

Exclusive CPU Time Aggregated total exclusive time spent in the application function
corresponding to this row of data.

% of CPU Time Percentage of exclusive time spent in the function corresponding
to this row of data relative to the total application exclusive time
for all the application functions.

Inclusive CPU Time Aggregated total inclusive time spent in the application function
corresponding to this row of data.

To load a database file into the CLI, use this form of the openss client:

$ openss -cli -f ./smg2000-usertime-14.openss

This is a default CLI view for the usertime experiment, restricted to the top 10 time-
consuming functions. Using the experiment name and the number of items to be
displayed limits the output to those items.

openss>>expview usertime10

Exclusive Inclusive % of Function (defining location)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
 9.000000 9.800000 45.718433 hypre_SMGResidual (smg2000: smg_residual.c,152)
 4.171428 7.057143 21.190131 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 0.542857 0.571429 2.757620 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.514286 1.542857 2.612482 mca_btl_vader_check_fboxes (libmpi.so.12.0.2:
btl_vader_fbox.h,184)
 0.514286 0.942857 2.612482 pack_predefined_data (libopen-pal.so.13.0.2:
opal_datatype_pack.h,35)
 0.485714 0.485714 2.467344 __memcpy_ssse3_back (libc-2.17.so)
 0.457143 0.514286 2.322206 unpack_predefined_data (libopen-pal.so.13.0.2:
opal_datatype_unpack.h,34)
 0.314286 2.314286 1.596517 opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)
 0.285714 0.314286 1.451379 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 0.257143 0.257143 1.306241 hypre_StructAxpy (smg2000: struct_axpy.c,25)

The display below shows the top 10 time-consuming statements in the program:

openss>>expview -v statements usertime10

 40

Exclusive Inclusive % of Statement Location (Line Number)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
 7.085714 7.085714 41.471572 smg_residual.c(289)
 1.371429 1.371429 8.026756 cyclic_reduction.c(1130)
 1.314286 1.314286 7.692308 smg_residual.c(238)
 0.828571 0.828571 4.849498 cyclic_reduction.c(910)
 0.485714 0.485714 2.842809 cyclic_reduction.c(999)
 0.285714 0.285714 1.672241 smg_residual.c(287)
 0.285714 0.285714 1.672241 cyclic_reduction.c(853)
 0.285714 0.285714 1.672241 cyclic_reduction.c(1000)
 0.257143 0.257143 1.505017 semi_interp.c(294)
 0.228571 0.228571 1.337793 opal_datatype_unpack.h(59)

The top 10 time-consuming loops in the application are shown below. The line
number (for example: 204 in first entry) is for the line in which the loop begins. The
static analysis does not provide the loop’s ending-line number, but it is the line that
corresponds to the end of the logical loop construct.

openss>>expview -v loops usertime10

Exclusive Inclusive % of Loop Start Location (Line Number)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
 8.971428 9.771428 37.649880 smg_residual.c(204)
 1.914286 3.257143 8.033573 cyclic_reduction.c(1022)
 1.885714 3.400000 7.913669 cyclic_reduction.c(882)
 0.857143 0.885714 3.597122 cyclic_reduction.c(889)
 0.485714 1.514286 2.038369 btl_vader_fbox.h(188)
 0.400000 0.828571 1.678657 opal_datatype_pack.h(59)
 0.371429 0.428571 1.558753 opal_datatype_unpack.h(58)
 0.371429 0.400000 1.558753 semi_interp.c(238)
 0.371429 0.400000 1.558753 cyclic_reduction.c(835)
 0.371429 0.400000 1.558753 semi_interp.c(258)
openss>>

This shows time spent in the application libraries:

openss>>expview -v linkedobjects

Exclusive Inclusive % of LinkedObject
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
15.514285 19.742857 78.581766 smg2000
 1.800000 3.400000 9.117221 libopen-pal.so.13.0.2
 1.400000 3.885714 7.091172 libmpi.so.12.0.2
 1.028571 19.742857 5.209841 libc-2.17.so

 41

This shows the application’s top three time-consuming call paths:

openss>>expview -v fullstack usertime3

Exclusive Inclusive % of Call Stack Function (defining location)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
 _start (smg2000)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >>__libc_start_main (libc-2.17.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 510 in main (smg2000: smg2000.c,21)
 >>>>> @ 65 in HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)
 >>>>>> @ 224 in hypre_SMGSolve (smg2000: smg_solve.c,57)
 0.800000 0.800000 4.052098 >>>>>>> @ 289 in hypre_SMGResidual (smg2000:
smg_residual.c,152)
 _start (smg2000)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >>__libc_start_main (libc-2.17.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 510 in main (smg2000: smg2000.c,21)
 >>>>> @ 65 in HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)
 >>>>>> @ 168 in hypre_SMGSolve (smg2000: smg_solve.c,57)
 0.400000 0.400000 2.026049 >>>>>>> @ 289 in hypre_SMGResidual (smg2000:
smg_residual.c,152)
 _start (smg2000)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >>__libc_start_main (libc-2.17.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 510 in main (smg2000: smg2000.c,21)
 >>>>> @ 65 in HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)
 >>>>>> @ 164 in hypre_SMGSolve (smg2000: smg_solve.c,57)
 >>>>>>> @ 325 in hypre_SMGRelax (smg2000: smg_relax.c,228)
 >>>>>>>> @ 224 in hypre_SMGSolve (smg2000: smg_solve.c,57)
 0.400000 0.400000 2.026049 >>>>>>>>> @ 289 in hypre_SMGResidual (smg2000:
smg_residual.c,152)

This butterfly view shows the functions calling hypre_SMGSolve along with the
functions hypre_SMGSolve calls. Hypre_SMGSolve is the pivot point in this view.

openss>>expview -vbutterfly -f hypre_SMGSolve

Inclusive % of Total Call Stack Function (defining location)
 CPU time Inclusive
 in CPU Time
 seconds.
17.200000 94.654088 <HYPRE_StructSMGSolve (smg2000: HYPRE_struct_smg.c,64)
 0.971429 5.345912 <hypre_SMGRelax (smg2000: smg_relax.c,228)
18.171428 100.000000 hypre_SMGSolve (smg2000: smg_solve.c,57)
16.285714 89.622642 >hypre_SMGRelax (smg2000: smg_relax.c,228)
 1.428571 7.861635 >hypre_SMGResidual (smg2000: smg_residual.c,152)
 0.171429 0.943396 >hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.114286 0.628931 >hypre_SemiRestrict (smg2000: semi_restrict.c,125)

 42

 0.114286 0.628931 >hypre_StructAxpy (smg2000: struct_axpy.c,25)
 0.057143 0.314465 >hypre_StructInnerProd (smg2000: struct_innerprod.c,32)

This displays only the percentage performance information because the user gave
the metric “percent” to the expview command:

openss>>expview -m percent usertime9

 % of Function (defining location)
 Total
Exclusive
 Time
45.718433 hypre_SMGResidual (smg2000: smg_residual.c,152)
21.190131 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 2.757620 hypre_SemiInterp (smg2000: semi_interp.c,126)
 2.612482 mca_btl_vader_check_fboxes (libmpi.so.12.0.2: btl_vader_fbox.h,184)
 2.612482 pack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_pack.h,35)
 2.467344 __memcpy_ssse3_back (libc-2.17.so)
 2.322206 unpack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_unpack.h,34)
 1.596517 opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)
 1.451379 hypre_SemiRestrict (smg2000: semi_restrict.c,125)

4.1.4 Call Path Profiling (usertime) experiment function inline display

As of O|SS version 2.4.0, O|SS now displays the actual path to the point where the
inline functions were inlined, thus giving a more complete picture of the call paths
for C++.

The example call-stack below is from lulesh2.0.3 and was run on snow at SNL. This
call-stack, which shows the number of calls metric, illustrates the relationship
between the function doing the inlining and the inlined functions. The call-stack
below chains together the inlined functions as they occurred in the execution of the
program based on sampling information collected by O|SS.

This call-stack is one of the many that were collected and displayed by the usertime
experiment:

 _start (lulesh2.0)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0)
 >> @ 274 in __libc_start_main (libc-2.17.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0)
 >>>> @ 1609 inline CalcKinematicsForElems (/home/fred/src/lulesh2.0.3/lulesh.cc)
 >>>> @ 2458 inline CalcLagrangeElements (/home/fred/src/lulesh2.0.3/lulesh.cc)
 >>>> @ 2656 inline LagrangeElements (/home/fred/src/lulesh2.0.3/lulesh.cc)
 >>>> @ 2774 inline LagrangeLeapFrog (/home/fred/src/lulesh2.0.3/lulesh.cc)
 >>>> @ NN inlined main (lulesh2.0: lulesh.cc,2690)
 >>>>> @ 2374 in __kmp_join_call (libomp.so)

 43

 >>>>>> @ 7165 in __kmp_internal_join (libomp.so)
 >>>>>>> @ 334 in __kmp_join_barrier(int) (libomp.so)
 169 >>>>>>>> @ 167 in OMPT_THREAD_WAIT_BARRIER (collector.c,167)

The chain of events that are illustrated above:

 At line 2774 of lulesh.cc, LagrangeLeapFrog was inlined.
 At line 2656 in LagrangeLeapFrog, LagrangeElements was inlined
 At line 2458 in LagrangeElements, CalcLagrangeElements was inlined
 At line 1609 in CalcLagrangeElements, CalcKinematicsForElems was inlined

Source excerpts from lulesh.cc from lulesh2.0.3 that display the inline points
of interest:

 1598 /**/
 1599
 1600 static inline
 1601 void CalcLagrangeElements(Domain& domain, Real_t* vnew)
 1602 {
 1603 Index_t numElem = domain.numElem() ;
 1604 if (numElem > 0) {
 1605 const Real_t deltatime = domain.deltatime() ;
 1606
 1607 domain.AllocateStrains(numElem);
 1608
 1609 CalcKinematicsForElems(domain, vnew, deltatime, numElem) ;
 1610
 1611 // element loop to do some stuff not included in the elemlib function.
 1612 #pragma omp parallel for firstprivate(numElem)
 1613 for (Index_t k=0 ; k<numElem ; ++k)
 1614 {
 1615 // calc strain rate and apply as constraint (only done in FB element)
…
…

 1634 }
 1635 domain.DeallocateStrains();
 1636 }
 1637 }
 1638

 2451 /**/

 44

 2452
 2453 static inline
 2454 void LagrangeElements(Domain& domain, Index_t numElem)
 2455 {
 2456 Real_t *vnew = Allocate<Real_t>(numElem) ; /* new relative vol -- temp */
 2457
 2458 CalcLagrangeElements(domain, vnew) ;
 2459
 2460 /* Calculate Q. (Monotonic q option requires communication) */
 2461 CalcQForElems(domain, vnew) ;
 2462
 2463 ApplyMaterialPropertiesForElems(domain, vnew) ;
 2464
 2465 UpdateVolumesForElems(domain, vnew,
 2466 domain.v_cut(), numElem) ;
 2467
 2468 Release(&vnew);
 2469 }
 2470

 2638
 2639 static inline
 2640 void LagrangeLeapFrog(Domain& domain)
 2641 {
 2642 #ifdef SEDOV_SYNC_POS_VEL_LATE
 2643 Domain_member fieldData[6] ;
 2644 #endif
 2645
 2646 /* calculate nodal forces, accelerations, velocities, positions, with
 2647 * applied boundary conditions and slide surface considerations */
 2648 LagrangeNodal(domain);
 2649
 2650
 2651 #ifdef SEDOV_SYNC_POS_VEL_LATE
 2652 #endif
 2653
 2654 /* calculate element quantities (i.e. velocity gradient & q), and update
 2655 * material states */
 2656 LagrangeElements(domain, domain.numElem());
 2657
 2658 #if USE_MPI
 2659 #ifdef SEDOV_SYNC_POS_VEL_LATE
 2660 CommRecv(domain, MSG_SYNC_POS_VEL, 6,
 2661 domain.sizeX() + 1, domain.sizeY() + 1, domain.sizeZ() + 1,

 45

 2662 false, false) ;
 2663
 2664 fieldData[0] = &Domain::x ;
 2665 fieldData[1] = &Domain::y ;
 2666 fieldData[2] = &Domain::z ;
 2667 fieldData[3] = &Domain::xd ;
 2668 fieldData[4] = &Domain::yd ;
 2669 fieldData[5] = &Domain::zd ;
 2670
 2671 CommSend(domain, MSG_SYNC_POS_VEL, 6, fieldData,
 2672 domain.sizeX() + 1, domain.sizeY() + 1, domain.sizeZ() + 1,
 2673 false, false) ;
 2674 #endif
 2675 #endif
 2676
 2677 CalcTimeConstraintsForElems(domain);
 2678
 2679 #if USE_MPI
 2680 #ifdef SEDOV_SYNC_POS_VEL_LATE
 2681 CommSyncPosVel(domain) ;
 2682 #endif
 2683 #endif
 2684 }
 2685
 2686

 2687 /**/
 2688
 2689 int main(int argc, char *argv[])
 2690 {
 2691 Domain *locDom ;
 2692 Int_t numRanks ;
 2693 Int_t myRank ;
 2694 struct cmdLineOpts opts;
 2695
 2696 #if USE_MPI
 2697 Domain_member fieldData ;
 2698
…
…

 46

 2770 // std::cout << "region" << i + 1<< "size" << locDom->regElemSize(i)
<<std::endl;
 2771 while((locDom->time() < locDom->stoptime()) && (locDom->cycle() <
opts.its)) {
 2772
 2773 TimeIncrement(*locDom) ;
 2774 LagrangeLeapFrog(*locDom) ;
 2775
 2776 if ((opts.showProg != 0) && (opts.quiet == 0) && (myRank == 0)) {
 2777 printf("cycle = %d, time = %e, dt=%e\n",
 2778 locDom->cycle(), double(locDom->time()), double(locDom-
>deltatime())) ;
 2779 }
 2780 }

4.1.4.1 Call Path Profiling (usertime) experiment function inline display: Specific
Kokkos Example:

BEFORE changes to better support C++ inlining – top time taking callstack

from kokkos-mxm.host:

openss>>expview -vfullstack -mcalls usertime1

Number of Call Stack Function (defining location)
Exclusive
 Counts
 _start (kokkos-mxm.host)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >>__libc_start_main (libc-2.26.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 131 in main (kokkos-mxm.host: kokkos-mxm.cpp,3)
 >>>>> @ 1168 in __kmp_api_GOMP_parallel (libomp.so: kmp_gsupport.cpp,1136)
 158 >>>>>> @ 91 in Kokkos::Impl::ParallelFor<main::{lambda(int const&)#2},

Kokkos::RangePolicy<Kokkos::OpenMP>, Kokkos::RangePolicy>::execute() const [clone ._omp_fn.2]
(kokkos-mxm.host: Kokkos_OpenMP_Parallel.hpp,131)

AFTER changes to better support C++ inlining – top time taking callstack from
kokkos-mxm.host:

openss>>expview -v fullstack -mcalls usertime1

Number of Call Stack Function (defining location)
Exclusive
 Counts

 _start (kokkos-mxm.host)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0)
 >>__libc_start_main (libc-2.26.so)

 47

 >>> @ 517 in monitor_main (libmonitor.so.0.0.0)
 >>>> @ 3 in main (kokkos-mxm.host: kokkos-mxm.cpp,3)
 >>>> @ 244 in parallel_for<main(int, char**)::<lambda(int const&)> > (kokkos-mxm.host:
Kokkos_Parallel.hpp)
 >>>> @ 224 in execute (kokkos-mxm.host: Kokkos_Parallel.hpp)
 >>>> @ 20 in parallel_for<int, main(int, char**)::<lambda(int const&)> > (kokkos-mxm.host:
kokkos-mxm.cpp)
 >>>>> @ 1168 in __kmp_api_GOMP_parallel (libomp.so)
 138 >>>>>> @ 91 in Kokkos::Impl::ParallelFor<main::{lambda(int const&)#2},
Kokkos::RangePolicy<Kokkos::OpenMP>, Kokkos::RangePolicy>::execute() const [clone ._omp_fn.2] (kokkos-
mxm.host: Kokkos_OpenMP_Parallel.hpp,131)

4.1.4.2 Call Path Profiling (usertime) experiment function inline display: Specific Raja
Example:

BEFORE changes to better support C++ inlining – top time taking callstack

from rajaperf.exe:

openss>>expview -v fullstack -mcalls usertime1

Number of Call Stack Function (defining location)
Exclusive
 Counts
 _start (raja-perf.exe)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >>__libc_start_main (libc-2.26.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 34 in main (raja-perf.exe: RAJAPerfSuiteDriver.cpp,22)
 >>>>> @ 372 in rajaperf::Executor::runSuite() (raja-perf.exe: Executor.cpp,348)
 >>>>>> @ 72 in rajaperf::KernelBase::execute(rajaperf::VariantID) (raja-perf.exe:

KernelBase.cpp,64)
 73 >>>>>>> @ 89 in rajaperf::stream::MUL::runKernel(rajaperf::VariantID) (raja-perf.exe:

MUL.cpp,56)

AFTER changes to better support C++ inlining – top time taking callstack from
rajaperf.exe:

Number of Call Stack Function (defining location)
Exclusive
 Counts
 _start (raja-perf.exe)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0)
 >>__libc_start_main (libc-2.26.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0)
 >>>> @ 34 in main (raja-perf.exe: RAJAPerfSuiteDriver.cpp,22)
 >>>>> @ 372 in rajaperf::Executor::runSuite() (raja-perf.exe: Executor.cpp,348)
 >>>>>> @ 72 in rajaperf::KernelBase::execute(rajaperf::VariantID) (raja-perf.exe:
KernelBase.cpp,64)

 48

 78 >>>>>>> @ 56 in rajaperf::stream::MUL::runKernel(rajaperf::VariantID) (raja-perf.exe:
MUL.cpp,56)
 >>>>>>> @ 66 in operator() (raja-perf.exe:
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/policy/simd/forall.hpp)
 >>>>>>> @ 740 in forall<RAJA::policy::loop::loop_exec, RAJA::TypedRangeSegment<long int>,
rajaperf::apps::PRESSURE::runKernel(rajaperf::VariantID)::<lambda(int)> > (raja-perf.exe:
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/pattern/forall.hpp)
 >>>>>>> @ 399 in forall<RAJA::policy::loop::loop_exec, RAJA::TypedRangeSegment<long int>,
rajaperf::apps::PRESSURE::runKernel(rajaperf::VariantID)::<lambda(int)> > (raja-perf.exe:
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/pattern/forall.hpp)
 >>>>>>> @ 214 in forall_impl<RAJA::TypedRangeSegment<long int>,
rajaperf::apps::PRESSURE::runKernel(rajaperf::VariantID)::<lambda(int)>&> (raja-perf.exe:
/home/jeg/raja/RAJAPerf/tpl/RAJA/include/RAJA/pattern/forall.hpp)
 >>>>>>> @ 87 in forall<RAJA::policy::simd::simd_exec, RAJA::TypedRangeSegment<long int,
long int>, rajaperf::stream::MUL::runKernel(rajaperf::VariantID)::<lambda(rajaperf::Index_type)> > (raja-
perf.exe: /home/jeg/raja/RAJAPerf/src/stream/MUL.cpp)

 49

5 How to Relate Data to Architectural Properties

Performance Application Programming Interface (PAPI) allows access to hardware
counters through APIs and simple runtime tools. Find more about PAPI at
http://icl.cs.utk.edu/papi.

O|SS implements three hardware counter experiments on top of PAPI. It provides
access to PAPI and native counters like data cache misses, TLB misses and bus
accesses.

There are a few basic models to follow in hardware counter experiments. The first
is thresholding: The user selects a counter and the application runs until the counter
reaches a fixed number of events. A PC sample is then taken at that location every
time the counter increases by the preset fixed number. The ideal threshold (the
fixed number at which to monitor) depends on the application. Another model is a
timer-based sampling in which the counters are checked at given time intervals.

O|SS provides three hardware counter experiments: hwc for flat hardware counter
profiles using a single hardware counter; hwctime for profiles with stack traces
using a single hardware counter; and hwcsamp for PC sampling with multiple
hardware counters. Both osshwc and osshwctime support non-derived PAPI
presets: All non-derived events are reported by “papi_avail –a”. Users also can see
the available events by running the experiments (osshwc or osshwctime) with no
arguments. The experiments include all native events for that specific architecture.
Some PAPI event names are in the sections below, but please see the PAPI
documentation for the full list.

The threshold chosen depends on the application; users should balance overhead
with accuracy. Remember: a higher threshold will record fewer samples; rare
events need a smaller threshold or that information may be lost (never triggered
and recorded). Use a larger threshold for frequent events to reduce the overhead of
collecting the information. Selecting the right threshold can take experience or
some trial and error.

HINT: Running the sampling-based hardware counter experiment, osshwcsamp,
can help suggest a threshold value to try when running the threshold-based osshwc
and osshwctime experiments. Since the ideal number of events (the threshold)
depends on the application and the selected counter, the hwcsamp experiment can
be used to get an overview of counter activity for events other than the default.

The default threshold is set to a high value to match the default event
(PAPI_TOT_CYC). For all other events, the user should run hwcsamp first to
understand how many times a particular event occurs (the count of the event)
during the program’s life. To ascertain a reasonable threshold from the hwcsamp
data, determine the average counts per thread of execution and then set the

http://icl.cs.utk.edu/papi

 50

hwc/hwctime threshold to some small fraction of that. For example, if there are
1333333333 PAPI_L1_DCM's over the program’s life when running the hwcsamp
experiment and there were 524 processes used during the application run, the
following formula could find a reasonable threshold for the hwc and hwctime
experiments when using the PAPI_L1_DCM event for the same application:

(Average counts per thread) / 1000 == Threshold for hwc/hwctime

In this case:

(1333333333/524)/1000 == 2544529/1000 == 2545

With this formula, a user could choose 2545 as the threshold value in hwc and
hwctime for PAPI_L1_DCM and expect to get a reasonable data sample.

NOTE: The number of PAPI counters and their uses can be overwhelming. Ratios
derived from a combination of hardware events sometimes can provide more useful
information than raw metrics. Develop the ability to interpret metric ratios with a
focus on understanding:

 Instructions per cycle or cycles per instruction.
 Floating point/vectorization efficiency.
 Cache behaviors; long latency instruction impact.
 Branch mispredictions.
 Memory and resource access patterns.
 Pipeline stalls.

5.1 Hardware Counter Experiment (hwc)

As an example, here’s a run of the osshwc experiment on our test program,
SMG2000. The convenience script for this is experiment is:

> osshwc “mpirun –np 256 smg2000 –n 50 50 50” <counter> <threshold>

This is the same syntax as the osshwctime experiment. Note: If the output is empty,
try lowering the <threshold> value; O|SS calculates it by default. Users can try
lowering the threshold value if there have not been enough PAPI event occurrences
to record. Also, see the hint in the osshwcsamp section above. Users can run
osshwcsamp and use a formula to create a reasonable threshold. Any counter
reported by “papi_avail –a” that is not derived is available for use. Users also can see
the available counters by using the osshwc or osshwctime commands with no
arguments. Native counters are listed in the PAPI documentation.

 51

Note: Threshold indications are just for rough guidance and depend on the
application. Also, remember that not all counters will exist on all platforms. Run
osshwc with no arguments to see the available hardware counters.

The sections below show outputs from the osshwc experiment. Note that the default
counter is the total cycles.

5.1.1 Hardware Counter Threshold (hwc) experiment performance data gathering

The hardware counter threshold experiment convenience script is “osshwc”. Here’s
how to use this to gather counter values for one unique hardware counter:

osshwc “how you normally run your application” <papi event > < threshold value>

Here’s an example of how to gather data for the SMG2000 application on a Linux
cluster platform using the osshwc convenience script. It collects performance data
for the default counter, PAPI_TOT_CYC because there is no hardware counter value
specified after the quoted application run command:

osshwc “mpirun -np 4 ./smg2000 -n 60 60 60"

5.1.2 Viewing Hardware Counter Threshold (hwc) experiment performance data via
GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

 52

The image below shows the default view for the hwc experiment run with the
SMG2000 MPI application using PAPI_TOT_CYC as the hardware counter event.
Double-clicking on a performance information line in the Stats Panel or on the bar
chart will take the user to the source file and line it represents.

This displays output from the osshwctime experiment in which the counter is the L1
cache misses:

 53

5.1.3 Viewing Hardware Counter Threshold (hwc) experiment performance data via
CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“. This
example shows three default CLI views of varying granularities: function, statement
and library level.

openss -f smg2000-hwc-3.openss
[openss]: The restored experiment identifier is: -x 1

$ openss -cli -f smg2000-hwc-3.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview
 Exclusive % of Total Function (defining location)
PAPI_TOT_CYC PAPI_TOT_CYC
 Counts Counts
23080000000 43.8283 hypre_SMGResidual (smg2000: smg_residual.c,152)
12880000000 24.4588 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 3540000000 6.7224 mca_btl_vader_check_fboxes (libmpi.so.1.5.2: btl_vader_fbox.h,106)
 1420000000 2.6965 unpack_predefined_data (libopen-pal.so.6.2.0: opal_datatype_unpack.h,41)
 1220000000 2.3167 hypre_SemiInterp (smg2000: semi_interp.c,126)
 1140000000 2.1648 pack_predefined_data (libopen-pal.so.6.2.0: opal_datatype_pack.h,38)
 1020000000 1.9370 __memcpy_ssse3_back (libc-2.17.so)
 740000000 1.4052 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 …
 …

openss>>expview -v statements

 Exclusive % of Total Statement Location (Line Number)
PAPI_TOT_CYC PAPI_TOT_CYC
 Counts Counts
17800000000 36.9141 smg_residual.c(289)
 3440000000 7.1340 cyclic_reduction.c(1130)
 2780000000 5.7652 smg_residual.c(238)
 2760000000 5.7238 cyclic_reduction.c(910)
 1700000000 3.5255 cyclic_reduction.c(999)
 1660000000 3.4426 btl_vader_fbox.h(119)
 1180000000 2.4471 smg_residual.c(287)
 960000000 1.9909 cyclic_reduction.c(853)
…
…

openss>>expview -v linkedobjects

 Exclusive % of Total LinkedObject
PAPI_TOT_CYC PAPI_TOT_CYC
 Counts Counts
40800000000 77.3606 smg2000
 6060000000 11.4903 libmpi.so.1.5.2
 4160000000 7.8878 libopen-pal.so.6.2.0
 1720000000 3.2613 libc-2.17.so

 54

5.2 Hardware Counter Time Experiment (hwctime)

In this example, the osshwc experiment runs on our test program, SMG2000. The
convenience script for this is experiment is:

> osshwctime “mpirun –np 256 smg2000 –n 50 50 50” <counter> <threshold>

This is the same syntax as the osshwc experiment. Note: If the output is empty, try
lowering the <threshold> value; O|SS calculates it by default. Users can try lowering
the threshold value if there have not been enough PAPI event occurrences to record.
Also, see the hint in the osshwcsamp section below. Users can run osshwcsamp and
use a formula to create a reasonable threshold. Any counter reported by “papi_avail
–a” that is not derived is available for use. Users also can use the osshwc or
osshwctime commands with no arguments to see the available counters. Native
counters are listed in the PAPI documentation.

Note: Threshold indications are just for rough guidance and are dependent on the
application. Also, remember that not all counters will exist on all platforms: Run
osshwc with no arguments to see the available hardware counters.

The sections below show outputs from the osshwctime experiment. Note that the
default counter is the total cycles.

 55

5.2.1 Hardware Counter Time Threshold (hwctime) experiment performance data
gathering

The hardware counter threshold experiment convenience script is “osshwc”. Here’s
how to use it to gather counter values for one unique hardware counter:

osshwctime “how you normally run your application” <papi event > < threshold value>

The following example shows how to use the osshwc convenience script to gather
data for the SMG2000 application on a Linux cluster platform. If there is no
hardware counter value specified after the quoted application run command, the
osshwctime convenience script will gather performance data for the default counter,
PAPI_TOT_CYC. This example specifies an alternative counter, PAPI_L1_DCM, and a
specific threshold value, 750000. Each time the threshold value is reached, a sample
will be taken and recorded. At program completion, an O|SS database file is created
and users can view the performance data. A default report is shown as part of the
O|SS convenience script (below).

$ osshwctime "mpirun -np 4 ./smg2000 -n 65 65 65" PAPI_L1_DCM 750000
[openss]: hwctime using default threshold: 750000.
[openss]: hwctime using user specified papi event: "PAPI_L1_DCM"
Creating topology file for frontend host localhost
Generated topology file: ./cbtfAutoTopology
Running hwctime collector.
Program: mpirun -np 4 ./smg2000 -n 65 65 65
Number of mrnet backends: 4
Topology file used: ./cbtfAutoTopology
executing mpi program: mpirun -np 4 cbtfrun --mpi --mrnet -c hwctime ./smg2000 -n 65 65 65
Running with these driver parameters:
 (nx, ny, nz) = (65, 65, 65)
 (Px, Py, Pz) = (4, 1, 1)
 (bx, by, bz) = (1, 1, 1)
 (cx, cy, cz) = (1.000000, 1.000000, 1.000000)
 (n_pre, n_post) = (1, 1)
 dim = 3
 solver ID = 0
===
Struct Interface:
===
Struct Interface:
 wall clock time = 0.024858 seconds
 cpu clock time = 0.030000 seconds
===
Setup phase times:
===
SMG Setup:
 wall clock time = 0.624002 seconds
 cpu clock time = 0.620000 seconds
===
Solve phase times:

 56

===
SMG Solve:
 wall clock time = 3.907005 seconds
 cpu clock time = 3.870000 seconds

Iterations = 7
Final Relative Residual Norm = 1.760588e-07

All Threads are finished.
default view for ./smg2000-hwctime-4.openss
[openss]: The restored experiment identifier is: -x 1
Performance data spans 4.818158 seconds from 2016/11/11 11:12:31 to 2016/11/11 11:12:36

 Exclusive Inclusive % of Total Function (defining location)
PAPI_L1_DCM PAPI_L1_DCM Exclusive
 Counts Counts PAPI_L1_DCM
 Counts
 740250000 765750000 52.555911 hypre_SMGResidual (smg2000: smg_residual.c,152)
 446250000 525000000 31.682641 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 33000000 33000000 2.342918 hypre_SemiInterp (smg2000: semi_interp.c,126)
 24000000 24750000 1.703940 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 23250000 27000000 1.650692 unpack_predefined_data (libopen-pal.so.13.0.2:
opal_datatype_unpack.h,34)
 16500000 21750000 1.171459 pack_predefined_data (libopen-pal.so.13.0.2:
opal_datatype_pack.h,35)
 9000000 9000000 0.638978 hypre_StructAxpy (smg2000: struct_axpy.c,25)
 8250000 8250000 0.585729 hypre_SMGAxpy (smg2000: smg_axpy.c,27)
 8250000 8250000 0.585729 __memcpy_ssse3_back (libc-2.17.so)
 6750000 6750000 0.479233 hypre_SMG2BuildRAPSym (smg2000: smg2_setup_rap.c,156)
 6000000 6000000 0.425985 hypre_SMG3BuildRAPSym (smg2000: smg3_setup_rap.c,233)

5.2.2 Viewing Hardware Counter Threshold (hwctime) experiment performance data
via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

This image shows the default view for the hwc experiment run with the SMG2000
MPI application specifying PAPI_L1_DCM as the hardware counter event. Double-
clicking on a performance information line in the Stats Panel or on the bar chart will
take the user to the source file and line it represents.

 57

The next image displays output from the osshwctime experiment with the Hot Call
Path icon (red HC) chosen. This displays the top five time-consuming call paths in
the SMG2000 application.

The view below shows the top time-consuming statements, with the source panel
focused on the one in SMG2000 that took the most. In the StatsPanel, double-

 58

clicking on a statistics line will focus the source panel on the corresponding source
line.

5.2.3 Viewing Hardware Counter Time Threshold (hwctime) experiment performance
data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.
This example shows three default CLI views of varying granularities: function,
statement and library level.

This is the CLI default view for the hwctime experiment:

$ openss -cli -f smg2000-hwctime-4.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview hwctime10

 Exclusive Inclusive % of Total Function (defining location)
PAPI_L1_DCM PAPI_L1_DCM Exclusive
 Counts Counts PAPI_L1_DCM
 Counts
 740250000 765750000 52.555911 hypre_SMGResidual (smg2000: smg_residual.c,152)
 446250000 525000000 31.682641 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 33000000 33000000 2.342918 hypre_SemiInterp (smg2000: semi_interp.c,126)
 24000000 24750000 1.703940 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 23250000 27000000 1.650692 unpack_predefined_data (libopen-pal.so.13.0.2:
opal_datatype_unpack.h,34)
 16500000 21750000 1.171459 pack_predefined_data (libopen-pal.so.13.0.2:
opal_datatype_pack.h,35)
 9000000 9000000 0.638978 hypre_StructAxpy (smg2000: struct_axpy.c,25)
 8250000 8250000 0.585729 hypre_SMGAxpy (smg2000: smg_axpy.c,27)

 59

 8250000 8250000 0.585729 __memcpy_ssse3_back (libc-2.17.so)
 6750000 6750000 0.479233 hypre_SMG2BuildRAPSym (smg2000: smg2_setup_rap.c,156)

This CLI view for the hwctime experiment shows performance information based on
loops in SMG2000:

openss>>expview -v loops hwctime10
 Exclusive Inclusive % of Total Loop Start Location (Line Number)
PAPI_L1_DCM PAPI_L1_DCM Exclusive
 Counts Counts PAPI_L1_DCM
 Counts
 739500000 765000000 42.813721 smg_residual.c(204)
 213000000 256500000 12.331741 cyclic_reduction.c(882)
 192000000 227250000 11.115936 cyclic_reduction.c(1022)
 41250000 41250000 2.388189 cyclic_reduction.c(851)
 41250000 41250000 2.388189 cyclic_reduction.c(835)
 40500000 40500000 2.344768 cyclic_reduction.c(851)
 39000000 39000000 2.257924 cyclic_reduction.c(851)
 24000000 24750000 1.389492 semi_restrict.c(198)
 20250000 20250000 1.172384 semi_interp.c(292)
 20250000 20250000 1.172384 semi_interp.c(292)

This CLI view for the hwctime experiment shows performance information based on
statements in SMG2000. In this experiment, statement 289 had the most level 1
data cache misses:

openss>>expview -vstatements hwctime10

 Exclusive Inclusive % of Total Statement Location (Line Number)
PAPI_L1_DCM PAPI_L1_DCM Exclusive
 Counts Counts PAPI_L1_DCM
 Counts
 573750000 573750000 42.429285 smg_residual.c(289)
 111750000 111750000 8.264004 cyclic_reduction.c(1130)
 84750000 84750000 6.267332 cyclic_reduction.c(910)
 63000000 63000000 4.658902 smg_residual.c(287)
 48750000 48750000 3.605103 cyclic_reduction.c(999)
 45750000 45750000 3.383250 smg_residual.c(238)
 31500000 31500000 2.329451 smg_residual.c(291)
 27000000 27000000 1.996672 cyclic_reduction.c(853)
 26250000 26250000 1.941209 cyclic_reduction.c(1061)
 24000000 24000000 1.774820 cyclic_reduction.c(998)

This CLI view for the hwctime experiment shows performance information based on
libraries or linked objects in SMG2000. In this experiment, the executable had 92
percent of the level 1 data cache misses:

openss>>expview -v linkedobjects

 Exclusive Inclusive % of Total LinkedObject
PAPI_L1_DCM PAPI_L1_DCM Exclusive
 Counts Counts PAPI_L1_DCM

 60

 Counts
 1297500000 1410000000 92.021277 smg2000
 58500000 81750000 4.148936 libopen-pal.so.13.0.2
 34500000 101250000 2.446809 libmpi.so.12.0.2
 19500000 1410000000 1.382979 libc-2.17.so

 61

5.3 Hardware Counter Sampling (hwcsamp) Experiment

The osshwcsamp experiment supports both derived and non-derived PAPI presets
and can sample up to six counters simultaneously. Again, users can run
osshwcsamp with no arguments to check the available counters. All native events
are available, including architecture-specific events listed in the PAPI
documentation. Native events also are reported by papi_native_avail.

The hardware counter sampling experiment uses a sampling rate rather than the
threshold used in previous experiments. Like the threshold, however, the sampling
rate depends on the application and users must strike a balance between overhead
and accuracy. In this case, the lower the sampling rate, the fewer samples recorded.

The convenience script for this experiment is:

> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” <event_list> <sampling_rate>

Note: If a counter does not appear in the output, there may be a conflict in the
hardware counters. To find conflicts use:

> papi_event_chooser PRESET <list_of_events>

Here is a list (from Koushik Ghosh of LLNL) of some possible hardware counter
combinations:

For Xeon processors:
PAPI_FP_INS, PAPI_LD_INS, PAPI_SR_INS Load store info, memory

bandwidth needs
PAPI_L1_DCM, PAPI_L1_TCA L1 cache hit/miss ratios
PAPI_L2_DCM, PAPI_L2_TCA L2 cache hit/miss ratios
LAST_LEVEL_CACHE_MISSES,
LAST_LEVEL_CACHE_REFERENCES

L3 cache info

MEM_UNCORE_RETIRED:REMOTE_DRAM,
MEM_UNCORE_RETIRED:LOCAL_DRAM

Local/nonlocal memory access

For Opteron processors:
PAPI_FAD_INS, PAPI_FML_INS Floating point add multiply
PAPI_FDV_INS, PAPI_FSQ_INS Square root and divisions
PAPI_DP_OPS, PAPI_VEC_INS Floating point and vector

instructions
READ_REQUEST_TO_L3_CACHE:ALL_CORES,
L3_CACHE_MISSES:ALL_CORES

L3 cache

When selecting PAPI events, users must determine if they are a valid combination.
In general, valid combinations will pass the test:

 62

> papi_event_chooser PRESET event1 event2 … eventN

The output for a valid combination will contain:

event_chooser.c PASSED

Here is an example of using PAPI to check the validity of a three-event combination:

> papi_event_chooser PRESET PAPI_FP_INS PAPI_LD_INS PAPI_SR_INS
-­­-PAPI Version :4.1.2.1
Vendor string and code : GenuineIntel (1)
Model string and code : Intel Nehalem (21)
CPU Revision : 5.000000
…
…
PAPI_VEC_SP 0x80000069 No Single precision vector/SIMD instructions
PAPI_VEC_DP 0x8000006a No Double precision vector/SIMD instructions
-­­-Total events reported: 44
event_chooser.c PASSED

Here is the osshwcsamp experiment output with counters for total cycles and
floating point operations:

Remember: It’s not always necessary to use the O|SS GUI to examine experiment
output; the command line interface is available to view the same information. For
example, the output from above can be seen on the command line:

>openss -cli -f smg2000-hwcsamp.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview
Exclusive % of CPU papi_tot_cyc papi_tot_ins tot_ins/tot_cyc papi_tot_cyc% Function (defining location)

 63

CPU time Time IPC
 8.1700 44.3781 23667853023 24607847270 1.0397 44.3925 hypre_SMGResidual (smg2000: smg_residual.c,152)
 4.3900 23.8457 12639749808 13535382093 1.0709 23.7077 hypre_CyclicReduction (smg2000:
cyclic_reduction.c,757)
 1.0700 5.8121 3163375912 3945799878 1.2473 5.9334 mca_btl_vader_check_fboxes (libmpi.so.1.5.2:
btl_vader_fbox.h,106)
 0.4800 2.6073 1408936665 1631174014 1.1577 2.6427 unpack_predefined_data (libopen-pal.so.6.2.0:
opal_datatype_unpack.h,41)
 0.4300 2.3357 1224504349 1215231440 0.9924 2.2967 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 0.4000 2.1727 1162611644 1430110452 1.2301 2.1806 hypre_SemiInterp (smg2000: semi_interp.c,126)

openss>>expview -v linkedobjects

Exclusive % of CPU papi_tot_cyc papi_tot_ins tot_ins/tot_cyc papi_tot_cyc% LinkedObject
CPU time Time IPC
 14.4400 78.3931 41735382047 44436967182 1.0647 78.2394 smg2000
 1.9400 10.5320 5687487004 7106186325 1.2494 10.6621 libmpi.so.1.5.2
 1.3400 7.2747 3918861297 4788179789 1.2218 7.3465 libopen-pal.so.6.2.0
 0.6700 3.6374 1918417268 2138815631 1.1149 3.5964 libc-2.17.so
 0.0300 0.1629 83014429 77541115 0.9341 0.1556 libpthread-2.17.so
 18.4200 100.0000 53343162045 58547690042 1.0976 100.0000 Report Summary

5.3.1 Hardware Counter Sampling (hwcsamp) experiment performance data gathering

The hardware counter sampling experiment convenience script is “osshwcsamp”.
Here’s how to use this to gather values for up to six unique hardware counters:

osshwcsamp “how you normally run your application” <papi event list> < sampling rate>

5.3.1.1 Hardware Counter Sampling (hwcsamp) experiment parameters

The hwcsamp experiment is timer-based, not threshold-based: A timer periodically
interrupts the processor. For the hwcsamp experiment, each time that happens the
values of the specified hardware counter events will be read up and reset to 0 for
the next timer cycle. This is repeated until the program finishes. O|SS lets the user
control the sampling rate.

Here’s an example of how to gather data for the SMG2000 application on a Linux
cluster platform using the osshwcsamp convenience script and specifying a set of
PAPI hwc events. In the second example, the user chooses to sample only 45 times a
second instead of the default 100 times. Users may do this to save database size, as
a lower sampling rate may accurately portray the application behavior.

> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM,PAPI_L3_DCA,PAPI_L3_TCM

> osshwcsamp “mpirun –np 256 smg2000 –n 50 50 50” PAPI_L1_DCM,PAPI_L2_DCA,PAPI_L2_DCM 45

5.3.2 Viewing Hardware Counter Sampling (hwcsamp) experiment performance data
via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

 64

5.3.2.1 Getting the PAPI counter as the GUI Source Annotation Metric

To make one of the PAPI or native hardware counters the counter that will appear in
the source view, click on the SA (Source Annotation) icon. This opens an option
dialogue that allows users to choose the source annotation metric.

In this example, the L2_LD_PREFETCH native counter is chosen. When users choose
that counter and click OK, the Stats Panel view will regenerate and the source
annotation metric will become L2_LD_PREFETCH.

The regenerated view now shows results for only L2_LD:PREFETCH.

 65

Double-clicking on a particular Stats Panel line will focus the source panel and use
the PAPI or native counter that was chosen via the Source Annotation dialog.

5.3.2.2 Viewing Hardware Counter Sampling Data via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

 66

The default GUI view of a hardware counter sampling (hwcsamp) experiment
example is below. The first set of performance data shown is program counter
exclusive time (where the program is statistically spending its time) and the
percentage of time spent in each program function. Next are the hardware counter
event counts listed in columns: Column three shows counts recorded for
PAPI_TOT_CYC; column four shows event counts for PAPI_TOT_INS. This view can
indicate whether the specified hardware counter events are occurring and, if they
are, their prevalence. With this information, users can use the hwc or hwctime
experiment to isolate exactly where a particular event is occurring. These two
experiments (hwc and hwctime) are threshold-based: because the actual event
triggered recording the event counts, users can map performance data back to the
source. The hwcsamp experiment is timer-based, so O|SS cannot take users to the
exact line of source where the hardware counter events are happening. It is an
overview experiment that tells users which events are occurring. It also tells
whether events are occurring in numbers that would warrant using the hwc or
hwctime experiments to pinpoint the source location where the specified hardware
counter event actually occurs.

5.3.3 Viewing Hardware Counter Sampling (hwcsamp) experiment performance data
via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“. This
example was run on the Yellowstone platform at NCAR/UCAR using the job script
shown below.

 67

5.3.3.1 Job Script and osshwcsamp command

#!/bin/csh

LSF batch script to run an MPI application

#BSUB -P Pnnnnnnnn # project code
#BSUB -W 00:30 # wall-clock time (hrs:mins)
#BSUB -n 64 # number of tasks in job
#BSUB -R "span[ptile=4]" # run 4 MPI tasks per node
#BSUB -J sweep3d-hwcsamp # job name
#BSUB -o sweep3d-hwcsamp.%J.out # output file name in which %J is replaced by the job ID
#BSUB -e sweep3d-hwcsamp.%J.err # error file name in which %J is replaced by the job ID
#BSUB -q regular # queue

module load openspeedshop

mkdir -p /glade/scratch/${USER}/sweep3d
rm -rf /glade/scratch/${USER}/sweep3d/hwcsamp
mkdir /glade/scratch/${USER}/sweep3d/hwcsamp
setenv OPENSS_RAWDATA_DIR /glade/scratch/${USER}/sweep3d/hwcsamp

setenv REQUEST_SUSPEND_HPC_STAT 1

echo "running (on compute node): osshwcsamp"
osshwcsamp "mpirun.lsf /glade/u/home/galaro/demos/sweep3d/orig/sweep3d.mpi"
PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM

5.3.3.2 osshwcsamp experiment default CLI view

This table describes information included in the hwcsamp experiment default view
when no alternative PAPI hardware counter arguments are specified.

Column Name Column Definition

Exclusive CPU Time Aggregated total exclusive time spent in the application function
corresponding to this row of data.

% of CPU Time Percentage of exclusive time spent in the function corresponding
to this row of data relative to the total application exclusive time
for all the application functions.

PAPI_TOT_CYC Number of hardware events corresponding to the hardware
independent PAPI_TOT_CYC PAPI event. This value is based on
reading the hardware counter event buffers using sampling. This
means this data may not accurately reflect where in the source
these events occurred. It is an approximation of what is going in
the application, but does not map back to the source lines. Use
the hwc and hwctime experiments for that.

PAPI_TOT_INS Number of hardware events corresponding to the hardware
independent PAPI_TOT_INS PAPI event. This value is based on
reading the hardware counter event buffers using sampling. This
means this data may not accurately reflect where these events
occurred in the source. It is an approximation of what is going in
the application, but does not map back to the source lines. Use
the hwc and hwctime experiments for that.

 68

Column Name Column Definition

TOT_INS/TOT_CYC This is the graduated instructions per cycle, which is the ratio
between the approximation of the total number of instructions
divided by the total number of cycles

% of TOT_CYC The percentage of PAPI_TOT_CYC events for this function relative
to the number of PAPI_TOT_CYC events that occurred in all the
application functions.

This is a default CLI view for the hwcsamp experiment:

Exclusive % of CPU papi_tot_cyc papi_tot_ins tot_ins/tot_cyc papi_tot_cyc% Function (defining location)
CPU time Time
in
seconds.
 74.0600 99.8786 177712237021 51989184616 0.2925 99.8787 main (nbody: nbody-mpi.c,71)
 0.0400 0.0539 95958566 28058948 0.2924 0.0539 fesetenv (libm-2.19.so)
 0.0300 0.0405 71987793 21053819 0.2925 0.0405 __sqrt_finite (libm-2.19.so)
 0.0100 0.0135 23864331 6996727 0.2932 0.0134 memcpy (libc-2.19.so)
 0.0100 0.0135 23995616 7018006 0.2925 0.0135 fegetround (libm-2.19.so)
 74.1500 100.0000 177928043327 52052312116 0.2925 100.0000 Report Summary

This is the output from a non-default osshwcsamp experiment which specified
PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM on the
osshwcsamp command:

openss -cli -f L1-64PE-sweep3d.mpi-hwcsamp.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview -v summary

 Exclusive % of CPU papi_l1_dcm papi_l1_icm papi_l1_tcm papi_l1_ldm papi_l1_stm Function (defining location)
CPU time in Time
seconds.
824.870000 38.689781 8646497071 117738843 8764235914 8396159476 196649065 __libc_poll (libc-2.12.so)
799.300000 37.490443 46691996441 367096209 47059092650 46247555479 281624221 sweep (sweep3d.mpi:
sweep.f,2)
 75.000000 3.517807 782716992 10680760 793397752 757322217 20159725
PAMI::Interface::Context<PAMI::Context>::advance (libpami.so: ContextInterface.h,158)
 55.750000 2.614903 597583047 8038242 605621289
579127274 14647999 LapiImpl::Context::Advance<true, true, false> (libpami.so: Context.h,220)
 52.970000 2.484510 550761926 7569975 558331901 535841812 11563657 __libc_enable_asynccancel (libc-
2.12.so)
 49.850000 2.338169 518605433 6979361 525584794 502551336 12757207 _lapi_dispatcher<false> (libpami.so:
lapi_dispatcher.c,57)
 48.080000 2.255149 488545916 6784192 495330108 476065093 9649598 LapiImpl::Context::TryLock<true, true,
false> (libpami.so: Context.h,198)
 47.750000 2.239671 479947719 6732551 486680270 471343480 6436257 __libc_disable_asynccancel (libc-
2.12.so)
 26.680000 1.251401 275998769 3888499 279887268 269841454 4697170 udp_read_callback (libpamiudp.so:
lapi_udp.c,538)
 25.880000 1.213878 1522697263 12118336 1534815599 1507685061 9619348 __intel_ssse3_rep_memcpy
(libirc.so)
 21.960000 1.030014 223197680 3086626 226284306 215787794 5879517 _lapi_shm_dispatcher (libpami.so:
lapi_shm.c,2283)
 14.910000 0.699340 154744623 2075688 156820311 149803306 3979337 LapiImpl::Context::CheckContext
(libpami.so: CheckParam.cpp,21)
 13.990000 0.656188 151052863 2000330 153053193 146967548 3167039 LapiImpl::Context::Unlock<true, true,
false> (libpami.so: Context.h,204)

 69

5.3.3.2 osshwcsamp experiment Status command and CLI view

openss>>expstatus

 Experiment definition
{ # ExpId is 1, Status is NonExistent, Saved database is L1-64PE-sweep3d.mpi-hwcsamp.openss
 Performance data spans 1:7.958138 mm:ss from 2013/03/27 22:32:45 to 2013/03/27 22:33:53
 Executables Involved:
 sweep3d.mpi
 Currently Specified Components:
 -h ys6128 -p 2765 -t 47176895393312 -r 3 (sweep3d.mpi)
 -h ys6128 -p 2766 -t 47824321252896 -r 0 (sweep3d.mpi)
 -h ys6128 -p 2767 -t 47369830317600 -r 1 (sweep3d.mpi)
 -h ys6128 -p 2768 -t 47378742910496 -r 2 (sweep3d.mpi)
 -h ys6129 -p 22862 -t 47327259860512 -r 5 (sweep3d.mpi)
 -h ys6129 -p 22863 -t 47201888194080 -r 6 (sweep3d.mpi)
 -h ys6129 -p 22864 -t 47185544437280 -r 7 (sweep3d.mpi)
 …
 -h ys6250 -p 11462 -t 47028080107040 -r 63 (sweep3d.mpi)
 -h ys6250 -p 11463 -t 47600632852000 -r 60 (sweep3d.mpi)
 -h ys6250 -p 11464 -t 47494028697120 -r 61 (sweep3d.mpi)
 -h ys6250 -p 11465 -t 47944527175200 -r 62 (sweep3d.mpi)
 Previously Used Data Collectors:
 hwcsamp
 Metrics:
 hwcsamp::exclusive_detail
 hwcsamp::percent
 hwcsamp::threadAverage
 hwcsamp::threadMax
 hwcsamp::threadMin
 hwcsamp::time
 Parameter Values:
 hwcsamp::event = PAPI_L1_DCM,PAPI_L1_ICM,PAPI_L1_TCM,PAPI_L1_LDM,PAPI_L1_STM
 hwcsamp::sampling_rate = 100
 Available Views:
 hwcsamp
 }

5.3.3.3 osshwcsamp experiment Load Balance command and CLI view

openss>>expview -m loadbalance

 Max CPU Rank Min CPU Rank Average Function (defining location)
 Time of Time of CPU Time
 Across Max Across Min Across
Ranks(s) Ranks(s) Ranks(s)
14.890000 28 10.950000 27 12.888594 __libc_poll (libc-2.12.so)
14.270000 47 11.780000 51 12.489062 sweep (sweep3d.mpi: sweep.f,2)
1.620000 43 0.840000 37 1.171875 PAMI::Interface::Context<PAMI::Context>::advance (libpami.so:
ContextInterface.h,158)
1.320000 16 0.570000 3 0.871094 LapiImpl::Context::Advance<true, true, false> (libpami.so: Context.h,220)
1.130000 60 0.500000 2 0.778906 _lapi_dispatcher<false> (libpami.so: lapi_dispatcher.c,57)
1.110000 35 0.520000 49 0.751250 LapiImpl::Context::TryLock<true, true, false> (libpami.so: Context.h,198)
1.030000 42 0.600000 12 0.827656 __libc_enable_asynccancel (libc-2.12.so)
0.950000 62 0.520000 38 0.746094 __libc_disable_asynccancel (libc-2.12.so)
0.700000 6 0.200000 59 0.343125 _lapi_shm_dispatcher (libpami.so: lapi_shm.c,2283)
0.630000 33 0.250000 0 0.404375 __intel_ssse3_rep_memcpy (libirc.so)
0.600000 18 0.270000 16 0.416875 udp_read_callback (libpamiudp.so:

5.3.3.4 osshwcsamp experiment Linked Object command and CLI view

openss>>expview -v linkedobjects

 Exclusive % of CPU papi_l1_dcm papi_l1_icm papi_l1_tcm papi_l1_ldm papi_l1_stm LinkedObject
CPU time in Time
seconds.

 70

 928.310000 43.541541 9818946796 133244862 9952191658 9543597734 215608918 libc-2.12.so
 811.920000 38.082373 47212355914 369525459 47581881373 46596204924 441601622 sweep3d.mpi
 311.490000 14.610157 3356646038 44875637 3401521675 3255300343 80090932 libpami.so
 29.640000 1.390237 1824778610 12931604 1837710214 1680978945 127174346 libirc.so
 26.930000 1.263127 287313329 3994016 291307345 281053971 4763152 libpamiudp.so
 22.250000 1.043616 1049603690 9037920 1058641610 1033650896 11422120 libpthread-2.12.so
 1.440000 0.067542 72649683 620083 73269766 71327993 1007704 libmpich.so.3.3
 0.020000 0.000938 1286256 23770 1310026 1232178 5222 ld-2.12.so
 0.010000 0.000469 327 394 721 313 13 librt-2.12.so
2132.010000 100.000000 63623580643 574253745 64197834388 62463347297 881674029 Report Summary
openss>>

5.3.3.5 osshwcsamp experiment displaying only the hwcsamp PAPI events CLI view

The -m allEvents option prints only the PAPI event values and not the program
counter sampling exclusive time and percentage values:

openss -cli -f L1-64PE-sweep3d.mpi-hwcsamp.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview -m allEvents

 papi_l1_dcm papi_l1_icm papi_l1_tcm papi_l1_ldm papi_l1_stm Function (defining location)
 8646497071 117738843 8764235914 8396159476 196649065 __libc_poll (libc-2.12.so)
46691996441 367096209 47059092650 46247555479 281624221 sweep (sweep3d.mpi: sweep.f,2)
 782716992 10680760 793397752 757322217 20159725 PAMI::Interface::Context<PAMI::Context>::advance
 597583047 8038242 605621289 579127274 14647999 LapiImpl::Context::Advance<true, true, false>
 550761926 7569975 558331901 535841812 11563657 __libc_enable_asynccancel (libc-2.12.so)
 518605433 6979361 525584794 502551336 12757207 _lapi_dispatcher<false> (libpami.so:
lapi_dispatcher.c,57)
 488545916 6784192 495330108 476065093 9649598 LapiImpl::Context::TryLock<true, true, false>
 479947719 6732551 486680270 471343480 6436257 __libc_disable_asynccancel (libc-2.12.so)
 275998769 3888499 279887268 269841454 4697170 udp_read_callback (libpamiudp.so: lapi_udp.c,538)
 1522697263 12118336 1534815599 1507685061 9619348 __intel_ssse3_rep_memcpy (libirc.so)
 223197680 3086626 226284306 215787794 5879517 _lapi_shm_dispatcher (libpami.so: lapi_shm.c,2283)
 154744623 2075688 156820311 149803306 3979337 LapiImpl::Context::CheckContext (libpami.so:
CheckParam.cpp,21)
 151052863 2000330 153053193 146967548 3167039 LapiImpl::Context::Unlock<true, true, false>
(libpami.so: Context.h,204)

6 I/O Tracing and I/O Profiling

6.1 O|SS I/O Tracing General Usage

The O|SS io and iot I/O function-tracing experiments wrap the most common I/O
functions, record the time spent in each, record the call path along which an I/O
function was called, record the time spent along each call path to an I/O function,
and record the number of times each function was called. In addition, the iot
experiment also records information about each individual I/O function call. The
values of the arguments and the return value from the I/O function are recorded.

6.2 I/O Base Tracing (io) experiment

This base I/O tracing experiment gathers data for these I/O functions: close, creat,
creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, pread64, pwrite,
pwrite64, read, readv, write and writev. It is a trace-type experiment that wraps the

 71

real I/O calls and records information before and after calling the real I/O functions.
This I/O experiment records the basic I/O information as stated in the introductory
section, but does not record the arguments to each call. The extended (iot)
experiment does that.

6.2.1 I/O Base Tracing (io) experiment performance data gathering

The base I/O tracing (io) experiment convenience script is “ossio”. Here’s how to
use this convenience script to gather base I/O tracing performance data:

ossio “how you normally run your application” <list of I/O function(s)>

Here’s an example of how to use the ossio convenience script to gather data for the
IOP application on a Linux cluster platform. It gathers performance data for all the
I/O functions because there are no list I/O functions specified after the quoted
application run command:

ossio "srun -n 512 ./IOR"

6.2.2 Viewing I/O Base Tracing (io) experiment performance data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

6.2.3 Viewing I/O Base Tracing (io) experiment performance data via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

6.3 I/O Extended Tracing (iot) experiment

6.3.1 I/O Extended Tracing (iot) experiment performance data gathering

The extended I/O tracing (iot) experiment convenience script is “ossiot”. Here’s
how to use this to gather extended I/O tracing performance data:

ossiot “how you normally run your application” <list of I/O function(s)>

Here’s an example of how to gather data for the IOP application on a Linux cluster
platform using the ossiot convenience script. It gathers performance data for all the
I/O functions because there are no list I/O functions specified after the quoted
application run command:

ossiot "srun -n 512 ./IOR"

 72

6.3.2 Viewing I/O Extended Tracing (iot) experiment performance data via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

The default GUI view for the iot experiment is below. It summarizes the I/O
functions that were called, how many times they were called and the time spent in
each function. The percentage of the total I/O time also is attributed to each I/O
function. The time is aggregated (totaled) across all the threads, ranks, or processes
in the application. This table describes what the columns of data represent.

Choose one of the call path views to see functions that called the I/O functions.

Column Name Column Definition

I/O Call Time Aggregated total exclusive time spent in the I/O
function corresponding to this row of data.

% of I/O Total Time Percentage of exclusive time relative to the total time
spent in the I/O function corresponding to this row of
data.

Number of Calls Total number of calls to the I/O function
corresponding to this row of data.

Min Bytes Count The number of times minimum bytes read or written
by the corresponding I/O function occurred during
this experiment.

Min Bytes Read or Written The minimum number of bytes that were read or
written by the corresponding I/O function.

Max Bytes Count The number of times maximum bytes read or written
by the corresponding I/O function occurred during
this experiment.

Max Bytes Read or Written The maximum number of bytes that were read or
written by the corresponding I/O function.

Total Bytes Read or
Written

The total number of bytes read or written by the
corresponding function. This number only represents
the totals for the number of bytes read or written
based on the I/O function called.

 73

Below, the user has chosen the C+ view icon. The Stats Panel now shows all the call
paths in the user’s application. This view shows every possible call path through the
source to all the I/O functions called during execution. From this, the user could
validate that this is expected behavior or find where the I/O is behaving
unexpectedly.

Below is the load balance view, which provides the min, max and average values for
the I/O function call time across all ranks in this application. This view shows some
wide ranges between min and max values for some I/O functions. It may be
valuable to use the Cluster Analysis view try to identify the ranks.

 74

The view below, generated by choosing the CA icon, shows that there are two
groups of ranks where the I/O is performing similarly. For group 2 (labeled –c 3),
there are two ranks where the rest of the 512 ranks perform like group 1 (labeled –c
2). Comparing ranks 312 or 317 to one of the ranks in the other group could shed
some light on why group 2 is different from the rest. This may or may not be
significant, but is here for illustration.

6.3.3 Viewing I/O Extended Tracing (iot) experiment performance data via CLI

 75

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

The CLI can provide the same data options as the GUI views. Here are some
examples of the performance data users can view and the commands to generate the
CLI views. The following table describes the headers and meanings of the default iot
view CLI columns.

Column Name Column Definition

I/O Call Time Aggregated total exclusive time spent in the I/O function corresponding to this row of

data.

% of I/O Total Time Percentage of exclusive time relative to the total time spent in the I/O function

corresponding to this row of data.

Number of Calls Total number of calls to the I/O function corresponding to this row of data.

Min Bytes Count The number of times minimum bytes read or written by the corresponding I/O function

occurred during this experiment.

Min Bytes Read or Written The minimum number of bytes that were read or written by the corresponding I/O

function.

Max Bytes Count The number of times maximum bytes read or written by the corresponding I/O function

occurred during this experiment.

Max Bytes Read or Written The maximum number of bytes that were read or written by the corresponding I/O

function.

Total Bytes Read or Written The total number of bytes read or written by the corresponding function. This number

only represents the totals for the number of bytes read or written based on the I/O

function called.

>openss -cli -f IOR-iot.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

 I/O % of Number Min_Bytes Min_Bytes Max_Bytes Max_Bytes Total_Bytes Function (defining location)
 Call Total of Count Read Count Read Read
 Time(ms) I/O Calls Written Written Written
Time
1858436.71 61.48 2048 close (libc-2.12.so)
1055603.73 34.92 2048 2048 262144 2048 262144 536870912 __GI___read (libc-2.12.so)
 108107.66 3.57 1024 __libc_open (libc-2.12.so)
 335.82 0.01 3072 512 6 2048 262144 536878080 write (libc-2.12.so)
 8.75 0.003 4096 __GI___libc_lseek (libc-2.12.so)

Show load balance based on exclusive time spent in the I/O Functions
openss>>expview -m loadbalance

 Max I/O Rank Min I/O Rank Average I/O Function (defining location)
 Call Time of Call Time of Call Time
 Across Max Across Min Across
 Ranks(ms) Ranks(ms) Ranks(ms)
4114.522156 509 2680.653110 273 3629.759208 close (libc-2.12.so: syscall-template.S,82)
2824.349452 346 0.315392 317 2061.726036 __GI___read (libc-2.12.so: syscall-template.S,82)
 989.579445 358 5.784552 414 211.147786 __libc_open (libc-2.12.so: syscall-template.S,82)
 4.574762 65 0.424622 494 0.655899 write (libc-2.12.so: syscall-template.S,82)
 0.044708 184 0.011079 317 0.017103 __GI___libc_lseek (libc-2.12.so: syscall-template.S,82)

Show the call paths in the application run that allocated the largest number of bytes

 76

Using the min_bytes would show all the paths that allocated the minimum number of bytes.

openss>>expview -vfullstack -m max_bytes

Max_Bytes Call Stack Function (defining location)
 Read
 Written
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2013 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >>>>>>> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 >>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so: wrappers.c,239)
 262144 >>>>>>>>> @ 82 in write (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2173 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 2611 in WriteOrRead (IOR: IOR.c,2562)
 >>>>>>> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 >>>>>>>> @ 223 in read (iot-collector-monitor-mrnet-mpi.so: wrappers.c,137)
 262144 >>>>>>>>> @ 82 in __GI___read (libc-2.12.so: syscall-template.S,82)
 …
 …

Show the top time related call paths in the application run .
openss>>expview -v fullstack

 I/O Call % of Number Call Stack Function (defining location)
 Time(ms) Total of
 Time Calls
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2021 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
 >>>>>>> @ 766 in close (iot-collector-monitor-mrnet-mpi.so: wrappers.c,685)
1858418.863034 61.486298 512 >>>>>>>> @ 82 in close (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2173 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 2611 in WriteOrRead (IOR: IOR.c,2562)
 >>>>>>> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 >>>>>>>> @ 223 in read (iot-collector-monitor-mrnet-mpi.so: wrappers.c,137)
1055603.730633 34.924939 2048 >>>>>>>>> @ 82 in __GI___read (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2004 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74)
 >>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608)
 103350.518692 3.419380 512 >>>>>>>> @ 82 in __libc_open (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)

 77

 >>>>> @ 2161 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173)
 >>>>>>> @ 670 in open64 (iot-collector-monitor-mrnet-mpi.so: wrappers.c,608)
 4757.147988 0.157392 512 >>>>>>>> @ 82 in __libc_open (libc-2.12.so: syscall-template.S,82)
 _start (IOR)
 > @ 562 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >> @ 258 in __libc_start_main (libc-2.12.so: libc-start.c,96)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>> @ 153 in main (IOR: IOR.c,108)
 >>>>> @ 2013 in TestIoSys (IOR: IOR.c,1848)
 >>>>>> @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >>>>>>> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 >>>>>>>> @ 321 in write (iot-collector-monitor-mrnet-mpi.so: wrappers.c,239)
 316.176763 0.010461 2048 >>>>>>>>> @ 82 in write (libc-2.12.so: syscall-template.S,82)

6.4 I/O Lightweight Profiling (iop) General Usage

The O|SS iop I/O function profiling experiment wraps the most common I/O
functions, records the time spent in each I/O function, records the call path along
which the I/O function was called, records the time spent along each call path to an
I/O function, and records the number of times each function was called.

6.4.1 I/O Profiling (iop) experiment performance data gathering

The I/O Profiling (iop) experiment convenience script is “ossiop”. Here’s how to
use this convenience script to gather lightweight I/O profiling performance data:
ossiop “how you normally run your application”

Here’s an example of how to use the ossiop convenience script to gather data for the
IOP application on the Cray platform:

ossiop "aprun -n 64 ./IOR"

6.4.2 Viewing I/O Profiling (iop) experiment performance data via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

The image below shows the default view for the iop experiment run on a 50000
rank “IOR” application job. Performance information shown in the default view is
the time spent in I/O functions and the percentage of time spent in each I/O
function.

 78

The image below shows the hot call path view for the iop experiment run on a
50000 rank “IOR” application job. The performance information displayed in this
view includes the top five call paths to each of the I/O functions that took the most
time, time spent in I/O functions and the percentage of time spent in each I/O
function.

This image shows the min, max and average time spent in each of the I/O functions
and the rank of the minimum value and the rank of the maximum value for each I/O

 79

function. This view indicates whether there is an imbalance relative to the I/O in
the application being run. This may or may not be expected.

6.4.3 Viewing I/O Profiling (iop) experiment performance data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

The CLI can provide the same data options as the GUI views. Here are some
examples of performance data users can view and the commands to generate the
CLI views.

> openss -cli -f IOR-iop-1.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

 Exclusive Inclusive % of Function (defining location)
 I/O call I/O call Total
 times in times in Exclusive
 seconds. seconds. CPU Time
38297.33 38297.33 96.46 __write (libpthread-2.11.3.so)
 741.01 741.01 1.86 open64 (libpthread-2.11.3.so)
 598.43 598.43 1.50 read (libpthread-2.11.3.so)
 63.38 63.38 0.15 close (libpthread-2.11.3.so)
 2.264 2.26 0.01 __lseek64 (libpthread-2.11.3.so)

openss>>expview -v fullstack

 Exclusive Inclusive % of Call Stack Function (defining location)
 I/O call I/O call Total
 times in times in Exclusive
 seconds. seconds. CPU Time
 TestIoSys (IOR: IOR.c,1848)
 > @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 244 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
38297.33 38297.33 96.46 >>>__write (libpthread-2.11.3.so)

 80

 TestIoSys (IOR: IOR.c,1848)
 > @ 2611 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 251 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 598.43 598.43 1.51 >>>read (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 104 in IOR_Create_POSIX (IOR: aiori-POSIX.c,74)
 472.14 472.14 1.19 >>open64 (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 195 in IOR_Open_POSIX (IOR: aiori-POSIX.c,173)
 268.88 268.88 0.68 >>open64 (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
 61.587482 61.587482 0.155123 >>close (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 316 in IOR_Close_POSIX (IOR: aiori-POSIX.c,315)
 1.796442 1.796442 0.004525 >>close (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 2608 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 234 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 1.280113 1.280113 0.003224 >>>__lseek64 (libpthread-2.11.3.so)
 TestIoSys (IOR: IOR.c,1848)
 > @ 2611 in WriteOrRead (IOR: IOR.c,2562)
 >> @ 234 in IOR_Xfer_POSIX (IOR: aiori-POSIX.c,224)
 0.981341 0.981341 0.002472 >>>__lseek64 (libpthread-2.11.3.so)

In the CLI output above, the expview command with no options gives the overview
or summary view for all the ranks and threads. Users can view the performance
information for individual ranks (using –r <rank number>), individual threads
(using –t <thread number>) or individual processes (using –p <process id>). Users
also can give a range of ranks, threads or processes using their respective option.

The calltrees view shows where the I/O function was called from in the user’s
application source. In this example, most I/O time was spent in the write I/O
function along the path shown in the first individual call path. The call path with
fullstack option stops the calltrees view from collapsing any similar sub-trees, which
makes the view more explicit. Without the fullstack option the calltrees would be
more consolidated.

 81

7 Applying Experiments to Parallel Codes

The ideal scenario for executing parallel code using pthreads or OpenMP is efficient
threading, in which all threads are assigned work that can execute concurrently. In
the ideal scenario for MPI code, the job is properly load balanced so all MPI ranks do
the same amount of work and none is stuck waiting.

What can make these ideal scenarios fail? According to a Lawrence Livermore
National Laboratory parallel processing tutorial, MPI jobs can become unbalanced if
an unequal amount of work was assigned to each rank, possibly through an unequal
number of array operations for each rank or through uneven distribution of loop
iterations. Problems can persist even if the work seems to be evenly distributed.
For example, when a sparsely populated array is evenly distributed, some ranks
may end up with very little or no work while others will have a full load. Under
adaptive grid models, some ranks must redefine their mesh while other don’t.
Under N-body simulations, some work migrates to other ranks so those ranks will
have more to do while the others have less.

Performance analysis can help with load balancing and evenly distributing work.
Tools like O|SS are designed to work on parallel jobs. It supports threading and
message passing and automatically tracks all ranks and threads during execution. It
also can store the performance information on a per process, rank or thread basis
for individual evaluation. All of the O|SS experiments run on parallel jobs and
collectors are applied to all ranks on all nodes. An experiment’s results can be
displayed as an aggregation across all ranks or threads (the default view) or the
user can select individual or groups of ranks or threads to view. There also are
experiments specifically designed for tracing MPI function calls.

O|SS has been tested with a variety of MPI versions, including Open MPI,
MVAPICH[2] and MPICH2 on Intel, Blue Gene and Cray systems. O|SS can identify
the MPI task (rank info) through the MPIR interface for the online version or
through PMPI preload for the offline version. To run MPI code with O|SS, just
include the MPI launcher as part of the executable as normal. Here are several
examples:

> ossmpi “mpirun –np 128 sweep3d.mpi”

> osspcsamp “mpirun –np 32 sweep3d.mpi”

> ossio “srun –N 4 –n 16 sweep3d.mpi”

> openss –offline –f “mpirun –np 128 sweep3d.mpi” hwctime

> openss –online –f “srun –N 8 –n 128 sweep3d.mpi” usertime

 82

The default view for parallel applications aggregates the information collected
across all ranks. Users can manually include or exclude individual ranks, processes
or threads to view their specific results. They also can use the Customize Stats Panel
View to compare ranks and can create a compare column for the process groups or
individual ranks. Cluster analysis also is available and can be used to find outliers –
ranks that are performing very differently from others. From the Stats Panel toolbar
or context menu users can automatically create groups of similarly performing
ranks or threads. Through the Stat Panel, O|SS also provides common analysis
functions designed for quick analysis of MPI applications. Load-balance views that
calculate min, max and average values across ranks, processes or threads are
available. This image shows the O|SS buttons for Load Balance. Cluster Analysis is
next to that.

This shows the creation of a comparison between two ranks in O|SS:

 83

This shows those two ranks compared side by side in the statistics panel:

8 MPI Tracing Experiments (mpi, mpit, mpip)

This section follows an O|SS MPI tracing experiment that will record all MPI call
invocations. There are three MPI experiments and associated convenience scripts:
ossmpi, which records call times; ossmpit, which records call times and arguments;

 84

and mpip, a lightweight version of mpi that records individual MPI calls but doesn’t
save them in the database. Equal events will be aggregated to save space in the
database and reduce the overhead.

Again, we will run the experiment on the SMG2000 application. Syntax for the
experiment is:

> ossmpi[t][p] “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category]

The default behavior is to trace all MPI functions, but a comma-separated list can be
supplied if users only want to trace specific ones, e.g. MPI_Send, MPI_Recv…, etc.
Users also can select an mpi_category to trace "all”, "asynchronous_p2p”,
"collective_com”, "datatypes”, "environment”, "graphs_contexts_comms”,
"persistent_com”, "process_topologies” and “synchronous_p2p”.

The default views are designed to relate the information included in the report back
to the individual calls to their corresponding MPI functions. This same information
would be reported if the user were to do an: “expview -m min, max, average”. The
view is a representation of the minimum, maximum and average time values per
individual calls to their corresponding MPI functions.

The average time reported is the total time for all calls to a function divided by the
total number of calls. Thus, it is the average time that each individual call spends in
the function. As such, it is comparable to the Max (maximum) and Min (minimum)
of a call to the function found in the same “min, max, average” report.

Alternatively, if a user does an “expview -m ThreadMin, ThreadMax, ThreadAve”,
then information for the Max, Min and Average is related back to the individual
ranks.

Another way of saying it: The average is the total amount of time for all calls to a
function divided by the total number of ranks. Thus, it is the average time each rank
spends in the function. As such, it is comparable to the Max and Min of a rank in the
same report.

If the number of ranks is the same as the number of calls, the two different
calculations should produce the same result. This would be true if all calls were in a
single thread or there were one in each rank, as it is for MPI_Init.

The “expview -m min, max, average” view can expose load imbalance by showing
large differences in the minimum and maximum times for asynchronous MPI
functions. This indicates that some of the MPI asynchronous functions ran quickly
(low minimum times) but some had to wait a long time to get started (large
maximum times). Many times, the function calls that ran quickly were the last to
arrive and actually are from ranks that are running worse than the others, causing
load imbalance and delaying the overall job execution. These ranks show better MPI

 85

function time numbers, but only because they were the last to arrive at the internal
barrier point and did not have to wait as long as other MPI functions that arrived
sooner, but had to wait for the other ranks to arrive.

This shows results of the MPI experiment in the default view:

Here is the MPI function call path view:

Show min, max, average times per call.
These numbers represent per function call

time values.

 86

Here is the default pcsamp view based on functions:

Here is the load balance view based on functions:

Here is the default view based on Linked Objects (libraries):

 87

This is the load balance view base on Linked Objects (libraries):

Here is the cluster analysis view based on Linked Objects:

 88

Here is the pcsamp view of Rank 255 performance data only:

Rank 255 is examined further here, this time using the load balance view in the
Command Line Interface for O|SS:

 89

This shows the difference between Rank 255 and Rank 0:

Here are the hot call paths for MPI_Wait on Rank 255:

 90

In this experiment, we did program counter sampling to get an overview of the
application. We noticed that smp_net_lookup appeared in function load balance
view, prompting an examination of the linked object view. The load balance on the
linked object showed some imbalance, so we looked at the cluster analysis view and
found that rank 255 was an outlier.

Taking a closer look at rank 255, we saw that the pcsamp output shows most of the
time was spent in smp_net_lookup. To get more clues, we used the MPI experiment
and saw that a load balance view shows rank 255’s MPI_Allreduce time is the
highest of the 256 ranks. We then checked rank 255 and a representative rank from
the rest and noted the differences in MPI_Wait, MPI_Send and MPI_Allreduce. We
looked at the call paths to MPI_Wait to determine why the wait was occurring.

The mpit experiment has a performance information entry for each MPI function
call. Besides time spent in each MPI function, information such as source and
destination rank and bytes sent or received also are available. Users can selectively
view the information they desire.

Here is the default event view for an MPI application:

 91

User can create their own event view with the OV button:

Use the views dialog box to choose the metrics to display:

 92

Choosing the event to view will display it:

8.1 MPI Tracing Experiment (mpi)

 93

8.1.1 MPI Tracing Experiment (mpi) performance data gathering

Much of this information is described in the main MPI Tracing Experiments section
(above), but for completeness, here is the convenience script description for
running the MPI-specific tracing experiments:

> ossmpi “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category]

If users give the mpi_category or a list of categories to the ossmpi command, then
only those MPI functions corresponding to that category or categories will be traced.
This table defines the MPI categories:

MPI Category Argument
All MPI Functions
Collective Communicators
Persistent Communicators
Synchronous Point to Point
Asynchronous Point to Point
Process Topologies 
Groups Contexts Communicators
Environment 
Datatypes
MPI File I/O

all
collective_com
persistent_com
synchronous_p2p
asynchronous_p2p
process_topologies
graphs_contexts_comms
environment 
datatypes
fileio

8.1.2 Viewing MPI Tracing Experiment (mpi) performance data via GUI

To launch the GUI on any experiment, use “openss –f <database name> “.

8.1.3 MPI Viewing Tracing Experiment (mpi) performance data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.
This table describes the header and column data definitions for the default MPI
experiment views.

Column Name Column Definition

Exclusive MPI Call Time Aggregated total exclusive time spent in the MPI function corresponding to this row

of data.

% of MPI Time Percentage of exclusive MPI time spent in the MPI function corresponding to this

row of data relative to the total MPI time for all the MPI functions.

Number of Calls Total number of calls to the MPI function corresponding to this row of data.

Min MPI Call Time The minimum time that an MPI call took across all calls spent in the corresponding

MPI function.

Max MPI Call Time The maximum time that an MPI call took across all calls spent in the corresponding

MPI function.

 94

Column Name Column Definition

Average MPI Call Time Across Ranks The average time for the default view is the total amount of time for all the calls to

a function divided by the total number of calls. Thus, it is the average time that

each MPI function call spends in the function.

This is an example of the CLI default view for the MPI (mpi, mpit) experiments:

This is an example of the GUI default view for the MPI (mpi, mpit) experiments:

The default views are designed to relate information included in the report back to
the individual calls to their corresponding MPI functions. This same information
would be reported by using the command: “expview -m min, max, average”. The
view is a representation of the minimum, maximum and average time values per
individual calls to their corresponding MPI functions.

The average time reported is the total time for all calls to a function divided by the
total number of calls. Thus, it is the average time each individual call spends in the

 95

function. As such, it is comparable to the Max (maximum) and Min (minimum) of a
call to the function found in the same “min, max, average” report.

Alternatively, if a user does an “expview -m ThreadMin, ThreadMax, ThreadAve”,
then the report information for the Max, Min and Average is related back to the
individual ranks.

Another way of saying it: The average is the total amount of time for all the calls to a
function divided by the total number of ranks. Thus, it is the average time that each
rank spends in the function. As such, it is comparable to the Max and Min of a rank
in the same report.

If the number of ranks is the same as the number of calls, the two different
calculations should produce the same result. This would be true if all the calls were
in a single thread or there were one in each rank, as it is for MPI_Init.

The “expview -m min, max, average” view can expose load imbalance by showing
when the minimum and maximum time for asynchronous MPI functions have large
differences. This indicates that some of the MPI asynchronous functions ran quickly
(low minimum times) but some had long waits to get started (large maximum
times). Many times, the function calls that ran quickly were the last to arrive and
actually are from ranks that are not running as well as the others, causing load
imbalance and slowing overall job execution. These ranks show better MPI function
time performance, but only because they were the last to arrive at the internal
barrier point. They did not have to wait as long as other MPI functions that arrived
earlier, but had to wait for the other ranks to finally arrive.

8.2 MPI Tracing Experiments (mpit)

8.2.1 MPI Tracing Experiments (mpit) performance data gathering

Much of this information is described in the main MPI Tracing Experiments section
(above), but for completeness, here is the convenience script description for
running the MPI-specific tracing experiments:

> ossmpit “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category]

If users give the mpi_category or a list of categories to the ossmpit command, then
only those MPI functions corresponding to that category or categories will be traced.
This table defines the MPI categories:

MPI Category Argument
All MPI Functions
Collective Communicators
Persistent Communicators
Synchronous Point to Point
Asynchronous Point to Point
Process Topologies

all
collective_com
persistent_com
synchronous_p2p
asynchronous_p2p
process_topologies

 96

Groups Contexts Communicators
Environment 
Datatypes
MPI File I/O

graphs_contexts_comms
environment 
datatypes
fileio

8.2.2 Viewing MPI Tracing Experiments (mpit) performance data via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

8.2.3 Viewing MPI Tracing Experiments (mpit) performance data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.
This table describes the header and column data definitions for the default MPI
experiment views.

Column Name Column Definition

Exclusive MPI Call Time Aggregated total exclusive time spent in the MPI function corresponding to this row

of data.

% of MPI Time Percentage of exclusive MPI time spent in the MPI function corresponding to this

row of data relative to the total MPI time for all the MPI functions.

Number of Calls Total number of calls to the MPI function corresponding to this row of data.

Min MPI Call Time The minimum time that an MPI call took across all calls spent in the corresponding

MPI function.

Max MPI Call Time The maximum time that an MPI call took across all calls spent in the corresponding

MPI function.

Average MPI Call Time Across Ranks The average time for the default view is the total amount of time for all the calls to

a function divided by the total number of calls. Thus, it is the average time that

each MPI function call spends in the function.

This is an example of the CLI default view for the MPI (mpi, mpit) experiments:

 97

This is an example of the GUI default view for the MPI (mpi, mpit) experiments:

The default views are designed to relate information included in the report back to
the individual calls to their corresponding MPI functions. This same information
that would be reported by doing: “expview -m min, max, average”. The view is a
representation of the minimum, maximum and average time values per individual
calls to their corresponding MPI functions.

The average time reported is the total time for all calls to a function divided by the
total number of calls. Thus, it is the average time each individual call spends in the
function. As such, it is comparable to the Max (maximum) and Min (minimum) of a
call to the function found in the same “min, max, average” report.

Alternatively, if a user does an “expview -m ThreadMin, ThreadMax, ThreadAve”,
then the report information for the Max, Min and Average is related back to the
individual ranks.

Another way of saying it: The average is the total amount of time for all the calls to a
function divided by the total number of ranks. Thus, it is the average time that each

 98

rank spends in the function. As such, it is comparable to the Max and Min of a rank
in the same report.

If the number of ranks is the same as the number of calls, the two different
calculations should produce the same result. This would be true if all the calls were
in a single thread or there were one in each rank, as it is for MPI_Init.

The “expview -m min, max, average” view can expose load imbalance by showing
when the minimum and maximum time for asynchronous MPI functions have large
differences. This indicates that some of the MPI asynchronous functions ran quickly
(low minimum times) but some had long waits to get started (large maximum
times). Many times the function calls that ran quickly were the last to arrive and
actually are from ranks that are not running as well as the others, causing load
imbalance and slowing overall job execution. These ranks show better MPI function
time performance, but only because they were the last to arrive at the internal
barrier point. They did not have to wait as long as the other MPI functions that
arrived earlier, but had to wait for the other ranks to finally arrive.

8.3 MPI Tracing Experiments (mpip)

8.3.1 MPI Tracing Experiments (mpip) performance data gathering

Much of this information is described in the main MPI Tracing Experiments section
(above), but for completeness, here is the convenience script description for
running the MPI-specific (mpi, mpit, mpip) tracing experiments.

> ossmpip “srun –N 4 –n 32 smg2000 –n 50 50 50” [default | <list MPI functions> | mpi_category]

If users give the mpi_category or a list of categories to the ossmpi command, then
only those MPI functions corresponding to that category or categories will be traced.
This table defines the MPI categories:

MPI Category Argument
All MPI Functions
Collective Communicators
Persistent Communicators
Synchronous Point to Point
Asynchronous Non-Blocking
Asynchronous Point to Point
Process Topologies
Groups Contexts Communicators
Environment
Datatypes
MPI File I/O

all
collective_com
persistent_com
synchronous_p2p
async_nonblocking
asynchronous_p2p
process_topologies
graphs_contexts_comms
environment
datatypes
fileio

8.3.2 Viewing MPI Tracing Experiments (mpip) performance data via CLI

 99

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

This table describes the header and column data definitions for the default MPI
experiment views.

This is an example of the CLI default view for the MPI (mpip) experiments:

Column Name Column Definition

Exclusive MPI Call Time Aggregated total exclusive time spent in the
MPI function corresponding to this row of
data.

% of MPI Time Percentage of exclusive MPI time spent in
the MPI function corresponding to this row
of data relative to the total MPI time for all
the MPI functions.

Number of Calls Total number of calls to the MPI function
corresponding to this row of data.

Min MPI Call Time Across Ranks The minimum time that a rank or ranks,
across all ranks, spent in the corresponding
MPI function.

Rank of Min The number of the rank that had the
minimum time spent in the MPI function
across all the ranks of the application.

Max MPI Call Time Across Ranks The maximum time that a rank or ranks,
across all ranks, spent in the corresponding
MPI function.

Rank of Max The number of the rank that had the
maximum time spent in the MPI function
across all the ranks of the application.

Average MPI Call Time Across Ranks The average for the default view is the total
amount of time for all the calls to a function
divided by the total number of ranks. Thus,
it is the average time that each rank spends
in the function. As such, it is comparable to
the Max and Min of a rank that is in the
same report.

 100

Here is an example of the CLI load balance view for the MPI (mpip) experiment.
This view shows the minimum, maximum and average time per rank for each
function and the rank that represents the maximum time and minimum time. Note
that there may be more ranks that have the same maximum and minimum time per
rank:

Here is an example of the ability to compare performance information at the rank
level in the CLI. This example shows a comparison on the exclusive time metric for
rank 0 and rank 23. These ranks were shown to be the ones with the maximum and
minimum values for MPI_Waitall above. Users also could use the expview -r 0 and
expview -r 23 to see times for just those ranks:

This shows the top two call paths in the program that took the most time (with
respect to MPI function calls):

 101

8.3.3 MPI Viewing Tracing Experiments (mpip) performance data via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

This is an example of the GUI default view for the MPI (mpip) experiment:

This shows the load balance for this execution of lulesh on 27 ranks:

 102

This shows the cluster analysis view for this run of lulesh on 27 ranks. This view
groups similarly performing ranks to help users locate groups of ranks that are
outliers with respect to the other ranks.

This shows the hot call paths in the application:

 103

9 Threading Analysis Section

In the previous sections we described experiments that use MPI, but users can do a
similar analysis on applications that use threads. To analyze a threaded application,
users can first run the pcsamp experiment to get an overview, then check the load
balance view to detect any widely varying values, and finally do cluster analysis to
find outliers.

This shows the default view for an application with four threads. The information
displayed is the aggregated total from all threads:

This is the load balance view based on functions:

 104

Next is a cluster analysis view based on functions:

9.1 Threading Specific Experiment (pthreads)

O|SS also has available an experiment specific to tracking and analyzing POSIX
thread function calls. The experiment, pthreads, traces several POSIX thread-related

 105

functions. Like all the other tracing experiments, it provides the number of calls,
time spent in each function, call paths to each POSIX thread function and an event-
by-event trace. Load balance and cluster analysis features also are available.

9.1.1 Threading Specific (pthreads) experiment performance data gathering
(osspthreads)

To run the pthreads experiment, use the osspthreads convenience script while
placing how the application would normally run in quotes, as shown here:

osspthreads "mpirun -np 4 ./smg2000 -n 15 15 15"
[openss]: pthreads using default experiment trace function list.
Creating topology file for frontend host localhost
Generated topology file: ./cbtfAutoTopology
Running pthreads collector.
Program: mpirun -np 4 ./smg2000 -n 15 15 15
Number of mrnet backends: 4
Topology file used: ./cbtfAutoTopology
executing mpi program: mpirun -np 4 cbtfrun --mpi --mrnet -c pthreads ./smg2000 -n 15 15 15
Running with these driver parameters:
 (nx, ny, nz) = (15, 15, 15)
 (Px, Py, Pz) = (4, 1, 1)
 (bx, by, bz) = (1, 1, 1)
 (cx, cy, cz) = (1.000000, 1.000000, 1.000000)
 (n_pre, n_post) = (1, 1)
 dim = 3
 solver ID = 0
===
Struct Interface:
===
Struct Interface:
 wall clock time = 0.000475 seconds
 cpu clock time = 0.000000 seconds
===
Setup phase times:
===
SMG Setup:
 wall clock time = 0.047075 seconds
 cpu clock time = 0.050000 seconds
===
Solve phase times:
===
SMG Solve:
 wall clock time = 0.092030 seconds
 cpu clock time = 0.100000 seconds

Iterations = 5
Final Relative Residual Norm = 6.027844e-07

All Threads are finished.
default view for /home/fred/DEMOS/demos/mpi/openmpi-1.8.2/smg2000/test/smg2000-
pthreads-1.openss
[openss]: The restored experiment identifier is: -x 1

 106

Performance data spans 0.881730 ms from 2017/01/04 19:14:25 to 2017/01/04 19:14:26

Exclusive % of Number Function (defining location)
 Pthreads Total of
 Call Calls
 Time(ms)
 0.944687 66.038845 652 pthread_mutex_lock (libpthread-2.17.so)
 0.485815 33.961155 652 pthread_mutex_unlock (libpthread-2.17.so)

9.1.2 Viewing Threading Specific (pthreads) experiment performance data via GUI

To launch the GUI on any experiment, use “openss –f <database name>“.

Here are three pthreads experiment views. First is the default, listing the POSIX
thread function routines that were called in the application being monitored, the
number of times they were called and the time spent in each function:

This shows the top five time-consuming POSIX thread function call paths through
the application:

 107

Last is an event list view, showing POSIX thread function calls in the order they
occurred with the rank and thread the call originated from, the time spent in the
POSIX thread function call event and the percentage of the total time that
represents:

9.1.3 Viewing Threading Specific (pthreads) experiment performance data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

 108

openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

Exclusive % of Number Function (defining location)
 Pthreads Total of
 Call Calls
 Time(ms)
 0.944687 66.038845 652 pthread_mutex_lock (libpthread-2.17.so)
 0.485815 33.961155 652 pthread_mutex_unlock (libpthread-2.17.so)

openss>>expview -m loadbalance

 Max Rank Min Rank Average Function (defining location)
Exclusive of Exclusive of Exclusive
 Pthreads Max Pthreads Min Pthreads
call time call time call time
 in in in
 seconds. seconds. seconds.
 Across Across Across
Ranks(ms) Ranks(ms) Ranks(ms)
 0.165071 2 0.065597 1 0.118086 pthread_mutex_lock (libpthread-2.17.so)
 0.125825 1 0.007971 2 0.060727 pthread_mutex_unlock (libpthread-2.17.so)

openss>>expview -m loadbalance -r 0

 Max ThreadId Min ThreadId Average Function (defining location)
 Exclusive of Max Exclusive of Min Exclusive
 Pthreads Pthreads Pthreads
call time in call time in call time in
 seconds. seconds. seconds.
 Across Across Across
ThreadIds(ms) ThreadIds(ms) ThreadIds(ms)

 0.162899 1 0.071457 0 0.117178 pthread_mutex_lock (libpthread-2.17.so)
 0.120930 1 0.009044 0 0.064987 pthread_mutex_unlock (libpthread-2.17.so)

openss>>expcompare -r1 -t0:1

 -t 0 -r -t 0 -r -t 0 -t 1 -r -t 1 -r -t 1 Function (defining location)
 1, 1, % of -r 1, 1, 1, % of -r 1,
Exclusive Total Number Exclusive Total Number
 Pthreads of Pthreads of
 Call Calls Call Calls
 Time(ms) Time(ms)
 0.065597 87.269510 24 0.161611 56.225038 137 pthread_mutex_lock (libpthread-2.17.so)
 0.009569 12.730490 24 0.125825 43.774962 137 pthread_mutex_unlock (libpthread-2.17.so)
openss>>
openss>>expview -vfullstack pthreads4

Exclusive % of Number Call Stack Function (defining location)
 Pthreads Total of
 Call Calls
 Time(ms)
 __clone (libc-2.17.so)
 >start_thread (libpthread-2.17.so)
 >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)
 >>> @ 1631 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)
 >>>> @ 169 in poll_dispatch (libopen-pal.so.6.2.0: poll.c,120)
 >>>>> @ 74 in evthread_posix_lock (libopen-pal.so.6.2.0: evthread_pthread.c,68)
 >>>>>> @ 247 in pthread_mutex_lock (pthreads-collector-monitor-mrnet-mpi.so:

 109

wrappers.c,211)
 0.190707 13.331474 82 >>>>>>>pthread_mutex_lock (libpthread-2.17.so)
 __clone (libc-2.17.so)
 >start_thread (libpthread-2.17.so)
 >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)
 >>> @ 1645 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)
 >>>> @ 1437 in event_process_active (libopen-pal.so.6.2.0: event.c,1428)
 >>>>> @ 1374 in event_process_active_single_queue (libopen-pal.so.6.2.0: event.c,1331)
 >>>>>> @ 74 in evthread_posix_lock (libopen-pal.so.6.2.0: evthread_pthread.c,68)
 >>>>>>> @ 247 in pthread_mutex_lock (pthreads-collector-monitor-mrnet-mpi.so:
wrappers.c,211)
 0.136457 9.539099 165 >>>>>>>>pthread_mutex_lock (libpthread-2.17.so)
 __clone (libc-2.17.so)
 >start_thread (libpthread-2.17.so)
 >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)
 >>> @ 1631 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)
 >>>> @ 165 in poll_dispatch (libopen-pal.so.6.2.0: poll.c,120)
 >>>>> @ 81 in evthread_posix_unlock (libopen-pal.so.6.2.0: evthread_pthread.c,78)
 >>>>>> @ 298 in pthread_mutex_unlock (pthreads-collector-monitor-mrnet-mpi.so:
wrappers.c,262)
 0.085655 5.987758 82 >>>>>>>pthread_mutex_unlock (libpthread-2.17.so)
 __clone (libc-2.17.so)
 >start_thread (libpthread-2.17.so)
 >> @ 439 in orte_progress_thread_engine (libopen-rte.so.7.0.4: ess_base_std_app.c,438)
 >>> @ 1645 in opal_libevent2021_event_base_loop (libopen-pal.so.6.2.0: event.c,1559)
 >>>> @ 1437 in event_process_active (libopen-pal.so.6.2.0: event.c,1428)
 >>>>> @ 1367 in event_process_active_single_queue (libopen-pal.so.6.2.0: event.c,1331)
 >>>>>> @ 81 in evthread_posix_unlock (libopen-pal.so.6.2.0: evthread_pthread.c,78)
 >>>>>>> @ 298 in pthread_mutex_unlock (pthreads-collector-monitor-mrnet-mpi.so:
wrappers.c,262)
 0.085246 5.959167 105 >>>>>>>>pthread_mutex_unlock (libpthread-2.17.so)
openss>>

9.2 OpenMP Related Performance Analysis

9.2.1 OpenMP Thread Wait Detection using OMPT interface

If built with the OMPT enhanced OpenMP runtime library, O|SS will detect OpenMP
thread wait time. In general, OpenMP support in O|SS is available in two forms:
augmenting the sampling experiments and providing an OpenMP specific
experiment.

9.2.1.1 Augmentation of O|SS sampling experiments

The first form integrates information gathered from the OpenMP runtime through
the new OMPT tools interface into existing displays and experiments. This is done
by aggregating the information from the runtime into “pseudo functions” and listing
them as part of the standard profile (without any details of what is actually executed
in the runtime). Here’s an example showing thread idle time (as part of the pseudo
function IDLE) and barrier time (as part of WAIT_BARRIER). Other states in the
runtime would be shown similarly:

openss>>expview 

 110

Exclusive % of Function (defining location) CPU time CPU in Time seconds. 
453.0900 14.4423 CalcFBHourglassForceForElems() (lulesh2.0: lulesh.cc,745) 
325.5600 10.3773 IntegrateStressForElems() (lulesh2.0: lulesh.cc,526) 
312.5800 9.9635 EvalEOSForElems(Domain&, double*, int, int*, int) (lulesh2.0: lulesh.cc,2236) 
306.6100 9.7732 LagrangeNodal(Domain&) (lulesh2.0: lulesh.cc,1253) 
230.6600 7.3523 CalcKinematicsForElems(Domain&, double*, double, int) (lulesh2.0: lulesh.cc,1535) 
160.3400 5.1109 IDLE (pcsamp-collector-monitor-mrnet-mpi.so: collector.c,477) 
156.6800 4.9942 psm_mq_ipeek (libpsm_infinipath.so.1.14) 1
150.4100 4.7943 ips_ptl_poll (libpsm_infinipath.so.1.14) 
132.9100 4.2365 CalcElemVolumeDerivative(double*, double*, double*, double const*, double const*, double
const*) (lulesh2.0: lulesh.cc,658) 
105.9600 3.3775 CalcMonotonicQGradientsForElems(Domain&, double*) (lulesh2.0: lulesh.cc,1643) 
 99.8600 3.1831 __pthread_cond_signal (libpthread-2.12.so: pthread_cond_signal.S,38) 
 77.6300 2.4745 __GI_vfprintf (libc-2.12.so: vfprintf.c,201) 
 77.2600 2.4627 sbrk (libc-2.12.so: sbrk.c,35) 60.2000 1.9189 CalcMonotonicQRegionForElems(Domain&, int,
double*, double) (lulesh2.0: lulesh.cc,1792) 
 41.7800 1.3317 main (lulesh2.0: lulesh.cc,2690) 
 34.1000 1.0869 WAIT_BARRIER (pcsamp-collector-monitor-mrnet-mpi.so: collector.c,501) 30.6000 0.9754
__psmi_poll_internal (libpsm_infinipath.so.1.14) 
 25.2300 0.8042 _IO_default_xsputn_internal (libc-2.12.so: genops.c,452) 

What does using the OMPT interface in O|SS let users do?

O|SS applies the OMPT API blame callbacks for ompt_event_thread_idle,
ompt_event_thread_barrier and ompt_event_thread_wait_barrier to samples taken
in the OpenMP library that otherwise would be shown as __kmp_barrier,
__kmp_wait_sleep, etc. in the Intel libiomp5 library. O|SS uses the libiomp5 library
with the OMPT API enabled at runtime to do this for all OpenMP codes run with the
pcsamp, usertime and hardware counter-based experiments. The user can then see
the sample time per thread for idle, barrier and wait_barrier. The user also can use
the loadbalance metric to see the min, max and average of these blame events or use
the expcompare across all threads to compare individual metrics.

For barrier symbols, samples taken when a thread is waiting at a barrier are
inclusive to total barrier time; that is, adding barrier and wait_barrier metrics gives
total barrier time.

Essentially these blame metrics, as used in the O|SS sampling experiments, provide
the time a thread is idle and the time spent at a barrier (including waiting at a
barrier).

Adding barrier and wait_barrier gives the total samples taken at a barrier;
wait_barrier is just the samples within that barrier when there is a
thread_barrier_wait condition.

Here is an example from the lulesh sequential OpenMP case:
openss>>expview -f OMPT* -m time
Exclusive Function (defining location)
 CPU time
 in
 seconds.

http://libpthread-2.12.so/
http://libc-2.12.so/
http://libc-2.12.so/
http://libc-2.12.so/

 111

 1.460000 IDLE (pcsamp-collector-monitor-mrnet.so: collector.c,99)
 0.470000 WAIT_BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,129)
 0.020000 BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,113)

openss>>expcompare -f OMPT* -m time -t0:4

 -t 0, -t 2, -t 3, -t 4, Function (defining location)
Exclusive Exclusive Exclusive Exclusive
 CPU time CPU time CPU time CPU time
 in in in in
 seconds. seconds. seconds. seconds.
 0.360000 0.030000 0.070000 0.010000 WAIT_BARRIER (pcsamp-collector-monitor-mrnet.so:
collector.c,129)
 0.000000 0.500000 0.400000 0.560000 IDLE (pcsamp-collector-monitor-mrnet.so:
collector.c,99)
 0.000000 0.000000 0.010000 0.010000 BARRIER (pcsamp-collector-monitor-mrnet.so:
collector.c,113)
openss>>expview -f OMPT* -m time -t3

Exclusive Function (defining location)
 CPU time
 in
 seconds.
 0.400000 IDLE (pcsamp-collector-monitor-mrnet.so: collector.c,99)
 0.070000 WAIT_BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,129)
 0.010000 BARRIER (pcsamp-collector-monitor-mrnet.so: collector.c,113)

This shows that most of the barrier samples were taken when the thread was
waiting at the barrier. The BARRIER and WAIT_BARRIER symbols replace samples
that would have appeared as __kmp_barrier (or possibly __kmp_join_barrier) in the
latest libiomp5. The IDLE samples replace __kmp_wait_sleep in the real libiomp5.

The above applies to pcsamp, usertime and the three hardware counter collectors
(hwc, hwctime, and hwcsamp), is essentially telling the user the time a thread is idle
and the time spent at a barrier (including waiting at a barrier).

From the example above, with the addition of BARRIER, it can be inferred that most
of the barrier time for thread 2 was spent waiting at the barrier.

The usertime experiment on an OpenMP application can help pinpoint the origin of
wait barrier time in the source. For example:
openss>>expview
Exclusive Inclusive % of Function (defining location)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
23.200000 23.200000 38.648263 IDLE (usertime-collector-monitor-mrnet.so: collector.c,122)
13.142857 13.142857 21.894336 MAIN__.omp_fn.2 (stress_omp: stress_omp.f,179)
12.885714 12.885714 21.465969 MAIN__.omp_fn.5 (stress_omp: stress_omp.f,227)
 4.742857 4.742857 7.901000 WAIT_BARRIER (usertime-collector-monitor-mrnet.so: collector.c,150)
 2.000000 11.771428 3.331747 MAIN__ (stress_omp: stress_omp.f,1)
 1.257143 1.257143 2.094241 __kernel_cosf (libm-2.12.so: k_cosf.c,45)

 112

This shows the call path that points to the source lines leading to the thread waiting
in the barrier:

openss>>expview -vfullstack -f WAIT_BARRIER usertime1

Exclusive Inclusive % of Call Stack Function (defining location)
 CPU time CPU time Total
 in in Exclusive
 seconds. seconds. CPU Time
 _start (stress_omp)
 > @ 556 in __libc_start_main (libmonitor.so.0.0.0: main.c,541)
 >>__libc_start_main (libc-2.12.so)
 >>> @ 517 in monitor_main (libmonitor.so.0.0.0: main.c,492)
 >>>>main (stress_omp)
 >>>>> @ 227 in MAIN__ (stress_omp: stress_omp.f,1)
 >>>>>> @ 557 in __kmp_api_GOMP_parallel_end_10_alias (libiomp5.so: kmp_gsupport.c,490)
 >>>>>>> @ 2395 in __kmp_join_call (libiomp5.so: kmp_runtime.c,2325)
 >>>>>>>> @ 7114 in __kmp_internal_join (libiomp5.so: kmp_runtime.c,7093)
 >>>>>>>>> @ 1458 in __kmp_join_barrier(int) (libiomp5.so: kmp_barrier.cpp,1371)
 1.742857 1.742857 2.903379 >>>>>>>>>> @ 150 in WAIT_BARRIER (usertime-collector-monitor-mrnet.so:
collector.c,150)

These changes mean O|SS now has support in:
 Added idle, barrier, and wait_barrier blame support to all sampling

collectors.
 Improved naming (IDLE, BARRIER, WAIT_BARRIER) for sample call site.
 Support for building from LLVM OpenMP.
 Updated runtime codes to allow running OMPT with gnu/gomp binaries

(which means libiomp5 replaces libgomp since gomp does not support OMPT
directly).

Also, note that the OMPT aspect of OSS works with gcc or g++ generated OpenMP
code (and likely clang). No matter which compiler was used to generate the
OpenMP code, the Intel libiomp5.so runtime is used for its OMPT API.

With the current OMPT support, no distinctions are made specific to the idle time or
wait_barrier time subcategorization.

Looking at the code in question as found in kmp_runtime.c, __kmp_launch_thread
has a while loop, that sets the ompt state to ompt_state_idle, calls
__kmp_fork_barrier, and then sets the ompt state to a default value of
ompt_state_overhead. If __kmp_wait_sleep is called while ompt state is
ompt_state_idle, then the OMPT API considers the thread "idle". In that case, would
this "OMP_thread_idle" be considered "OMP_thread_fork_wait”?

The other case where __kmp_wait_sleep is entered, with an OMPT state of
ompt_state_wait_barrier, is when that OMPT state is managed by the __kmp_barrier
and code __kmp_join_barrier in kmp_runtime.c. The wait and join barrier are both
using ompt_state_wait_barrier as coded by the OMPT interface. That means those

 113

are combined in what O|SS reports for OMP_thread_wait_barrier in the pcsamp
example, actually WAIT_BARRIER.

9.2.2 O|SS OpenMP specific profiling experiment (omptp)

The second form is a separate OpenMP specific profiling experiment (omptp).

9.2.2.1 OpenMP Specific (omptp) experiment performance data gathering (ossomptp)

To run the OpenMP specific experiment, use the ossomptp convenience script,
placing how the application would normally be run in quotes:

export OMP_NUM_THREADS=4
ossomptp "mpirun -np 4 ./smg2000 -n 15 15 15"

9.2.2.2 Viewing OpenMP Specific (omptp) experiment performance data via GUI

TBD. The GUI does not currently support the omptp experiment outputs.

9.2.2.3 Viewing OpenMP Specific (omptp) experiment performance data via CLI

These three CLI examples show the most important ways to view OMPTP
experiment data. The default view shows the timing of the parallel regions, idle,
barrier, and wait barrier as an aggregate across all threads:

openss -cli -f ./matmult-omptp-0.openss
openss>>expview

Exclusive Inclusive % of Function (defining location)
 times in times in Total
 seconds. seconds. Exclusive
 CPU Time
44.638794 45.255843 93.499987 compute._omp_fn.1 (matmult: matmult.c,68)
 1.744841 1.775104 3.654726 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
 0.701720 0.701726 1.469817 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
 0.652438 0.652438 1.366591 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)
 0.004206 0.009359 0.008810 initialize._omp_fn.0 (matmult: matmult.c,32)
 0.000032 0.000032 0.000068 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)
 0.000000 0.000000 0.000001 WAIT_BARRIER (omptp-collector-monitor-mrnet.so:
collector.c,602

This example shows the comparison of exclusive time across all threads for the
parallel regions, idle, barrier, and wait barrier:

openss>>expcompare -mtime -t0:4

 -t 0, -t 2, -t 3, -t 4, Function (defining location)
Exclusive Exclusive Exclusive Exclusive
 times in times in times in times in

 114

 seconds. seconds. seconds. seconds.
11.313892 11.081346 11.313889 10.929668 compute._omp_fn.1 (matmult: matmult.c,68)
 0.443713 0.430553 0.429635 0.440940 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
 0.253632 0.213238 0.164875 0.069975 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
 0.001047 0.001100 0.001095 0.000964 initialize._omp_fn.0 (matmult: matmult.c,32)
 0.000008 0.000008 0.000006 0.000010 BARRIER (omptp-collector-monitor-mrnet.so:
collector.c,587)
 0.000000 0.000000 0.000000 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so:
collector.c,602)
 0.000000 0.247592 0.015956 0.388890 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)

This example shows the load balance of time across all threads for the parallel
regions, idle, barrier, and wait barrier:

openss>>expview -mloadbalance

 Max OpenMp Min OpenMp Average Function (defining location)
 Exclusive ThreadId Exclusive ThreadId Exclusive
Time Across of Max Time Across of Min Time Across
 OpenMp OpenMp
ThreadIds(s) ThreadIds(s) ThreadIds(s)

 11.313892 0 10.929668 4 11.159699 compute._omp_fn.1 (matmult: matmult.c,68)
 0.443713 0 0.429635 3 0.436210 compute_interchange._omp_fn.3 (matmult:
matmult.c,118)
 0.388890 4 0.015956 3 0.217479 IDLE (omptp-collector-monitor-mrnet.so:
collector.c,573)
 0.253632 0 0.069975 4 0.175430 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
 0.001100 2 0.000964 4 0.001052 initialize._omp_fn.0 (matmult: matmult.c,32)
 0.000010 4 0.000006 3 0.000008 BARRIER (omptp-collector-monitor-mrnet.so:
collector.c,587)
 0.000000 0 0.000000 0 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so:
collector.c,602)

9.3 Hybrid (OpenMP and MPI) Performance Analysis

For this tutorial example, we ran O|SS convenience script on the AMG2013 hybrid
program and created a database file that has eight ranks, each with four underlying
OpenMP threads.

This example is designed to show that users can first examine hybrid performance
at the MPI level, then go under the MPI rank to see how the threads are performing.
At the MPI level, users can see load balance and outliers, then focus on a rank and
look at load balance and outliers for the underlying threads. Within a terminal
window, enter:

openss -f amg2013-pcsamp-2.openss

to bring up the O|SS GUI.

The GUI view below displays the aggregated results for the application at statement-
level granularity. When the default view first comes up, it’s at function-level

 115

granularity. To switch to the statement level, select the Statements button in the
View/Display Choice section on the right-hand side of the Stats Panel display and
then click the “D” icon for default view. This will switch the Stats Panel view to
statement-level granularity.

The Stats Panel now displays statements that took the most time in the application
run. For this execution of AMG2013, the statement at line 97 of the OpenMP thread
idle wrapper took the most time. This means that the most time spent in this run
was a thread idle routine. This is expected because the ranks and number of threads
in this run were both oversubscribed. Double clicking on the statement focuses O|SS
on the source for that line of the application source and highlights that line.

In the view below, the ManageProcess panel tab is moved to the lower panel and the
upper panel is split using the vertical splitter icon on the far-right side of the original
upper panel.

Note: Left mouse down and hold on the panel tab then slide the panel to be moved
to another location on the O|SS GUI or off onto other parts of the display.

9.3.1 Focus on individual Rank to get Load Balance for Underlying Threads

The next view uses the ManageProcess panel to highlight one rank and an individual
thread within the rank to show only that thread’s performance data in the Stats
Panel view. The existing view is the default function view with data aggregated
across all ranks and threads for this run of the AMG2013 application.

Note: Use the “focus on threads and processes” Manage Process panel option to
focus on individual threads within a rank. Right mouse button down on the Manage

 116

Process panel tab to see the options.

The next GUI view used the ManageProcess panel to highlight one rank, showing the
performance data from all the threads executed under that particular rank in order
to see only that performance data in the Stats Panel view.

Note: Use the "focus on selected rank and underlying threads" Manage Process
panel option to focus on all the threads within a rank. Right mouse button down on
the Manage Process panel tab to see the options.

 117

9.3.2 Clearing Focus on individual Rank to get back to default behavior

Note: Once the user focuses on individual or groups of ranks, e.g. venturing away
from the default aggregated views, then the "CL" clear auxiliary setting icon is
needed to clear all the optional selections and return to examining the aggregated
results.

After clearing the specific rank and/or thread selections, clicking the "LB" load
balance icon displays the min, max, average values across all ranks in the hybrid
code. This helps decide if there is imbalance across ranks of the hybrid
application. The user can focus on individual ranks to see the balance across the
OpenMP threads that are in an individual rank:

 118

This uses the Manage Process panel "Focus on selected rank and underlying
threads" menu options to view the load balance across the four OpenMP threads for
the rank 0 process:

The next GUI view selects the CA icon, which activates a cluster analysis algorithm
on the performance data for the threads under rank 0. This view shows there are
two groups of threads that are performing differently. Thread 0 is in one group and
threads 3, 4, and 5 are in another group:

 119

Please explore the options offered via a panel's pull-down menu. To access the
options, click on a colored downward-facing arrow or use the Stats Panel icons. Red
icons represent view options, such as updating the data or clearing the view options.
The green icons correspond to possible performance data views. The dark blue
icons correspond to analysis options while the light blue icon corresponds to
information about the experiment. Hovering the cursor over the icons displays
context-sensitive text.

10 GPU Performance Analysis

10.1 NVIDIA CUDA Analysis Section

The O|SS version with CBTF collection mechanisms supports tracing CUDA events in a
NVIDIA CUDA based application. An event-by-event list of CUDA events and the event
arguments are gathered and displayed.

10.1.1 NVIDIA CUDA Tracing (cuda) experiment performance data gathering (osscuda)

To run the NVIDIA CUDA experiment, use the osscuda convenience script and specify
the CUDA application as an argument. Here is the general format of the osscuda
convenience script that is used to gather the NVIDIA CUDA performance information.

osscuda “how you run your application normally”

 120

In this example, the osscuda script will run the experiment by running the GEMM
application and will create an O|SS database file with the results of the experiment.
Viewing of the performance information can be done with the GUI or CLI. A default CLI
text based report is displayed at the end of the application run.

osscuda “mpirun -np 2 -ppn 1 -hosts ccn001,ccn002 ./GEMM”
[openss]: cuda counting all instructions for CPU and GPU.
[openss]: cuda using default periodic sampling rate (10 ms).
[openss]: cuda configuration: "interval=10000000,PAPI_TOT_INS,inst_executed"
Creating topology file for slurm frontend node ccn001 for SLURM_JOB_ID 131
Generated topology file: ./cbtfAutoTopology
Running cuda collector.
Program: mpirun -np 2 -ppn 1 -hosts ccn001,ccn002 ./GEMM
Number of mrnet backends: 2
Topology file used: ./cbtfAutoTopology
executing mpi program: mpirun -np 2 -ppn 1 -hosts ccn001,ccn002 cbtfrun --mpi --mrnet -c
cuda ./GEMM
MPI Task 0/1 starting....
MPI Task 1/1 starting....
Chose device: name='Tesla K40c' index=0
Running single precision test
Chose device: name='Tesla K40c' index=0
Running single precision test
Running double precision test
Running double precision test
test atts units median mean stddev min max
DGEMM-N(max) 128 GFlops 57.5899 57.5899 0.259358 57.3306 57.8493
DGEMM-N(mean) 128 GFlops 56.9609 56.9609 0.0587321 56.9022 57.0196
DGEMM-N(median) 128 GFlops 57.3772 57.3772 0.395575 56.9816 57.7728
DGEMM-N(min) 128 GFlops 54.036 54.036 1.59142 52.4445 55.6274
…
…
Extreme outliers (>3.0 IQR from 1st/3rd quartile):
None.
default view for ./GEMM-cuda-3.openss

[openss]: The restored experiment identifier is: -x 1
Performance data spans 0.452563 ms from 2016/11/09 22:35:07 to 2016/11/09 22:35:07

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count
 Exclusive
 Time
 9.861216 52.062327 200 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM:
GEMM.cpp,156)
 9.079958 47.937673 200 void RunTest<double>(std::string, ResultDatabase&, OptionParser&)
(GEMM: GEMM.cpp,156)

 121

10.1.2 NVIDIA CUDA Experiment Performance Data Viewing using the new GUI

The NVIDIA CUDA Desktop application, having the executable name “opens-gui”, allows
the user to explore CUDA event activity within in a timeline graph view and examine
detailed parametric data for each CUDA event shown in the timeline view.

To launch the new beta, CUDA focused, GUI on any experiment, use:

“openss-gui –f <database name>“

This is a different GUI than the existing O|SS GUI. It is being developed initially focused
on providing views for the NVIDIA CUDA experiment. Use openss-gui instead of openss
to invoke this GUI. NOTE: However, this GUI will also load other non-CUDA experiments
and if the collector type provides “time-based” metrics, such as “usertime”, then those
are displayed.

10.1.3 NVIDIA CUDA GUI Main Window User Interface Layout

The application user interface is laid out in a logical manner to present a comprehensive
view of the performance characteristics of an application. The main screen of the
application is divided into four sections (ref. ”Figure 1 – Main Window User Interface
Layout”):

 Experiment Panel

 Metric Plot View

 Metric Table View

 Source Code View

 122

Figure 1- Main WIndow User Interface Layout

The Experiment Panel is on the left-hand side of the main window. Inside the
Experiment Panel is the section labeled “Loaded Experiments” (ref. Figure 2). For the
experiment that is currently loaded, this section shows the name of the loaded
experiment (without the “.openss“ file extension) at the top level of a tree view
providing details regarding the application process, the CPU threads/ranks and GPU
device. For CUDA experiments this information is shown under the tree view level titled
“GPU Compute / Data Transfer Ratio”; otherwise this tree view level is titled “Thread
Groups”. Currently, only one experiment can be loaded at a time. If another
experiment is desired to be analyzed, then the user needs to unload the current
experiment from the application before loading another. Experiment loading and
unloading is accomplished using the menu items under the “File” menu. Each of the
parallel executions (processes, threads, ranks, GPUs) are listed by hostname. The GPU
device entry has “(GPU)” appended after the hostname. The checkbox to the left of the
hostname is used to select which “thread groups” will be included in the performance
views on the right-hand side of the main window (NOTE – currently all items are
included regardless of selection). Under the thread/rank/GPU items is another subtree
level enumerating which sample counters that were selected when the experiment was
executed.

Experiment Panel

Metric Plot View

Metric Table View

Source Code View

 123

Figure 2- "Experiment Panel"

The right-hand side of the main window has the three other sections. The upper section
is the Metric Plot View which provides a timeline in which the CUDA kernel executions
are shown with a green color and data transfers between the GPU device and the CPU
are shown with a red color. The length of the CUDA event in the timeline shows the
duration of the event from the actual start (not enqueue time) and the end time of the
event. The CUDA events are overlaid on top of a histogram showing the delta values as
the counter is sampled by the collector (NOTE: currently only the first sample counter in
the list can be viewed in the background histogram.) The CUDA event display provides
insight into the relative cost of the transfers versus the actual time spent executing in
the kernel.

The middle section on the right-hand side is the Metric Table View and is where the text
based performance information is displayed in a table view. The user can control what
type of information is displayed in the Metric Table View by using three different combo
boxes. The “Mode” combo-box selects either “Metric” or “Details” view mode.
Currently, the “Details” view mode only works for CUDA experiments and allows
detailed examination of the CUDA events, filtered by type - Kernel Executions, Data
Transfers or Both Kernel Executions and Data Transfers (All Events). The table view can
be ordered by clicking on a column header to toggle between ascending and descending
order using the selected column as the key for sorting. By default, the enqueue time
column is sorted in ascending order. For the “Metric” view mode, the user will be able
to view metric information, including: time, percentage, defining location, thread
minimum, thread maximum and thread average. The metric type shown is selected
using the “Metric” combo-box and the particular metric view can be changed with the

 124

“View” combo-box. The “Metric” combo-box are metrics that can be selected in the
OSS CLI using the “-m” option; whereas the “View” combo-box are views selectable in
the OSS CLU using the “-v” option. For the “Metric” view the time interval for metric
computations depends on the visible range of the graph timeline and for the “Detail”
mode the same time interval is used to filter which CUDA events are shown in the table.
As the user changes the graph timeline by zooming into the graph or panning the
timeline left or right the Metric Table View is dynamically updated. There is a delay
threshold between the time the user pauses or completes timeline changes and the
actual kickoff of the processing involved for the Metric Plot or Metric Table View
updates.

The lower section on the right-hand side is the Source Code View. When the user has
activated the “Metric” mode of the Metric Table View, any selections of a row in the
table cause the display the corresponding line of the source code in the Source Code
View. Updates to the Source Code View is possible in either the “Functions”,
“Statements” or “Loops” metric view (but not the “Linked Objects” metric view) as long
as the source code is available on the host machine. If the source code is not in the
same location as when the executable was compiled, then the user can specify the
mapping between the original development machine location and the location of the
host machine processing the experiment database (running the opens-gui application).
The dialog in which the mappings can be specified is by activating a context menu. The
context menu is activated by holding down the right-mouse button when the cursor is
over the table row of interest. When the context menu appears near the location of the
cursor, the user must select the “Modify Path Substitutions” menu item to activate the
“Modify Path Substitutions Dialog” (ref “Figure 3 - Modify Path Substitutions Dialog”) .
The “Modify Path Substitutions Dialog” shows a table with two columns – the left
column are the original paths to the source code and the right column are the paths on
the local host machine. When the dialog is activated a new entry in the table is created
with the left column, “Original Path”, filled in from the information in the metric data.
The user then types in the absolute path on the local host machine to the corresponding
source code.

 125

Figure 3 - Modify Path Substitutions Dialog

10.1.4 Using the NVIDIA CUDA GUI to Analyze Application Performance

In order to demonstrate how the new GUI can be used to view CPU and GPU activity
within an application and generate summary metric results and detailed CUDA event
lists two different examples will be discussed.

To launch the new GUI using the GEMM experiment discussed in the previous section,
use:

openss-gui –f GEMM-cuda-0.openss

The default view for the new GUI using the GEMM experiment discussed previously can
be seen in Figure 4. As seen here the main window configuration was changed by the
user to completely close the “Experiment Panel” normally visible on the left-hand side
of the main window so that the right-hand panels take the full width of the main
window. This is accomplished by using the “handles” in the border area between two
panels (ref. the annotation in Figure 4 and Figure 5 for a zoomed in view of the splitter
handle between the Metric Plot and Metric Table Views).

Pre-populated in accordance with
the item selected in the Metric
Table View when this dialog is
activated. This represents the

original location of the particular
source-code file when the

application was built.

This is initially blank and
the user enters the path of
the corresponding source-
code file on the local host

machine.

 126

Figure 4- Default View for the GEMM Experiment

Figure 5- Zoomed View of Panel Splitter Handles

For the screenshot shown in Figure 6 one can see the CUDA events in the graph timeline. The CUDA
events are currently placed on the CPU graph of the CPU + GPU graph view. The current thought process
for placing them on the CPU graph is so that it does not obstruct the GPU sample counter histogram and
the user can clearly see the magnitude of each histogram bar as there should be a direct relationship with
CUDA event activity. As dicussed previously the red pastel colored rectangle corresponds to a Data
Transfer event and the green pastel colored rectangle to a Kernel Execution event. Thus, in the graph
above there are two Data Transfer events, followed by 5 Kernel Execution events, followed by one Data
Transfer event (see annotations on screenshot). There is another annotation from the “Time Begin (ms)”
value of the first Kernel Execution to the position of the left-edge of the Kernel Execution event rectangle
on the graph timeline. The “Time End (ms)” value will be the position on the graph timeline for the right

Panel splitter “handle” locations

 127

edge of the Kernel Execution event rectangle. This screenshot represents the “Details – All Events” view
in the area below the Metric Plot View. The additional two screenshots show the “Details – Data
Transfers” and “Details – Kernel Executions” views that just contain CUDA Data Transfer or CUDA Kernel
Execution events respectively (ref. Figures 7 and 8).

Figure 6 - CUDA Events in Graph Timeline and Details Mode View

For the Data Transfer and Kernel Execution Details views many more columns are
displayed showing all the available event information. For the All Events Details view
only the common set of event information is shown.

As discussed previously the metric values displayed in the “Metric” mode or the events
listed in the various “Details” mode views use the visible time range in the graph
timeline as input to the metric computations or filtering logic for which CUDA events to
show.

1 Data Transfer
Event

5 Kernel
Execution

Events

2 Data Transfer
Events

 128

Figure 7- Data Transfer Details View

Figure 8- Kernel Execution Details View

 129

Let’s show another CUDA experiment starting with the performance data collection by
running the “osscuda” convenience script on an example CUDA program which executes
various implementations of matrix multiplication to demonstrate performance
differences using various performance optimization techniques, including:

1. Tiling

2. Memory coalescing

3. Avoiding memory bank conflicts

4. Increase floating portion by outer product.

5. Loop unrolling

6. Prefetching

A discussion of the matrix multiplication problem, the various performance optimization
techniques used in the application and source-code can be found at
https://sites.google.com/site/5kk70gpu/matrixmul-example.

$ osscuda "./matrixmul"
[openss]: cuda counting all instructions for CPU and GPU.
[openss]: cuda using default periodic sampling rate (10 ms).
[openss]: cuda configuration: "interval=10000000,PAPI_TOT_INS,inst_executed"
Creating topology file for frontend host eluv
Generated topology file: ./cbtfAutoTopology
Running cuda collector.
Program: ./matrixmul
Number of mrnet backends: 1
Topology file used: ./cbtfAutoTopology
executing sequential program: cbtfrun -c cuda --mrnet ./matrixmul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GTX 1060" with compute capability 6.1

[CUDA 5632:0] CUPTI_metrics_start(): The selected CUDA device doesn't support continuous GPU event
sampling. GPU events will be sampled at CUDA kernel entry and exit only (not peridiocally). This also
implies CUDA kernel execution will be serialized, possibly exhibiting different temporal behavior than
when executed without performance monitoring.
Naive CPU (Golden Reference)
Processing time: 279.404175 (ms), GFLOPS: 0.360278
threads: x=16 y=16
grid: x=24 y=16
Naive GPU
Processing time: 1.555232 (ms), GFLOPS: 64.725580
Total Errors = 0
Tiling GPU
Processing time: 0.944896 (ms), GFLOPS: 106.533736
Total Errors = 0
Global mem coalescing GPU
Processing time: 1.168640 (ms), GFLOPS: 86.137128
Total Errors = 0

https://sites.google.com/site/5kk70gpu/matrixmul-example

 130

Remove shared mem bank conflict GPU
Processing time: 0.853728 (ms), GFLOPS: 117.910264
Total Errors = 0
Threads perform computation optimization GPU
Processing time: 0.825312 (ms), GFLOPS: 121.969984
Total Errors = 0
Loop unrolling GPU
Processing time: 0.862624 (ms), GFLOPS: 116.694296
Total Errors = 0
Prefetching GPU
Processing time: 1.037664 (ms), GFLOPS: 97.009520
Total Errors = 0
default view for /home/gschultz/Downloads/exercises/cuda/matrixMul/matrixmul-cuda-3.openss
[openss]: The restored experiment identifier is: -x 1
Performance data spans 0.461198 ms from 2017/02/16 23:26:30 to 2017/02/16 23:26:31

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count
 Exclusive
 Time
 0.605867 32.275192 1 matrixMul_coalescing(float*, float*, float*, int, int) (matrixmul:
matrixMul_coalescing.cuh,31)
 0.496201 26.433165 1 matrixMul_naive(float*, float*, float*, int, int) (matrixmul:
matrixMul_naive.cuh,17)
 0.257925 13.739944 1 matrixMul_tiling(float*, float*, float*, int, int) (matrixmul:
matrixMul_tiling.cuh,31)
 0.211493 11.266461 1 matrixMul_noBankConflict(float*, float*, float*, int, int) (matrixmul:
matrixMul_noBankConflict.cuh,32)
 0.108675 5.789235 1 matrixMul_prefetch(float*, float*, float*, int, int) (matrixmul:
matrixMul_prefetch.cuh,31)
 0.107011 5.700592 1 matrixMul_compOpt(float*, float*, float*, int, int) (matrixmul:
matrixMul_compOpt.cuh,31)
 0.090019 4.795410 1 matrixMul_unroll(float*, float*, float*, int, int) (matrixmul:
matrixMul_unroll.cuh,32)

Upon completion of the CUDA experiment the O|SS experiment database can be
located. For this run it is in the file “matrixmul-cuda-3.openss”. First let’s open the
experiment in the O|SS CLI:

opens -cli -f matrixmul-cuda-3.openss

Once the CLI has loaded the experiment the following series of commands are
generated to produce metric data:

expview -vexec -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104
expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104
expview -vexec -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981

 131

expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Kernel Kernel Time

 Execution Execution (ms)

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.605867 0.605867 0.605867 0.605867 matrixMul_coalescing(float*, float*,

float*, int, int) (matrixmul: matrixMul_coalescing.cuh,31)

 0.496201 0.496201 0.496201 0.496201 matrixMul_naive(float*, float*, float*,

int, int) (matrixmul: matrixMul_naive.cuh,17)

 0.257925 0.257925 0.257925 0.257925 matrixMul_tiling(float*, float*, float*,

int, int) (matrixmul: matrixMul_tiling.cuh,31)

 0.211493 0.211493 0.211493 0.211493 matrixMul_noBankConflict(float*, float*,

float*, int, int) (matrixmul: matrixMul_noBankConflict.cuh,32)

 0.108675 0.108675 0.108675 0.108675 matrixMul_prefetch(float*, float*,

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31)

 0.107011 0.107011 0.107011 0.107011 matrixMul_compOpt(float*, float*, float*,

int, int) (matrixmul: matrixMul_compOpt.cuh,31)

 0.090019 0.090019 0.090019 0.090019 matrixMul_unroll(float*, float*, float*,

int, int) (matrixmul: matrixMul_unroll.cuh,32)

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Data Data Time

 Transfer Transfer (ms)

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.973283 0.973283 0.973283 0.046347 runTest(int, char**) (matrixmul:

matrixMul.cu,163)

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Kernel Kernel Time

 Execution Execution (ms)

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.108675 0.108675 0.108675 0.108675 matrixMul_prefetch(float*, float*,

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31)

 0.090019 0.090019 0.090019 0.090019 matrixMul_unroll(float*, float*, float*,

int, int) (matrixmul: matrixMul_unroll.cuh,32)

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Data Data Time

 Transfer Transfer (ms)

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.287658 0.287658 0.287658 0.047943 runTest(int, char**) (matrixmul:

matrixMul.cu,163)

Now let’s launch the new GUI automatically loading the same experiment database:

openss-gui –f matrixmul-cuda-3.openss

 132

Here are a series of screenshots demonstrating that the same performance metric
results are obtained in the new GUI:

Figure 9- “expview -vexec -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104”

 133

Figure 10- "expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104"

Figure 11- "expview -vexec -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981"

 134

Figure 12- "expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981"

Each screenshot caption indicates the corresponding “expview” command in the O|SS
CLI.

These screenshots demonstrate that the user can alter the column ordering by holding
the left-mouse button when the mouse cursor is over one of the columns and moving it
into a new position. The columns were re-ordered to match the ordering of the CLI
views.

10.1.5 Viewing NVIDIA CUDA Tracing (cuda) experiment performance data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.

The O|SS CLI will report NVIDIA CUDA kernel execution, NVIDIA CUDA data transfer
and CPU/GPU hardware performance counter data the “cuda” collector gathers.

The type of data displayed can be controlled through the '-v' options:

 Exec CUDA kernel executions (this is the default)
 Xfer CUDA data transfers

 135

 HWPC CPU/GPU hardware performance counters

The form of the displayed information is controlled thru additional '-v' options.
For '-v Exec' and '-v Xfer' these additional '-v' options are:

 ButterFly Produces a report summarizing the calls to
 and from the one or more functions specified
 by the '-f <function_list>' option. By default, calling
 functions will be listed before the named
 function and called functions afterwards,
 unless 'TraceBacks' is specified
 to reverse this order.

 CallTree[s] Produces a calling stack report presented
 in calling tree order, from the executable's
 start toward the measurement locations.

 (DSO|LinkedObject)[s] Produces a summary report by linked object.

 FullStack[s] Causes the report to include the full call
 stack for each measurement location when
 added to either 'CallTree' or 'TraceBack'.
 Redundant call stack frames are suppressed
 by default if this option isn't specified.

 Function[s] Produces a summary report by function.
 This is the default.

 Loop[s] Produces a summary report by loop.

 Statement[s] Produces a summary report by statement.

 Summary Causes the report to include an additional
 line of output at the end that summarizes
 the information in each column. Does not
 apply to 'ButterFly' or 'Trace'.

 SummaryOnly Causes the report to ONLY include the line
 of output generated by 'Summary'.

 Trace Produces a report of each individual CUDA
 kernel execution or data transfer, sorted in
 ascending order of the event's start time.

 TraceBack[s] Produces a calling stack report presented
 in traceback order, from the measurement

 136

 locations toward the executable's start.

Except for the '-v Trace' option, the report will be sorted in descending order of
values in the leftmost column. Multiple '-v' values can be delimited with commas,
e.g. '-v Exec,Trace'.

Finally, columns included in the report can be controlled using the ‘-m' option. More
than one column may be specified in a comma-delimited list. And when '-m' is used,
ONLY those columns specified are reported, in the order given.

The following '-m' options are available for '-v [Exec|Xfer]':

 [%][exclusive_]count[s] Exclusive number of events
 [%]inclusive_count[s] Inclusive number of events
 [%][exclusive_]time[s] Exclusive time in the event
 [%]inclusive_time[s] Inclusive time in the event
 min[imum] Minimum time in the event
 max[imum] Maximum time in the event
 avg|average Average time in the event
 stddev Standard deviation of time in the event

 ThreadMin Minimum accumulated time for a process
 ThreadMinIndex Process ID of the 'ThreadMin' process
 ThreadMax Maximum accumulated time for a process
 ThreadMaxIndex Process ID of the 'ThreadMax process'
 ThreadAverage Average accumulated time for a process

 LoadBalance Equivalent to 'ThreadMax, ThreadMaxIndex,
 ThreadMin, ThreadMinIndex, ThreadAverage'.

The following '-m' options are only available for '-v [Exec|Xfer],Trace':

 (start|stop)[_time] Start or stop time for the event

The following '-m' options are only available for '-v Exec,Trace':

 block Dimensions of each block
 cache Cache preference used
 dsm Total amount (in bytes) of dynamic shared memory reserved
 grid Dimensions of the grid
 lm Total amount (in bytes) of local memory reserved
 rpt Registers required for each thread
 ssm Total amount (in bytes) of static shared reserved

The following '-m' options are only available for '-v Xfer,Trace':

 137

 size Number of bytes being transferred
 kind Kind of data transfer performed
 src Kind of memory from which the data transfer was performed
 dest Kind of memory to which the data transfer was performed
 async Was the data transfer asynchronous?

The default columns used for various '-v' combinations are:

 -v Exec,Trace -m start,time,%time,grid,block
 -v Xfer,Trace -m start,time,%time,size,kind
 -v (Exec|Xfer),Butterfly -m inclusive_time,%inclusive_time
 -v (Exec|Xfer)[,<all-other>] -m time,%time,count

The '-v HWPC' view works differently: It only displays the sampled CPU/GPU
hardware performance counters as a function of time; i.e. it does not display data as
a function of source-code constructs. Thus, only the '-v Summary' and '-v
SummaryOnly' options apply.

It also interprets differently the positive integer added to the end of the keyword
'cuda'. Instead of identifying the maximum number of reported items, it specifies the
fixed sampling interval (in ms) at which the data should be resampled before
display. The default value (0) is given the special meaning that the original sampling
interval should be used instead.

Examples:

 expView cuda
 expView -v Xfer,Fullstack cuda10 -m min,max,count
 expView -v HWPC,Summary cuda33

See also:

 expView

Here are some CLI views of the output from the osscuda experiment. These views
show results of a cuda experiment on the NVIDIA CUDA application GEMM on the
Pleiades SGI platform at NASA:

pfe27-433>openss -cli -f GEMM-cuda-4.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count
 Exclusive
 Time
14.810702 52.042113 300 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
13.648369 47.957887 300 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
openss>>expstatus

 138

Experiment definition
{ # ExpId is 1, Status is Terminated, Saved database is GEMM-cuda-4.openss
 Performance data spans 0.443760 ms from 2016/08/24 10:01:03 to 2016/08/24 10:01:03
(none)
 Executables Involved:
 (none)
 Currently Specified Components:
 -h maia29 -p 43727 -t 0 -r 0
 -h maia30 -p 27136 -t 0 -r 1
 -h maia31 -p 80595 -t 0 -r 2
 Previously Used Data Collectors:
 cuda
 Metrics:
 cuda::count_exclusive_details
 cuda::exec_exclusive_details
 cuda::exec_inclusive_details
 cuda::exec_time
 cuda::xfer_exclusive_details
 cuda::xfer_inclusive_details
 cuda::xfer_time
 Parameter Values:
 Available Views:
 cuda
}

openss>>expview -vExec

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count
 Exclusive
 Time
14.810702 52.042113 300 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM:
GEMM.cpp,19)
13.648369 47.957887 300 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM:
GEMM.cpp,19)
openss>>expview -vXfer

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count
 Exclusive
 Time
 1.774178 75.232917 69 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM:
GEMM.cpp,19)
 0.584069 24.767083 69 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM:
GEMM.cpp,19)
openss>>expview -v trace, Xfer
 Start Time (d:h:m:s) Exclusive % of Size Kind Call Stack Function (defining location)
 Time (ms) Total
 Exclusive
 Time
2016/08/24 10:01:03.845 0.001217 0.051606 112 HostToDevice >>void RunTest<float>(std::string,
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.850 0.027392 1.161541 262144 HostToDevice >>void RunTest<float>(std::string,
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.850 0.027553 1.168368 262144 HostToDevice >>void RunTest<float>(std::string,
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.001217 0.051606 112 HostToDevice >>void RunTest<float>(std::string,
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.027425 1.162940 262144 DeviceToHost >>void RunTest<float>(std::string,
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.852 0.026721 1.133087 262144 DeviceToHost >>void RunTest<float>(std::string,
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.852 0.026753 1.134444 262144 DeviceToHost >>void RunTest<float>(std::string,
ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
……

 139

openss>>expview -v trace,Exec

 Start Time (d:h:m:s) Exclusive % of Grid Block Call Stack Function (defining location)
 Time (ms) Total Dims Dims
 Exclusive
 Time
2016/08/24 10:01:03.851 0.055585 0.195316 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.048705 0.171141 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.049761 0.174851 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.051617 0.181373 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.051648 0.181482 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.050817 0.178562 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.046496 0.163378 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.048193 0.169341 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.852 0.049633 0.174401 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&,
OptionParser&) (GEMM: GEMM.cpp,19)
….
openss>>expview -vfullstack

Exclusive % of Exclusive Call Stack Function (defining location)
Time (ms) Total Count
 Exclusive
 Time
 main (GEMM: main.cpp,135)
 > @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
11.818358 41.527561 240 >> @ 240 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&)
(GEMM: GEMM.cpp,19)
 main (GEMM: main.cpp,135)
 > @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
10.894840 38.282486 240 >> @ 240 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&)
(GEMM: GEMM.cpp,19)
 main (GEMM: main.cpp,135)
 > @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
 2.992344 10.514553 60 >> @ 231 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM:
GEMM.cpp,19)
 main (GEMM: main.cpp,135)
 > @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
 2.753529 9.675400 60 >> @ 231 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&)
(GEMM: GEMM.cpp,19)

 140

11 Memory Analysis Techniques

This O|SS version supports tracing memory allocation and deallocation function
calls in user applications. This capability includes:

 Timeline of events that set a new high-water mark.
 List of event allocations (with calling context) to leaks.
 Overview of all unique callpaths to traced memory calls, providing max and

min allocation and count of calls on this path.

The mem experiment supports sequential, MPI and threaded applications. No in-
application instrumentation is needed. The mem experiment traces the following
system calls:

 malloc
 calloc
 realloc
 free
 memalign
 posix_memalign

11.1 Memory Analysis Tracing (mem) experiment performance data
gathering (ossmem)
To run the memory analysis experiment, use the ossmem convenience script and
specify the application as an argument. No quotes are necessary if there are no
arguments to the application, but they are placed here for consistency. In this
example using the sweep3d application, the ossmem script will apply the memory
analysis experiment by running the application with the O|SS memory trace
collector, gathering the data and creating an O|SS database file containing
experiment results. The performance information can be viewed via GUI or CLI.

Sequential example:
ossmem "./lulesh2.0”
MPI example:
ossmem “mpirun –np 64 ./sweep3d.mpi”

For example, here is a memory experiment run for the matmul application:

$ ossmem ./matmul
[openss]: mem using default experiment trace function list.
Creating topology file for frontend host localhost
Generated topology file: ./cbtfAutoTopology
Running mem collector.
Program: ./matmul
Number of mrnet backends: 1
Topology file used: ./cbtfAutoTopology
executing sequential program: cbtfrun -c mem --mrnet --openmp ./matmul
Main...
Do work...
Allocate matrix...
Allocate matrix...
Allocate matrix...

 141

Initialize...
Initialize...
Initialize...
Compute...
Compute interchange...
Compute triangular...
Done.
All Threads are finished.
default view for /home/fred/sc16/exercises/matmul/matmul-mem-0.openss
[openss]: The restored experiment identifier is: -x 1
Performance data spans 19.928560 seconds from 2017/01/06 08:51:31 to 2017/01/06 08:51:50

Exclusive % of Number Min Min Max Max Total Function (defining
location)
 (ms) Total of Request Requested Request Requested Bytes
 Time Calls Count Bytes Count Bytes Requested

 0.013286 81.830500 1546 1 192 6 4096 6320832 __GI___libc_malloc (libc-2.17.so)
 0.002144 13.205223 5 __GI___libc_free (libc-2.17.so)
 0.000469 2.888643 7 1 368 1 368 2576 __calloc (libc-2.17.so)
 0.000337 2.075634 1 1 72 1 72 72 __realloc (libc-2.17.so)

11.2 Viewing Memory Analysis Tracing (mem) experiment performance
data via CLI

To launch the CLI on any experiment, use “openss –cli –f <database name>“.
This table describes fields in the memory experiment default CLI view:

Column Name Column Definition

Exclusive Mem Call Time Aggregated total exclusive time spent in the memory function corresponding to this

row of data.

% of Total Time Percentage of exclusive time relative to the total time spent in the memory function

corresponding to this row of data.

Number of Calls Total number of calls to the memory function corresponding to this row of data.

Min Request Count The number of times minimum bytes allocated or freed occurred during this

experiment.

Min Requested Bytes The minimum number of bytes that were allocated or freed by the corresponding

memory function.

Max Request Count The number of times maximum bytes allocated or freed occurred during this

experiment.

Max Requested Bytes The maximum number of bytes that were allocated or freed by the corresponding

memory function.

Total Requested Bytes The total number of bytes allocated by the corresponding function. Note: this does not

subtract the bytes freed. This only totals the allocation function requested bytes.

Important command line interface (CLI) views are:

 expview -vunique

 142

o Show times, call counts per path, min/max bytes allocation, total
allocation to all unique paths to memory calls that the mem
collector saw.

 expview -vleaked
o Show function view of allocations that were not released while the

mem collector was active.
 expview -vtrace,leaked

o Will show a timeline of any allocation calls that were not released.
 expview -vfullstack,leaked

o Display a full callpath to each unique leaked allocation.
 expview -v trace,highwater

o Is a timeline of mem calls that set a new high-water mark.
o The last entry is the allocation call that set the high-water mark for

the complete run.
o Investigate the last calls in the timeline and look at allocations that

have the largest allocation size (size1,size2,etc) if your application
is consuming lots of system RAM.

Here is a default view of the output from the ossmem experiment run of matmul
on a small cluster. This shows the last eight allocation events that set the high-
water mark:

openss>>expview -vtrace,highwater
 Start Time(d:h:m:s) Event Size Size Ptr Return Value New Call Stack Function (defining location)
 Ids Arg1 Arg2 Arg Highwater
*** trimmed all but the last 8 events of 61 ****
2016/11/10 09:56:50.824 11877:0 2080 0 0x7760e0 19758988 >>>>>>>__GI___libc_malloc (libc-2.18.so)
2016/11/10 09:56:50.826 11877:0 1728000 0 0x11783d0 21484908 >>>>__GI___libc_malloc (libc-2.18.so)
2016/11/10 09:56:50.827 11877:0 1728000 0 0x131e1e0 23212908 >>>>__GI___libc_malloc (libc-2.18.so)
2016/11/10 09:56:50.827 11877:0 1728000 0 0x14c3ff0 24940908 >>>>__GI___libc_malloc (libc-2.18.so)
2016/11/10 09:56:50.827 11877:0 2080 0 0x776a90 24942988 >>>>>>>__GI___libc_malloc (libc-2.18.so)
2016/11/10 09:56:50.919 11877:0 1728000 0 0x1654030 25286604 >>>>__GI___libc_malloc (libc-2.18.so)
2016/11/10 09:56:50.919 11877:0 1728000 0 0x17f9e40 27014604 >>>>__GI___libc_malloc (libc-2.18.so)
2016/11/10 09:56:50.919 11877:0 2080 0 0xabc6a0 27016684 >>>>>>>__GI___libc_malloc (libc-2.18.so)

Below is the default view of all unique memory calls seen while the mem collector
was active. This is an overview of the memory activity. The default display is
aggregated across all processes and threads. Users can view specific processes or
threads.

For all memory calls the following are displayed:

 The exclusive time and percent of exclusive time.
 The number of times this memory function was called.
 The traced memory function name.

For allocation calls (e.g. malloc) the following are displayed:

 The maximum and minimum allocation size seen.

 143

 The number of times that maximum or minimum was seen.
 The total size of all allocations.

openss>>expview -vunique
Exclusive % of Number Min Min Max Max Total Function (defining location)
 (ms) Total of Request Requested Request Requested Bytes
 Time Calls Count Bytes Count Bytes Requested

 0.024847 89.028629 1546 1 192 6 4096 6316416 __GI___libc_malloc (libc-2.18.so)
 0.002371 8.495467 5 __GI___libc_free (libc-2.18.so)
 0.000369 1.322154 1 1 40 1 40 40 __realloc (libc-2.18.so)
 0.000322 1.153750 3 1 368 1 368 1104 __calloc (libc-2.18.so)

NOTE: Number of Calls means the number of unique paths to the memory function
call. To see the paths, use the CLI command: expview –vunique,fullstack

In this example, the sequential OpenMP version of lulesh was run under ossmem.
The initial run detected 69 potential memory leaks. Examining the calltrees using
the cli command "expview -vfullstack,leaked -mtot_bytes" revealed that allocations
from the Domain::Domain constructor were not later released in the
Domain::~Domain destructor. Adding appropriate deletes in the destructor and
rerunning ossmem found leaks detected in the Domain class were resolved. The
remaining leaks were minor and from system libraries.

To see the improvements, use the exprestore command to load the initial database
and the second-run database, then use the expcompare cli command.

Below, database -x1 shows the initial run and -x2 shows results from the run with
changes to address leaks detected in the Domain class:

openss>>exprestore -f lulesh-mem-initial.openss
openss>>exprestore -f lulesh-mem-improved.openss
openss>>expcompare -vleaked -mtot_bytes -mcalls -x1 -x2

 -x 1, -x 1, -x 2, -x 2, Function (defining location)
 Total Number Total Number
 Bytes of Bytes of
Requested Calls Requested Calls
10599396 69 3332 8 __GI___libc_malloc (libc-2.17.so)
 72 1 72 1 __realloc (libc-2.17.so)

11.3 Viewing Memory Analysis Tracing (mem) experiment performance
data via GUI

 144

To launch the GUI on any experiment, use “openss –f <database name>“.

The first GUI display shown below is the default view for the mem experiment. It
shows the memory functions that were called in the application, how many times
they were called, the time spent in each and the percentage of the overall memory
function time spent in each of the memory functions. This table identifies what each
column represents in the default GUI view for the mem experiment:

Column Name Column Definition

Exclusive Mem Call Time Aggregated total exclusive time spent in the memory function corresponding to this

row of data.

% of Total Time Percentage of exclusive time relative to the total time spent in the memory function

corresponding to this row of data.

Number of Calls Total number of calls to the memory function corresponding to this row of data.

Min Request Count The number of times minimum bytes allocated or freed occurred during this

experiment.

Min Requested Bytes The minimum number of bytes that were allocated or freed by the corresponding

memory function.

Max Request Count The number of times maximum bytes allocated or freed occurred during this

experiment.

Max Requested Bytes The maximum number of bytes that were allocated or freed by the corresponding

memory function.

Total Requested Bytes The total number of bytes allocated by the corresponding function. Note: this does not

subtract the bytes freed. This only totals the allocation function-requested bytes.

The paths to each memory function call, through the source, are available through
the call path views. This is the high-water memory experiment GUI view for the
matmul application:

 145

There are other GUI views based on the high-water mark, Unique call paths and
Leaked memory. The CLI will show the same information.

Here is the trace of the memory calls that changed the high-water value as the
application executed.

The view below shows the memory leaks that occurred while running amg2013.
The minimum and maximum leaks are tracked in the graphical view.

 146

Views mentioned above are accessed through the openss-gui –f <database name>
command.

12 Advanced Analysis Techniques

Analyzing the results of a single performance experiment can be useful for
debugging and tuning a code, but comparing results of different experiments can
show users how an application’s performance has changed. This is useful for
tracking how performance varies with each version of an application or for
understanding how a different compiler or compiler options affect an application’s
performance. This also lets users perform scalability tests to see how their
application’s performance scales with the number of processors. It’s also helpful
just to see the progress made while tuning a code.

O|SS has options that let users compare performance data. Use the Custom Compare
Panel (CC icon) in the GUI or the osscompare convenience script:

> osscompare “db1.openss, db2.openss,…” [options]

This will produce side-by-side comparison listings of up to eight databases at once.
See the osscompare man page for more details. Here is an example comparing two
pcsamp experiments on the smg2000 application:

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp­1.openss”

[openss]: Legend: ­c 2 represents smg2000­pcsamp.openss

 147

[openss]: Legend: -c 4 represents smg2000-­­pcsamp-­­1.openss
­c 2, Exclusive CPU ­c 4, Exclusive CPU Function (defining location)
time in seconds. time in seconds.
 3.870000000 3.630000000 hypre_SMGResidual (smg2000:smg_residual.c,152)
 2.610000000 2.860000000 hypre_CyclicReduction (smg2000:cyclic_reduc;on.c,757)
 2.030000000 0.150000000 opal_progress (libopen­pal.so.0.0.0)
 1.330000000 0.100000000 mca_btl_sm_component_progress (libmpi.so.0.0.2)
 0.280000000 0.210000000 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.280000000 0.040000000 mca_pml_ob1_progress (libmpi.so.0.0.2)

12.1 Comparison Script Argument Description

The O|SS comparison script accepts a number of arguments. This section describes
acceptable options for those arguments. For a quick overview, see 14.4 osscompare:
Compare Database Files. As described above, the osscompare script accepts at least
two and up to eight comma-separated database file names, enclosed in quotes as the
mandatory argument. By default, the compared metric is the primary one the
experiment produced. For most experiments, this is exclusive time, but hardware
counter experiments use the number of hardware counter overflows. These are the
default or mandatory arguments to osscompare. The following sections describe
arguments for osscompare in more detail.

12.1.1 osscompare metric argument

The osscompare metric argument specifies the type of performance information
O|SS will use to compare against when examining each database file in the compare
database file list. To find the legal metric specifications and produce comparison
outputs, open one of the database files with the O|SS command line interface (CLI)
and list the available metrics:

openss -cli -f smg2000-pcsamp.openss
 openss>>list -v metrics
 pcsamp::percent
 pcsamp::threadAverage
 pcsamp::threadMax
 pcsamp::threadMin
 pcsamp::time

Use the output of the list metrics command as an argument to the osscompare
command as shown in these examples:

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss"
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" percent
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" threadMin
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" threadMax

There are exceptions. For example, some experiments such as usertime and
hwctime have “details”-type metrics output by the list metrics CLI command (list –v
metrics). These will not work as a metric argument to osscompare.

 148

For the hwc and hwctime hardware counter experiments, use the actual PAPI event
name in addition to the metric names output from the list metric command. This
example database file was generated using the PAPI_TOT_CYC event:

openss -cli -f smg2000-hwc.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>list -v metrics
hwc::overflows
hwc::percent
hwc::threadAverage
hwc::threadMax
hwc::threadMin

Here are a couple of osscompare examples where “hwc::overflows” can be used
interchangeably with PAPI_TOT_CYC:

osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows
osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" PAPI_TOT_CYC

Note: For compares involving hwcsamp metric-based databases, use the “allEvents”
metric in the osscompare command to compare all of the existing hardware
counters from each experiment. That will compare all events in each of the
databases and will ignore the program counter sampling data from each of the
databases. The form of the osscompare command to compare all the hardware
counter events is:

osscompare "smg2000-hwcsamp.openss,smg2000-hwcsamp-1.openss" allEvents

12.1.2 osscompare rows of output argument

The osscompare command allows the user to specify how many lines of the
comparison output to generate. The argument is optional
"rows=nn" is defined as follows:
 "nn" - Number of rows/lines of performance data output.

In this next example, only ten (10) lines of comparison will be shown when the
osscompare command is executed. It will be the most interesting, or top, ten lines:

osscompare "smg2000-hwc.openss,smg2000-hwc-1.openss" hwc::overflows rows=10

12.1.3 osscompare output name argument.

The osscompare command allows the user to specify the name to be used when
writing out the comparison output files. The argument is optional.
"oname=<output file name>" is defined as follows:
 "output file name" - Name given to the output files created for the comparison.

 149

This argument is valid when the environment variable OPENSS_CREATE_CSV is set
to 1. In this example, the comparison files created when the osscompare command
is executed will be named smg_hwc_cmp.csv and/or smg_hwc_cmp.txt:

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" oname=mar2015_pcsamp_cmp

This example will generate comparison files named using the particular oname
specification:

8 -rw-rw-r--. 1 fred fred 4475 Mar 11 15:53 mar2015_pcsamp_cmp.compare.csv
8 -rw-rw-r--. 1 fred fred 4841 Mar 11 15:53 mar2015_pcsamp_cmp.compare.txt

12.1.4 osscompare view type or granularity argument.

The osscompare command allows an optional view type argument representing the
granularity. O|SS allows for viewing performance data at three levels: linked object,
function and statement. The osscompare command will produce output at one of
those levels based on the view type argument where:
"viewtype=<functions | statements | linkedobjects >" is defined as follows:

"functions" - View type granularity is per function
"statements" - View type granularity is per statement
"linkedobjects" - View type granularity is per library (linked object)

The following example will produce a side-by-side comparison for the statement
level, not the default function level. So, this example will compare statement
performance values in each of the two databases and produce a side-by-side
comparison showing how each statement in the application differed from the two
experiments:

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss" viewtype=statements

13 O|SS User Interfaces

The O|SS (O|SS) GUI has been used throughout this manual and users are
encouraged play with the interface to become familiar with it. The GUI lets users
peel off and rearrange any panel. There also are context-sensitive menus, letting
users right-click on any location to access a different view or activate additional
panels.

For users who prefer not to employ the GUI, there are three other options with
equal functionality. First there is the command line interface that has been
illustrated throughout this manual. It is launched with the –cli option:

> openss -cli

There also is the immediate command (batch) interface. This uses the –batch flag:

 150

> openss –batch < openss_cmd_file
> openss –batch –f <exe> <experiment>

Lastly, there is a Python scripting API, letting users launch O|SS commands within a
python script:

> python openss_python_script_file.py

13.1 Command Line Interface Basics

The interactive command line interface offers processing like gdb or dbx. Several
interactive commands allow users to create experiments, provide users with
process/thread control or enable users to view experiment results. Full CLI
documentation is available at http://www.openspeedshop.org/doc/cli_doc/, but
some important points are briefly covered here. This is a quick overview of some
commands (those marked with * are only available for the online version):

Experiment Creation
 expcreate
 expattach*

Result Presentation
 expview
 opengui

Experiment Control
 expgo
 expwait*
 expdisable*
 expenable*

Misc. Commands
 help
 list
 log
 record
 playback
 history
 quit

Experiment Storage
 expsave
 exprestore

This is a simple example to create, run and view data from an experiment using the
CLI:

> openss –cli Open the CLI.

openss>> expcreate –f “mutatee 2000” pcsamp Create an experiment using pcsamp with
this application.

openss>> expgo Run the experiment and create the
database

openss>> expview Display the default view of the
performance data.

Users also can get alternative views of the performance data within the CLI. Here is
a list of some options to change the way the information is displayed:

help or help commands Display CLI help text. 

expview Show the default view for experiment.

expview -v statements Show time-consuming statements. 

http://www.openspeedshop.org/doc/cli_doc/

 151

expview -v loops Show time-consuming loop.

expview –v vectorinstr On Intel platforms: show instructions that are vector and the
time spent in vector instruction execution

expview -v linkedobjects Show time spent in libraries. 

expview -v fullstack See all unique call paths in the application.

expview -m loadbalance See load balance across all the ranks/threads/processes in
the experiment.

expview –r <rank_num> See data for specific rank(s)

expcompare –r 1 –r 2 –m time Compare rank 1 to rank 2 for metric equal to “time”. Other
metrics are allowed. This is a usage example.

list –v metrics See the list of optional performance data metrics. 

list –v src See the list of source files associated with experiment.

list –v obj See the list of object files associated with experiment.

list –v ranks See the list of ranks associated with experiment.

list –v hosts See machine host names associated with experiment.

expview –m <metric> See performance data for the specified metric .

expview –v fullstack <experiment type>
<number>

See <number> of call paths from the list of expensive call
paths. 

expview –v fullstack usertime2  Shows the top two call paths in execution time. 

expview <experiment-name><number> Shows <number> of the functions from the list of the top
time-consuming functions.

expview pcsamp2 Shows the two functions consuming the most time. 

expview –v statements
<experiment-name><number>

Show <number> of the statements from the list of the top
time-consuming statements.

expview -Fcsv Show the view in comma separated list format (csv)

Remember, to use the GUI at any time just issue the command opengui in the CLI.

13.1.2 CLI Metric Expressions and Derived Types

O|SS can create a derived metric from the gathered metrics by using the metric
expression math functionality in the command line interface (CLI). Access the
overview from the CLI by typing this help CLI command:

openss>>help metric_expression

<metric_expression> ::=<string> ([<constant> ||<metric_expression>] [,
[<constant> ||<metric_expression>]]*)

A user-defined expression that uses metrics to compute a special value for display in a report.

User-defined expression can be added to an<expMetric_list>.
A functional notation is used to build the desired expression and the following simple arithmetic operations are
available:
 Function # arguments returns
 -------- ----------- -------
 Uminus() 1 unary minus of the argument
 Abs() 1 Absolute value of the argument
 Add() 2 summation of the arguments
 Sub() 2 difference of the arguments
 Mult() 2 product of the arguments
 Div() 2 first argument divided by second

 152

 Mod() 2 remainder of divide operation
 Min() 2 minimum of the arguments
 Max() 2 maximum of the arguments
 A_Add() 1 sum of all the data samples specified for the view
 A_Mult() 1 product of all the data samples specified for the view
 A_Min() 1 minimum of all the data samples specified for the view
 A_Max() 1 maximum of all the data samples specified for the view
 Sqrt() 1 square root of the argument
 Stdev() 3 standard deviation calculation
 Percent() 2 percent the first argument is of the second
 Condexp() 3 "C" expression: "(first argument) ? second argument: third argument"
 Header() 2 use the first argument as a column header for the display of the second

Note:

Integer and floating constants are supported as arguments as are the metric keywords associated with the
experiment view.

Arguments to these functions can be <metric_expressions>, with the exception of the first argument of 'Header'.

The first argument of 'Header' must be a character string that is preceded with and followed by '\"'.

When the '-v summary' option is used, it is not generally possible to produce a meaningful column summary.
A summary is produced for Add(), Max(), Min(), Percent(), A_Add(), A_Max and A_Min().

Examples:

 expview hwc -m count,Header(\"percent of counts\",Percent(count,A_Add(count)) -v summary
 expview mpi -v butterfly -f MPI_Alltoallv -m time,Header("average time/count",Div(Mult(time,1000),counts))
 expview -m papi_l2_tca,papi_l2_tcm,Header(\"percent of l2_tcm/l2_tca\", Percent(papi_l2_tcm,papi_l2_tca))

The following example for study takes the default view, expview command, and
appends the capability to add the percentage each function contributes to the total.

Use the “Header” phrase to create a header for the new data column being added.
Use the “Percent” phrase to create the arithmetic expression that divides the
PAPI_L1_DCM counts (count) for each function by the total number of PAPI_L1_DCM
counts in the application(A_Add(count)):

openss>>expview -m count,Header(\"percent of counts\",Percent(count,A_Add(count)))

 Exclusive percent Function (defining location)
PAPI_L1_DCM of counts
 Counts
 342000000 52.333588 hypre_SMGResidual (smg2000: smg_residual.c,152)
 207500000 31.752104 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 20500000 3.136955 hypre_SemiInterp (smg2000: semi_interp.c,126)
 15000000 2.295333 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 8500000 1.300689 pack_predefined_data (libmpi.so.0.0.3)
 7000000 1.071155 unpack_predefined_data (libmpi.so.0.0.3)

Another example, this one based in the hwcsamp experiment view, shows the ratio
between total cache accesses and total cache misses. A header is created, defined by
the Header clause:

openss>>expview -m papi_l2_tca,papi_l2_tcm,Header(\"percent of l2_tcm/l2_tca\", Percent(papi_l2_tcm,papi_l2_tca))

 153

papi_l2_tca papi_l2_tcm percent of Function (defining location)
 l2_tcm/l2_tca

 289946516 109226440 37.671237 hypre_SMGResidual (smg2000: smg_residual.c,152)
 203463495 74795126 36.760956 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 34442810 12746112 37.006597 mca_btl_vader_check_fboxes (libmpi.so.1.4.0: btl_vader_fbox.h,108)
 25522126 8311723 32.566734 hypre_SemiInterp (smg2000: semi_interp.c,126)
…
…

13.1.3 CLI Automatically Generated Derived Metrics and CLI Derived Metric Names

The CLI view code has logic to match up existing PAPI hardware counters with other
PAPI hardware counters, if the user specified a combination of counters that O|SS
has been coded to recognize. Users have requested these combinations of counters
as interesting ones to have pre-computed and output in the CLI views.

The list of automatically generated and displayed derived metric values are
discussed in the following paragraphs. Here is a short list of the metric names that
can be used in the CLI view and the hardware counters needed:

Purpose/Function: CLI metric name: PAPI formula:
Computational Intensity -m intensity PAPI_TOT_INS/PAPI_TOT_CYC
Reports level 1 data
cache to total cache miss
ratio

-m l1dcmiss PAPI_L1_DCM/PAPI_L1_TCA

Reports L1 data cache
read miss ratios

-m l1dcrmiss PAPI_L1_DCM / PAPI_L1_DCA

Reports level 2 data
cache miss ratio

-m l2dcmiss PAPI_L2_DCM / PAPI_L2_TCA

Reports level 2 cache
miss ratio

-m l2tcmiss PAPI_L2_TCM/PAPI_L2_TCA

Reports L2 cache data hit
rate

-m l2dchitrate (1.0 - (PAPI_L2_DCM /
PAPI_L1_DCA))

Reports level 3 total
cache to cache access
ratio

-m l3tcmiss PAPI_L3_TCM/PAPI_L3_TCA

Reports level 3 total
cache to data cache
access ratio

-m l3tdcmiss PAPI_L3_TCM / PAPI_L3_DCA

Reports data references
per instruction

-m datarefperinstr PAPI_L1_DCA / PAPI_TOT_INS

Reports double precision
flops

-m dflops PAPI_DP_OPS / time

Reports single precision
flops

-m flops PAPI_FP_OPS / time

 154

Reports ratio of floating
point instructions to total
instructions

-m fpinstratio PAPI_FP_INS / PAPI_TOT_INS

Reports graduated
floating point
instructions per cycle

-m gradfpinst PAPI_FP_INS / PAPI_TOT_CYC

Reports ratio of mis-
predicted to correctly
predicted branches

-m mispredicted PAPI_BR_MSP / PAPI_BR_PRC

Reports
SIMD_FP_256:packed_sin
gle / PAPI_FP_OPS

-m simdfpfpops SIMD_FP_256:packed_single/PA
PI_FP_OPS

Reports
SIMD_FP_256:packed_do
uble / PAPI_DP_OPS

-m simdfpdpops SIMD_FP_256:packed_double/P
API_DP_OPS

13.1.3.1 Computational Intensity
For this derived metric, a ratio is created based on the number of total instructions
(PAPI_TOT_INS) divided by the PAPI_TOT_CYC hardware counter value. This ratio
gives an idea of the instruction execution computational intensity. TBD.

13.1.3.2 Level 1 Data Cache Miss Ratio
For this derived metric, a ratio is created based on the number of total level 1 cache
accesses with the level 1 data cache misses. This ratio gives… TBD.

13.1.3.3 Level 2 Data Cache Miss Ratio
For this derived metric, a ratio is created based on the number of total level 2 cache
accesses with the level 2 data cache misses. This ratio gives… TBD.

13.1.3.4 Level 3 Data Cache Miss Ratio
For this derived metric, a ratio is created based on the number of total level 3 cache
accesses with the level 3 data cache misses. This ratio gives… TBD.

13.2 CLI Batch Scripting

Users with a known set of commands they want to issue can create a plain text file
with CLI commands. For example, here’s a batch file that will create, run and view
the pcsamp experiment on the application fred:

Create batch file commands
> echo expcreate –f fred pcsamp >> input.script
> echo expgo >> input.script
> echo expview pcsamp10 >> input.script

 155

To run the batch file input.script, use the –batch option to openss:

> openss –batch < input.script

Note that in this context this interface is only supported via the online version of
O|SS, so it must have been built with the OPENSS_INSTRUMENTOR=mrnet options.

13.3 Python Scripting

The O|SS Python API lets users execute the same interactive/batch commands
directly through Python. Users can intersperse the normal Python code with
commands to O|SS. Currently this interface is only supported via the online O|SS
version.

13.4 MPI_Pcontrol Support

O|SS also supports the MPI_Pcontrol function. This feature lets the user gather
performance data only for sections of their code bounded by MPI_Pcontrol calls.

The MPI_Pcontrol must be added to the application’s source code.

MPI_Pcontrol(1) enables performance data gathering; MPI_Pcontrol(0) disables it.

Users also must set the O|SS environment variable
OPENSS_ENABLE_MPI_PCONTROL to 1 to activate the MPI_Pcontrol call recognition.
Otherwise the MPI_Pcontrol statements will be ignored.

Users can optionally set the OPENSS_START_ENABLED environment variable to 1 to
gather performance data until an MPI_Pcontrol(0) call is encountered.

If OPENSS_START_ENABLED is not set, no performance data will be gathered
until an MPI_Pcontrol(1) call is encountered.

Note that for OPENSS_START_ENABLED to have any effect,
OPENSS_ENABLE_MPI_PCONTROL must be set.

13.5 Qt3 Legacy Graphical User Interface Basics

This section gives an overview of the O|SS graphical user interface with a focus on
the GUI’s basic functionality.

To launch the GUI on any experiment, use “openss –f <database name>”.

 156

13.5.1 Basic Initial View – Default View

The usertime experiment default view is used here as an illustration because it has
many of the icons and features of other O|SS experiments:

13.5.1.1 Icon ToolBar

The most used items, found in the Stats Panel menu located under the Stats Panel tab, also are
available in the Stats Panel Toolbar, which is provided as a convenience. A quick overview of the
toolbar options is below. Toolbar contents vary by experiment, because some options don't make
sense for all experiments. This table describes the icons and the functions they represent:

"I" Information This shows the experiment metadata. Information such as the
experiment type, processes, ranks, threads, hosts and other
experiment-specific information is displayed.

“U” Update This updates information in the Stats Panel display. This can be
used to display any new data that may have come from the nodes
on which the application is running.

"CL" Clear auxiliary
information

If the user has chosen a performance data time segment or a
specific function for which to view the data, this option clears those
settings and allows the next view selection to show data for the
entire program again.

"D" Default View The default view icon shows performance results based on the
view choice granularity selection.

 157

"S, down
arrow"

Statements per
Function

Show performance results related back to the source statements in
the application for the selected function. Highlight a function in the
Stats Panel and click on this icon.

"C-plus
sign"

Call paths w/o
coalescing

Show all the calling paths in this application. Duplicate paths will
not be coalesced. All the calling paths will be shown in their
entirety.

"C-plus
sign,
down
arrow"

Call paths w/o
coalescing per
Function

Show all calling paths in this application for only the selected
function. Highlight a function in the Stats Panel and click on this
icon. Duplicate paths will not be coalesced. All the calling paths
will be shown in their entirety.

"HC" Hot Call Path Show the call path in the application that took the most time. This
is a short cut to find the "hot" call path.

"B" Butterfly view Show the butterfly view, which displays the callers and callees of
the selected function. Highlight a function in the Stats Panel and
click on this icon, then repeat to drill down into the callers and/or
callees.

"TS" Time Segment Show a portion of the performance data results based on the time
segment selected.

"OV" Optional View Use this dialog to select which performance metrics to show in the
new performance data report.

“SA” Source
Annotation

Choose which metric to use in the source panel to annotate the
source. Defaults are different for each experiment, but usually is
“time”.

"LB" Load Balance Show the load balance view, which displays the min, max and
average performance values for the application; only available on
threaded or multiple-process applications.

"CA" Cluster Analysis Show the comparative analysis view, which displays the output of a
cluster analysis algorithm run against the threaded or multiple-
process performance analysis results for the user application. This
view’s use is to find outlying threads or processes and report the
groups of like-performing threads, processes or ranks.

"CC" Custom
Compare

Raise the custom comparison panel, which provides mechanisms
allowing the user to create custom views of the performance
analysis results. This lets the user supplement the provided O|SS
views.

13.5.1.2 View/Display Choice Selection

The View/Display Choice set of buttons lets users choose the granularity for a
particular display. Normally a user chooses a view choice granularity and then
selects a view via one of the icons described in the table above. The choices, as
shown in the image below, are:

 Per Function – Display the performance information relative to each function
in the program that had performance data gathered during the experiment.

 Per Statement – Display the performance information relative to each
statement in the program that had performance data gathered during the
experiment.

 Per Linked Object – Display the performance information relative to each
library or linked object in the program that had performance data gathered
during the experiment.

 158

 Per Loop – Display the performance information relative to each loop in the
program that had performance data gathered during the experiment. Note
that the loop performance information is shown only for loops that actually
were executed. There may be loops in the application that will not show up
in the display because they were not executed or had minimal time
attributed to them.

The image below shows that double-clicking on a line of statistical information in
the Stats Panel will focus the source panel at the line of source representing the
performance information and annotates the source with that information. Note the
hot (red) to cold (blue) color highlights: The higher the performance values, the
hotter the color. Source highlighted in red takes the most time in the profiled
program:

13.5.2 Preferences - How to change preferences

These preference panel images are included to outline the sequence for changing
the GUI and CLI options to generate and view performance information. The first

 159

view is the main (General) preference panel, which sets the font, view field sizes,
data precision, path, number of lines in the view and many other general options:

The Stats Panel preference panel lets users change preferences for viewing the
performance information in the GUI Stats Panel:

 160

The Source Panel preference panel lets users remap paths to source files that are in
a different location on the viewing platform. Use this when the source files on the
viewing machine aren’t visible because the executable was built on a different
machine. Put the old path to the source into the Old Path Name text box area and
put the new path for the source on the viewing machine into the New Path Name
text box area.

 161

13.5.2.1 Disabling or enabling the preference for Save/Reuse views in CLI.

This shows the General preferences window, scrolled down to the area that shows
more preference options. Users who do not want an active new save/reuse view
can click on the “Save Views for Reuse in CLI and GUI” (see the blue arrow below) to
disable that function. Clicking on that preference line disables or enables the feature.
This same procedure also works for the other preferences.

 162

 163

13.6 Next Generation O|SS GUI Application

13.6.1 Introduction

Originally developed as the Graphical User Interface (GUI) for NVIDIA CUDA
application performance analysis under a NASA SBIR contract, the Next Generation
O|SS GUI has been expanded to include support for other O|SS sampling and tracing
experiments such as “pcsamp”, “usertime”, “hwc”, “hwctime”, “hwcsamp”, “omptp”,
“mem”, “io”, “iop”, “iot”, “mpi”, “mpip”, “mpit” and “pthreads”.

The Next Generation O|SS GUI application, having the executable name “openss-gui”,
allows the user to explore application experiment trace data within in a timeline
graph view or hardware performance counter data within line or bar graph views
with additional details shown in a table view and correlated to the source-code as
applicable.

In general, to launch the Next Generation O|SS GUI application for any experiment,
use:

“openss-gui [–f <database name>]“

The “–f <database name>” command-line option is optional as indicated by the
brackets “[…]”. NOTE: The brackets are not entered by the user it only indicates
optional entry.

From the command-line general application usage instructions may be viewed by
using the “--help” or “-h” command-line option:

$./openss-gui --help

Usage: ./openss-gui [options]

Open|SpeedShop Application Performance Analysis GUI

Options:

 -h, --help Displays this help.

 -v, --version Displays version information.

 -f, --file <file> The Open|SpeendShop experiment database (.openss) file to

 load.

Just to reiterate this is a different GUI than the original O|SS GUI based on Qt3. The
Next Generation O|SS GUI is launched by using “openss-gui” instead of “openss”.
The Qt3 GUI can still be activated by running “openss” without the “-cli” command-
line option.

 164

13.6.1.1 Main Window User Interface Layout

The application user interface is laid out in a logical manner to present a
comprehensive view of the performance characteristics of an application. The main
screen of the application is divided into four sections (ref. Figure 1, “Main Window
User Interface Layout”).

 Experiment Panel
 Metric Plot View
 Metric Table View
 Source Code View

Figure 13 - Main WIndow User Interface Layout

The main window has a menu bar with two menu items - “File” and “Help”. Figure 1
shows the “Help” menu items which are:

Source Code View

Metric Table View

Metric Plot View

Experiment Panel

 165

 View O|SS Quick Start Guide
 View O|SS Reference Guide
 About O|SS GUI

If the O|SS Quick Start and Reference guides were installed in the standard location
the menu items will be activated. The standard locations respectively are:

 $OSS_CBTF_ROOT/$USER_GUIDE_PATH/OpenSpeedShop_Quick_Start_Guide.
pdf

 $OSS_CBTF_ROOT/$USER_GUIDE_PATH/OpenSpeedShop_Reference_Guide.p
df

Where:

$USER_GUIDE_PATH = “share/doc/packages/doc/users_guide” and
$OSS_CBTF_ROOT is the root installation directory of the O|SS CBTF components.

Activating one these menu items will open the document using the system
registered application for PDF files.

The “About O|SS GUI” will open the application about dialog as shown in Figure 2.
The “http://www.openspeedshop.org” hyperlink can be clicked to launch the
system registered web browser which will automatically open the O|SS website
home page.

Figure 14 - About O|SS GUI dialog

Figure 3 shows the “File” menu items “Load O|SS Experiment” and “Unload O|SS
Experiment”.

 166

Figure 15 - File menu

Experiment loading and unloading is accomplished using the menu items under the
“File” menu. The “File->Load O|SS Experiment” menu item will present an “Open
File” dialog in which the user can select an O|SS experiment database to load into
the application. Once an experiment has been loaded it will be added as a menu
item of the “File-> Unload O|SS Experiment” menu (ref Figure 3). Upon selection of
the experiment in the “File->Unload O|SS Experiment” menu the user will be
presented with a dialog to confirm the users desire to unload the experiment (ref.
Figure 4).

Figure 16 - Confirm Unload Experiment Dialog

The Experiment Panel is on the left-hand side of the main window. Inside the
Experiment Panel is the section labeled “Currently Loaded Experiment Information”
(ref. Figure 5). For the experiment that is currently loaded, this section shows the
name of the loaded experiment (without the “.openss“ file extension) at the top level
of a tree view providing details regarding the application process identifying each
parallel thread of execution. For CUDA experiments this information is shown
under the tree view level titled “GPU Compute / Data Transfer Ratio”; otherwise this
tree view level is titled “Thread Groups”. Currently, only one experiment can be
loaded at a time. If another experiment is desired to be analyzed, then the user

 167

needs to unload the current experiment from the application before loading
another.

Each of the parallel executions (processes, threads, ranks, GPUs), called
“components” in O|SS, are listed under the “GPU Compute / Data Transfer Ratio” or
“Thread Groups” item in the following format:

<hostname>-<process id>-<rank> OR <hostname>-<process id>-<rank>-<thread
id>

Where:

<hostname> is the name of the computer (with domain name removed)
 <process id> is the UNIX process id
 <rank> is the MPI rank number (if the application is an MPI program)
 <thread id> is an unique O|SS GUI thread id for each POSIX thread id

The checkbox to the left of the component name is used to select which components
will be included in the performance views on the right-hand side of the main
window. Upon initial load of the experiment all components are selected. Thus, any
metric views in the Metric Table View will include all components in the
computations.

 168

Figure 17 - Experiment Panel

Under the component items is another subtree level enumerating which sample
counters were configured during experiment collection.

The right-hand side of the main window has the three sections providing the user
detailed information collected by the experiment collector. The upper section is the
Metric Plot View which provides graphical views of the metric data, including: event
timelines, line graphs and bar graphs. The middle section is the Metric Table View
and is where performance information is displayed in table views. The user can
control the type of information displayed in the Metric Table View by using three
different combo boxes labelled “Mode”, “Metric” and “View”. The “Mode” combo-
box allows the user to select the metric view mode. The following modes have been
implemented which match the O|SS CLI commands to provide basic metric
information: load balance, calltree, metric comparisons for selected threads,
processes, ranks or hosts and detailed event trace listings. The available mode
options are: “Metric”, “Load Balance”, “CallTree”, “Compare”, “Compare By Process”,
“Compare By Rank”, “Compare By Host”, “Trace” and “Details”. The mode options
available for a particular experiment type varies according to the collector type – ie

 169

sampling or trace. For example, sampling experiments such as “hwc”, “hwctime”
and “hwcsamp” do not provide event traces. Thus, the “Trace” or “Details” mode
option would not be available. Other experiment types do not provide load balance
or calltree views. Thus, the “Load Balance” or “CallTree” modes would not be
available. All experiments provide the metric view mode and each experiment has a
default metric view which in most cases is similar to O|SS CLI default view (as
shown with the “expview” command).

Detailed event trace views are provided by the “Details” or “Trace” modes. The
“Details” mode is provided only for CUDA experiments and provides detailed
examination of the CUDA events, filtered by type - Kernel Executions, Data Transfers
or Both (All Events). By default, the “Time (ms)” column is sorted in ascending
order. The “Trace” mode provides the event trace view for all other experiments.

For the “Metric” view mode, the user is able to view metric information, including:
time, percentage, defining location, thread minimum, thread maximum and thread
average. The metric type shown is selected using the “Metric” combo-box and the
metric view can be changed with the “View” combo-box.

An analogy on how the Metric Table Views correlate to the O|SS CLI may be useful.
The “Metric” option in the “Mode” combo-box provides information obtained from
the O|SS CLI “expview” command. Within the “Metric” combo-box are a subset of
the metrics that can be selected using the O|SS CLI “expview -m” command option;
whereas the “View” combo-box are views selectable using the O|SS CLI “expview -v”
command option. Many of the metrics selectable via the “-m” option are
automatically included as columns in the table view – such as thread minimum,
maximum and average metric values. The “Compare By Host”, “Compare By
Process” and “Compare By Rank” options in the “Mode” combo-box provides
information obtained by the O|SS CLI “expcompare” command. The O|SS CLI
“expcompare” command has “-h”, “-p”, and “-r” options to specify which hosts,
processes or ranks to compare and correlate to the “Compare By Host”, “Compare
By Process” and “Compare By Rank” selections. The O|SS CLI has no ability to
compare components which is possible in the O|SS GUI using the “Compare”
selection. Components is a termed used by the O|SS CLI for each parallel thread of
execution. Using the O|SS CLI these components can be listed using the “expstatus”
command. The “expstatus” command also lists the available metrics (ref. Figure 6,
“expstatus command”).

 170

Figure 6 - expstatus command

The hosts, processes, ranks or components to compare are selected from the
Experiment Panel. Based on the selections a set of unique hostnames, process
identifiers or thread identifiers is generated and provides sets of performance data
to use in the calculation of Metric Table View information. Currently the component
selections are not used in the generation of the Metric Plot View event timelines, line
graphs or bar graphs. In the near future a better means to select hostnames, rank
numbers, process and thread identifiers will be implemented.

For the “Metric” view the time interval for metric computations depends on the
visible range of the graph timeline and for the “Details” or “Trace” modes the time
interval is used to filter which trace events are shown in the table. As the user
changes the graph timeline by zooming into the graph or panning the timeline left or

$ openss -cli -f ./SHOC-S3D-cuda-0.openss

openss>>[openss]: The restored experiment identifier is: -x 1

openss>>expstatus

Experiment definition

{ # ExpId is 1, Status is Terminated, Saved database is ./SHOC-S3D-cuda-0.openss

 Performance data spans 4.904680 seconds from 2017/04/07 14:25:09 to 2017/04/07

14:25:14

(none)

 Executables Involved:

 (none)

 Currently Specified Components:

 -h maia10 -p 62868 -t -1

 -h maia10 -p 62868 -t 0 -r 6

 -h maia11 -p 17771 -t -1

 -h maia11 -p 17771 -t 0 -r 7

 -h maia4 -p 15179 -t -1

 -h maia4 -p 15179 -t 0 -r 0

 -h maia5 -p 79517 -t -1

 -h maia5 -p 79517 -t 0 -r 1

 -h maia6 -p 17084 -t -1

 -h maia6 -p 17084 -t 0 -r 2

 -h maia7 -p 93435 -t -1

 -h maia7 -p 93435 -t 0 -r 3

 -h maia7 -p 93435 -t 4 -r 3

 -h maia8 -p 71904 -t -1

 -h maia8 -p 71904 -t 0 -r 4

 -h maia8 -p 71904 -t 1 -r 4

 -h maia9 -p 45031 -t -1

 -h maia9 -p 45031 -t 0 -r 5

 -h maia9 -p 45031 -t 1 -r 5

 Previously Used Data Collectors:

 cuda

 Metrics:

 cuda::count_counters

 cuda::count_exclusive_details

 cuda::exec_exclusive_details

 cuda::exec_inclusive_details

 cuda::exec_time

 cuda::periodic_samples

 cuda::xfer_exclusive_details

 cuda::xfer_inclusive_details

 cuda::xfer_time

 Parameter Values:

 Available Views:

 cuda

}

 171

right, the Metric Table View is dynamically updated. There is a delay threshold
between the time the user pauses or completes timeline changes and the actual
kickoff of the processing involved for the Metric Plot or Metric Table View updates.

The row items in the table view can be ordered by clicking on a column header (ref.
Figure 7 and 8) to toggle between ascending and descending order using the
selected column as the key for sorting. Notice the upward and downward pointing
triangle icons in the column header being used to sort the rows in the table. The
upward triangle icon represents ascending order sorting and the downward triangle
icon is descending order.

Figure 7 - Column sorting via mouse clicks on column header (ascending order)

Figure 8 - Column sorting via mouse clicks on column header (descending order)-

The user can alter the column ordering by holding the left-mouse button when the
mouse cursor is over one of the columns and dragging it into a new position (ref
Figure 9, “Changing Column Ordering”). Notice the dashed red line in the
screenshot of Figure 9 showing the rubber-band effect as the “% of Time” column is
dragged to the new location after the “Function (defining location)” column. The “%

 172

of Time” text follows the cursor location as the user slides the mouse to the right.
The text has a faded transparent look.

Figure 9 - Changing Column Ordering

The lower section on the right-hand side is the Source Code View. When the user
has activated the “Metric” mode of the Metric Table View, any selections of a row in
the table under the “Function (defining location)” column cause the corresponding
line of the source code in the Source Code View to be displayed. Updates to the
Source Code View is possible in either the “Functions”, “Statements” or “Loops”
metric view (but not the “Linked Objects” metric view) assuming the source code is
available on the host machine. If the user makes a selection in which the source-
code cannot be found, then the Source-Code View will be empty.

If the source code is not physically located in the same location as when the
executable was compiled (perhaps on another computer), then the user can specify
the mapping between the original development machine location and the location
on the local host machine. The dialog in which the mappings can be specified is
activated from a context menu. The context menu is activated by holding down the
right-mouse button when the cursor is over the row of interest under the “Function
(defining location)” column. When the context menu appears near the location of
the cursor, the user must select the “Modify Path Substitutions” menu item to
activate the “Modify Path Substitutions Dialog” (ref Figure 10, “Modify Path
Substitutions Dialog”).

The “Modify Path Substitutions Dialog” shows a table with two columns – the left
column shows the original paths to the source code when the application was
compiled and the right column shows the corresponding paths on the local host
machine. When the dialog is activated a new entry in the table is created with the
left column, “Original Path”, filled in from the information in the metric data.

 173

Figure 10 - Modify Path Substitutions Dialog

There are two methods in which the user can provide entry for the “New Path” item.
The user can manually enter or cut-and-paste the absolute file path for the source-
code into the text entry area. Alternatively there is a context-menu that can be
activated by holding down the right-mouse button (ref Figure 11, “Modify Path
Substitutions Dialog – Select File”). Once the context-menu appears, the user can

click on the “Select File” menu item, after which the “Select Directory For File” dialog
appears (ref Figure 12, “Select Directory For File Dialog”).

This is initially blank and the
user enters the path of the
corresponding source-code

file on the local host
machine.

Pre-populated in accordance with
the item selected in the Metric Table

View when this dialog is activated.
This represents the original location

of the particular source-code file
when the application was built.

 174

Figure 11 - Modify Path Substitutions Dialog – Select File

Figure 12 - Select Directory For File Dialog

 175

Figure 13 - Completed New Path Entry

Filtering of items shown in the Metric Table View can achieved by using the “Define

View Filters” dialog also activated via a context-menu by holding down the right-
mouse button anywhere in the table area. When the context menu appears near the
location of the cursor, the user must select the “Define View Filters” menu item to
activate the “Define View Filters” dialog (ref Figure 14, “Define View Filters Dialog”).

 176

Figure 14 - Define View Filters Dialog

13.6.1.2 Case Studies of Using the O|SS GUI to Analyze Experiment Results

Run the O|SS GUI passing the name of the experiment database (.openss) filename
using the “-f <database name>“ command-line option or using the “File->Load O|SS
Experiment” menu item once the application is launched.

 177

13.6.1.2.1 Using the O|SS GUI to Analyze “pcsamp” Experiment Results

Upon loading the “pcsamp” experiment the default view appears showing a bar
graph of the time distribution across the application functions attributable to the
recorded PC values. These values are also shown in the Metric Table View below
the bar graph (ref Figure 15, “pcsamp experiment default view”).

Figure 15 - pcsamp experiment default view

Generate the “Statements” view for the Metric Table View by selecting the
“Statements” option in the “View” combo-box.

Define a filter for the Metric Table View to only display the statements in the
“main.cpp” source-code file by activating the context-menu available by pressing the
right-mouse button (ref Figure 17, “Activate Define View Filters Dialog”).

Within the “Define View Filters” dialog select “Function (defining location)” from the
“Column Name” combo-box and enter “main.cpp” in the “Filter Expression” text
entry area (ref Figure 18, “Define Filter for Metric Table View”). Finally,
immediately apply the filter and close the “Define View Filters” dialog by pressing
the “Apply” button.

Select one of the table cells under the “Function (defining location)” column to load
the “main.cpp” file in the Source-Code View and center the display at the line
number of the item selected. Maximize the size of the Source-Code View to examine
the metric value annotations (ref Figure 19, “Source-Code View with Metric Value
Annotations”).

 178

Let’s examine the source-code associated with the experiment being discussed in
this example (ref Figure 16, “Source-Code Snippet - normal (Gaussian)
distribution”). Lines 25 and 26 initializes the random number generator based on
the Mersenne Twister algorithm. Line 32 creates an instance of the
std::normal_distribution template class to generate random numbers of the default
template parameter ‘double’ type according to the Normal (or Gaussian) random
number distribution where the mean is 5 and the standard deviation is 2. Line 36 is
a FOR loop to cause some large number of iterations to allow the periodic sampling
of the collector to produce a valid statistical sample. Line 37 calls the operator() of
the std::normal_distribution class to generate the next random number in the
distribution and computes the nearest integer value. Based on values produces
from the Normal distribution specified, the switch statement at line 38 jumps to one
of the case branches at lines 39 to 49 invoking one of the f0() to f10() functions. For
this Normal distribution there may be branches to the default case.

Figure 16 - Source-Code Snippet - normal (Gaussian) distribution

Based on the Normal distribution specified, the results look as expected for the
sampling characteristics of the collector at the time the experiment was run. The
colors used as the background fill for lines of code having metric value annotations
indicate the relative magnitude of time spent at the line of code. From low to high

 179

relative magnitude the colors range from green (light and dark) to yellow (light and
dark) to red (light and dark).

Figure 17 - Activate Define View Filters Dialog

Figure 18 - Define Filter for Metric Table View

 180

Figure 19 - Source-Code View with Metric Value Annotations

Let’s look at an alternate implementation using a uniform distribution. The source-
code associated with the experiment being discussed in this example (ref Figure 20,
“Source-Code Snippet – uniform distribution”). Lines 24 and 25 initializes the
random number generator based on the Mersenne Twister algorithm. Line 32
creates an instance of the std::uniform_int_distribution template class to generate
random numbers of the default template parameter ‘int’ type over the closed
interval [0, 10]. Line 34 declares a variable named ‘value’ and initializes to zero.
Line 36 is a FOR loop to facilitate some large number of iterations to allow the
periodic sampling of the collector to hopefully produce valid statistical samples.
Line 37 calls the operator() of the std::uniform_int_distribution class to generate the
next random number in the distribution. Since the random number should be in the
closed interval [0, 10] the switch statement at line 38 should invoke one of the case
branches at lines 39 to 49 invoking one of the f0() to f10() functions. The default
branch should never be called in this implementation as all possible values of
‘randomNum’ are covered by the case branches and is provided to eliminate
compiler warnings.

 181

Figure 20 - Source-Code Snippet - uniform distribution

Based on the uniform distribution specified, the results look as expected for the
sampling characteristics of the collector at the time the experiment was run. The
annotated metric values shown in the Source Code View along with the color-coded
background to the source-code indicate that each case of the switch statement is
executed at about the same frequency and are highlighted with the same green color
(ref Figure 21, “Source-Code View with Metric Value Annotations – uniform
distribution”).

 182

Figure 21 - Source-Code View with Metric Value Annotations – uniform distribution

13.6.1.2.2 Using the O|SS GUI to Analyze “usertime” Experiment Results

Upon loading the “usertime” experiment the default view appears showing a bar
graph of the exclusive time distribution across the application functions attributable
to the recorded PC values. These values are also shown in the Metric Table View
below the bar graph (ref Figure 22, “usertime experiment default view”).

In order to configure the views to see just the statements within the main source file
(main.cpp), configure the application similar to the steps discussed for the “pcsamp”
experiment and shown in Figures 15-17 (ref. Figure 23, “Source-Code View with
Metric Value Annotations (usertime)”). Since the source-code algorithm is expected
to exhibit characteristics of a normal (or Gaussian) distribution having a mean of 5
and standard deviation of 2, the results look similar to those observed with the
“pcsamp” experiment (ref Figure 19, “Source-Code View with Metric Value
Annotations”).

Unlike the “pcsamp” experiment, the “usertime” experiment collector records call
stacks for each sample. Thus, the O|SS GUI takes advantage of the availability of the
call stack information to construct a calltree of all caller-callee pairs that had
occurred during any particular experiment. The user can generate the calltree
graph and table by selecting the “CallTree” option from the “Mode” combo-box (ref
Figure 24, “Calltree Graph and Table Views” and Figure 25, “Calltree Graph Zoomed
into ‘f1’ to ‘f10’ Functions”).

 183

Figure 22 - usertime experiment default view

Figure 23 - Source-Code View with Metric Value Annotations (usertime)

 184

Figure 24 - Calltree Graph and Table Views

Figure 25 - Calltree Graph Zoomed into ‘f1’ to ‘f10’ Functions

 185

13.6.1.2.3 Using the O|SS GUI to Analyze “hwc” Experiment Results

Upon loading the “hwc” experiment the default view appears showing a bar graph of
the hardware counter threshold exceeded counts across the application functions
attributable to the recorded PC values. These values are also shown in the Metric
Table View below the bar graph (ref Figure 26, “hwc experiment default view”).

Figure 218 - hwc experiment default view

13.6.1.2.4 Using the O|SS GUI to Analyze “hwctime” Experiment Results

Upon loading the “hwctime” experiment the default view appears showing a bar
graph of the hardware counter threshold exceeded counts across the application
functions attributable to the recorded PC values. These values are also shown in the
Metric Table View below the bar graph (ref Figure 27, “hwctime experiment default
view”).

The hwctime experiment default view is a function-level view using the exclusive-
time metric. In order to see a statement level view, select “Statements” in the “View”
combo-box. Consequently, a new graph tab is added to the Metric Plot View titled
“Exclusive Counts (Statements)” and the Metric Table View shows the metric values
for the statement-level view using the exclusive-time metric (ref Figure 28,
“hwctime exclusive-time metric statement-level view”). Clicking on the “Exclusive
Counts (Statements)” tab shows the bar graph of the hardware counter threshold
exceeded counts across the application source-code statements attributable to the

 186

recorded PC values. If there are too many statements (or any other view type) listed
in the x-axis, the labels will only show if they can be legibly displayed. Otherwise,
only by scrolling the mouse-wheel to zoom into the graph area and once the labels
can be displayed without overlapping will they be displayed (ref Figure 29, “zoomed
graph view now showing x-axis labels”). Figure 29 has also been panned to just
show the statements occurring in the main.cpp file. The label for a statement-level
view is “<source-code filename>, <source-code line-number>”. So all the statements
in a particular source-code file will be listed together.

Figure 219 - hwctime experiment default view

 187

Figure 28 - hwctime exclusive-time metric statement-level view

Figure 29 - zoomed graph view now showing x-axis labels

The screenshot in Figure 30, “HW counter values annotations for statement-view”

 188

Figure 30 - HW counter values annotations for statement-view

13.6.1.2.5 Using the O|SS GUI to Analyze “hwcsamp” Experiment Results

Upon loading the “hwcsamp” experiment the default view appears showing a bar
graph of the hardware counter counts across the application functions attributable
to the recorded PC values. For each function there is a stacked bar graph of each of
the hardware counters configured for use when the experiment was performed.
These values are also shown in the Metric Table View below the bar graph (ref
Figure 31, “hwcsamp experiment default view”).

 189

Figure 31 - hwcsamp experiment default view

The application being examined is a C++ program which performs a matrix-matrix
multiplication problem A = B * C using six different combinations of nested for
loops:

 Nested FOR I, J, K loops
 Nested FOR I, K, J loops
 Nested FOR J, I, K loops
 Nested FOR J, K, I loops
 Nested FOR K, I, J loops
 Nested FOR K, J, I loops

The source-code for this was obtained from the following website:

http://people.sc.fsu.edu/~jburkardt/cpp_src/mxm/mxm.html

For this experiment the following three PAPI events were configured:

 PAPI_TOT_CYC - Total cycles
 PAPI_TOT_INS - Instructions issued
 PAPI_L1_DCM - Level 1 data cache misses

The output from the “osshwcsamp” experiment execution can be seen in Figure 32,
“osshwcsamp experiment output”.

 190

This example demonstrates how important it is to improve spatial and temporal
locality of memory access. Proper alignment of the code and data also helps but this
example doesn’t demonstrate that aspect. The six nested FOR loop variants exhibit
different behavior affecting the L1 cache. If the programmer can identify ways to
improve L1 cache usage this also improves the usage of the other cache levels and
thus application performance.

Figure 32 - osshwcsamp experiment output

The “mxm” application calculates megaFLOPS for each of the six variants of nested
FOR loop ordering. The highest megaFLOPS values computed by “mxm” are for the
JKI and KJI variants. These are also the variants that show the lowest CPU cycles,
instructions issued and Level 1 data cache misses (ref Figure 31, “hwcsamp
experiment default view”). Figure 31 also shows the exclusive time to run each of
the six FOR loop variants. The “usertime” experiment can be used to get the similar

$ osshwcsamp "./mxm 1024 1024 1024" PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_L1_DCM

[openss]: hwcsamp using default sampling rate: "100".

[openss]: hwcsamp using user specified papi events: "PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_L1_DCM"

Creating topology file for frontend host eluveitie

Generated topology file: ./cbtfAutoTopology

Running hwcsamp collector.

Program: ./mxm 1024 1024 1024

Number of mrnet backends: 1

Topology file used: ./cbtfAutoTopology

executing sequential program: cbtfrun -c hwcsamp --mrnet ./mxm 1024 1024 1024

07 December 2017 07:57:01 PM

MXM:

 C++ version

 Compute matrix-matrix product A = B * C

 Matrix B is 1024 by 1024

 Matrix C is 1024 by 1024

 Matrix A will be 1024 by 1024

 Number of floating point operations = 2.14748e+09

 Estimated CPU time is 59652.3 seconds.

 Method Cpu Seconds MegaFlopS

 ------ -------------- --------------

 IKJ 13.0446 164.626

 IJK 3.45972 620.711

 JIK 4.14068 518.63

 JKI 0.646093 3323.8

 KIJ 12.9603 165.697

 KJI 0.856215 2508.11

MXM:

 Normal end of execution.

07 December 2017 07:57:36 PM

All Threads are finished.

default view for /devel/oss-tests/matrix-multiplication-ijk/mxm-hwcsamp-46.openss

[openss]: The restored experiment identifier is: -x 1

Performance data spans 35.128076 seconds from 2017/12/07 19:57:01 to 2017/12/07 19:57:36

Exclusive % of CPU papi_tot_cyc papi_tot_ins papi_l1_dcm Comp. papi_tot_cyc% Function (defining location)

 CPU time Time Intensity

in

 seconds.

13.040000 37.129841 34201150429 9675496317 2893834791 0.282900 36.881472 mxm_ikj(int, int, int, double*, double*) (mxm: main.cpp,539)

12.960000 36.902050 34166036674 9678560525 2790517607 0.283280 36.843606 mxm_kij(int, int, int, double*, double*) (mxm: main.cpp,796)

 4.140000 11.788155 11000097217 7528536962 1126413804 0.684406 11.862167 mxm_jik(int, int, int, double*, double*) (mxm: main.cpp,632)

 3.460000 9.851936 9262387573 7528557181 1217726533 0.812810 9.988275 mxm_ijk(int, int, int, double*, double*) (mxm: main.cpp,452)

 0.850000 2.420273 2261301881 4309294480 135765248 1.905670 2.438519 mxm_kji(int, int, int, double*, double*) (mxm: main.cpp,882)

 0.640000 1.822323 1769278061 4275332490 134423696 2.416428 1.907935 mxm_jki(int, int, int, double*, double*) (mxm: main.cpp,710)

 0.020000 0.056948 53392125 74010256 4177386 1.386164 0.057576 __GI_memset (libc-2.19.so: memset.S,53)

 0.010000 0.028474 18963464 28387634 14802 1.496965 0.020450 matgen(int, int, int*) (mxm: main.cpp,364)

35.120000 100.000000 92732607424 43098175845 8302873867 0.464758 100.000000 Report Summary

 191

exclusive time results (ref Figure 34, “exclusive times for nested FOR loop variants
using the usertime experiment”).
Using the data collected from the PAPI_TOT_INS and PAPI_TOT_CYCLES events, the
Instructions Per Cycle (IPC), also referred to as Computational Intensity (CI), can be
calculated using the following formula:

Instructions Per Cycle (IPC) = PAPI_TOT_INS / PAPI_TOT_CYCLES

Using the data shown in Figure 31, “hwcsamp experiment default view” or in Figure
32, “osshwcsamp experiment output”, the Instructions Per Cycle (IPC) or
Computational Intensity (CI), can be calculated. Table 1, “matrix-matrix
multiplication FOR loop variant comparison”, provides a comparison of the IPC
values for each of the six FOR loop variants.

Metric IJK IKJ JIK JKI KIJ KJI
PAPI_TOT_INS 752855718

1
9675496317 7528536962

427533249
0

9678560525
430929448
0

PAPI_TOT_CY
C

926238757

3

3420115042

9

1100009721

7

176927806

1

3416603667

4

226130188

1

IPC 0.813 0.283 0.684 2.416 0.283 1.906

MFLOPS 620.711 164.626 620.711 3323.8 165.697 2508.11

Table 1- matrix-matrix multiplication FOR loop variant comparison

The source-code for the JKI and KJI variants are shown in Figure 33, “JKI / KJI
variant source-code”. There has been a slight modification to the source-code
provided by John Burkardt in the reference cited above. The difference is the loop
to initialize the array ‘a’ to zeros has been replaced with std::fill().

double mxm_jki (int n1, int n2, int n3,

 double b[], double c[])

{

 double* a = new double[n1*n3];

 std::fill(a, a+n1*n3, 0);

 double cpu_seconds = cpu_time();

 for (j = 0; j < n3; j++)

 {

 for (k = 0; k < n2; k++)

 {

 for (i = 0; i < n1; i++)

 {

 a[i+j*n1] += (b[i+k*n1] *

c[k+j*n2]);

 }

 }

 }

 cpu_seconds = cpu_time() – cpu_seconds;

 delete[] a;

 return cpu_seconds;

}

double mxm_kji (int n1, int n2, int n3,

 double b[], double c[])

{

 double* a = new double[n1*n3];

 std::fill(a, a+n1*n3, 0);

 double cpu_seconds = cpu_time();

 for (k = 0; k < n2; k++)

 {

 for (j = 0; j < n3; j++)

 {

 for (i = 0; i < n1; i++)

 {

 a[i+j*n1] += (b[i+k*n1] *

c[k+j*n2]);

 }

 }

 }

 cpu_seconds = cpu_time() – cpu_seconds;

 delete[] a;

 return cpu_seconds;

}

 192

Figure 33 - JKI / KJI variant source-code

Figure 34 - exclusive times for nested FOR loop variants using the usertime experiment

13.6.1.2.6 Using the O|SS GUI to Analyze “omptp” Experiment Results

Upon loading the “omptp” experiment the default view appears showing the
exclusive time metric values for the functions view (ref Figure 35, “omptp
experiment default view”). Currently there is no graph generated in the Metric Plot
View.

Figure 35 - omptp experiment default view

 193

A calltree graph can be generated by selecting the “CallTree” option in the “Mode”
combo-box. After processing all call stacks recorded from the experiment and
stored in the database file, a directed graph is displayed in the Metric Plot View. The
directed graph has functions as the nodes and the edges show the path from the
caller function to callee function (ref Figure 36, “calltree graph showing caller-callee
relationships”).

A load balance metric view can be generated by selecting the “Load Balance” option
in the “Mode” combo-box. The load balance view shows which threads have the
minimum and maximum time for each function as well as which thread is closest to
the average time (ref Figure 37, “omptp load balance view”).

Figure 36 - calltree graph showing caller-callee relationships

 194

Figure 37 - omptp load balance view

13.6.1.2.7 Using the O|SS GUI to Analyze “mem” Experiment Results

Upon loading the “mem” experiment the default view appears showing a line graph
of the new high-water marks along the experiment timeline. There is also a table
view shown in the Metric Table View (ref Figure 38, “mem experiment default
view”) showing detailed memory event information. Figure 39, “source-code with
10 memory leaks” shows the source-code in which all memory allocations are
leaked and Figure 40, “source-code with 5 memory leaks” shows the source-code in
which half the memory allocations are leaked.

 195

Figure 38 - mem experiment default view

Figure 39 –
source-code with 10 memory leaks

Figure 40 –

source-code with 5 memory leaks

Observe the Metric Table View in Figure 41, “ten memory leaks associated with
Figure 39 source-code” which shows the trace metric view listing all leaked memory
allocations. There are a total of 10 memory leaks. Upon the selection of one of the
cells under the “Functions (defining location)” column the associated source-code (if
available) will be shown in the Source-Code View underneath the Metric Table View.
Figure 41 shows that line 24 of the main.cpp file was selected which caused the
main.cpp file to be loaded into the Source-Code View and the view centered at line
24.

 for (int i=0; i<10; ++i) {

 char* buffer = (char *) malloc(dis(mt));

 usleep(sleepdis(mt)*1000*1000);

 }

 for (int i=0; i<10; ++i) {

 const int allocation(dis(mt));

 char* buffer = (char *) malloc(allocation);

 usleep(sleepdis(mt)*1000*1000);

 if (i % 2 == 0) {

 free(buffer);

 }

 }

 196

Figure 41 – ten memory leaks associated with Figure 39 source-code

Observe the Metric Table View in Figure 41, “five memory leaks associated with
Figure 40 source-code” which shows the trace metric view listing a total of five
leaked memory allocations. Upon the selection of one of the cells under the
“Functions (defining location)” column the associated source-code (if available) will
be shown in the Source-Code View underneath the Metric Table View. Figure 42
shows that line 27 of the main.cpp file was selected which caused the main.cpp file
to be loaded into the Source-Code View and the view centered at line 27.

 197

Figure 42 – five memory leaks associated with Figure 40 source-code

13.6.1.2.8 Using the O|SS GUI to Analyze “io” Experiment Results

Upon loading the “io” experiment the default view appears showing the exclusive
time metric values for the functions view. Currently there is no graph generated in
the Metric Plot View. However, a calltree graph showing all the caller-callee
relationships captured during the experiment execution can be generated and
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode”
combo-box (ref Figure 43, “time metric view (with calltree graph)”).

For the calculation of metric values, the following I/O events (functions in the GNU C
Library “libc”) are monitored by default: close, creat, creat64, dup, dup2, lseek,
lseek64, open, open64, pipe, pread, pread64, pwrite, pwrite64, read, readv, write,
writev. A subset of these can be specified when the “ossio” convenience script is
executed.

Additional views of possible interest to help point out imbalance of processing
between processes or ranks are the Compare By Process (ref Figure 44, “compare by
process view (with calltree graph)”) and Compare By Rank (ref Figure 45, “compare
by rank view (with calltree graph)”) views. These are generated by selecting the
“Compare By Process” or “Compare By Rank” option in the “Mode” combo-box. In
addition, the Load Balance view allows the user to see the minimum, maximum and
average times for each function captured during the experiment execution. Along
with the minimum and maximum time values the associated component name is

 198

identified. For the average time value the nearest component is identified by name
(ref Figure 46, “load balance view (with calltree graph)”).

Figure 43 - time metric view (with calltree graph)

Figure 44 - compare by process view (with calltree graph)

 199

Figure 45 - compare by rank view (with calltree graph)

Figure 46 - load balance view (with calltree graph)

 200

13.6.1.2.9 Using the O|SS GUI to Analyze “iop” Experiment Results

Upon loading the “iop” experiment the default view appears showing the exclusive
time metric values for the functions view. Currently there is no graph generated in
the Metric Plot View. However, a calltree graph showing all the caller-callee
relationships captured during the experiment execution can be generated and
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode”
combo-box (ref Figure 47, “iop experiment time metric view (with calltree graph)”).

For the calculation of metric values, the following I/O events (functions in the GNU C
Library “libc”) are monitored by default: close, creat, creat64, dup, dup2, lseek,
lseek64, open, open64, pipe, pread, pread64, pwrite, pwrite64, read, readv, write,
writev. A subset of these can be specified when the “ossiop” convenience script is
executed.

Figure 47 - iop experiment time metric view (with calltree graph)

Additional views of possible interest to help point out imbalance of processing
between processes or ranks are the Compare By Process (ref Figure 48, “iop
experiment compare by process view (with calltree graph)”) and Compare By Rank
(ref Figure 49, “iop experiment compare by rank view (with calltree graph)”) views.
These are generated by selecting the “Compare By Process” or “Compare By Rank”
option in the “Mode” combo-box. In addition, the Load Balance view allows the user
to see the minimum, maximum and average times for each function captured during
the experiment execution. Along with the minimum and maximum time values the
associated component name is identified. For the average time value the nearest

 201

component is identified by name (ref Figure 50, “iop experiment load balance view
(with calltree graph)”).

Figure 420 - iop experiment compare by process view (with calltree graph)

 202

Figure 49 – iop experiment compare by rank view (with calltree graph)

Figure 50 – iop experiment load balance view (with calltree graph)

 203

13.6.1.2.10 Using the O|SS GUI to Analyze “iot” Experiment Results

The “iot” experiment provides extended I/O tracing capability that the “io” and “iop”
experiments do not. The “iot” experiment collects additional information regarding
a traced function call, the function parameters and the return value. For many of the
traced I/O functions the return value is the number of bytes read or written. Since
the I/O trace includes the time of the call and duration, the exact order of events can
be ascertained.

Upon loading the “iot” experiment, the default view appears showing the I/O event
timeline and exclusive time metric values for the functions view. The I/O event
timeline appears in the Metric Plot View and maps each I/O event along a timeline
covering the entire time duration of the performance data collected during the
experiment execution.

The following I/O events (functions in the GNU C Library “libc”) are monitored by
default: close, creat, creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread,
pread64, pwrite, pwrite64, read, readv, write, writev. A subset of these can be
specified when the “ossiot” convenience script is executed.

Additional views of interest to help point out imbalance of processing between
processes or ranks are the Compare By Process (ref Figure 52, “iot experiment
compare by process view”) and Compare By Rank (ref Figure 53, “iot experiment
compare by rank view”) views. These are generated by selecting the “Compare By
Process” or “Compare By Rank” option in the “Mode” combo-box. In addition, the
Load Balance view allows the user to see the minimum, maximum and average
times for each function captured during the experiment execution. Along with the
minimum and maximum time values the associated component name is identified.
For the average time value the nearest component is identified by name (ref Figure
54, “iot experiment load balance view”).

The calltree graph showing all the caller-callee relationships captured during the
experiment execution can be generated and displayed in the Metric Plot View by
selecting the “CallTree” option in the “Mode” combo-box (ref Figure 55, “iot
experiment calltree graph”).

 204

Figure 51 - iot experiment default view

Figure 52 - iot experiment compare by process view

 205

Figure 53 - iot experiment compare by rank view

Figure 54 - iot experiment load balance view

 206

Figure 55 - iot experiment calltree graph

13.6.1.2.11 Using the O|SS GUI to Analyze “mpi” Experiment Results

Upon loading the “mpi” experiment the default view appears showing the exclusive
time metric values for the functions view. Currently there is no graph generated in
the Metric Plot View. However, a calltree graph showing all the caller-callee
relationships captured during the experiment execution can be generated and
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode”
combo-box (ref Figure 56, “mpi experiment default view (with calltree graph)”).

 207

Figure 56 - mpi experiment default view (with calltree graph)

Additional views of possible interest to help point out imbalance of processing
between processes or ranks are the Compare By Process (ref Figure 57, “compare by
process view (with calltree graph)”); Compare By Rank (ref Figure 58, “compare by
rank view (with calltree graph)”) views; and Compare (ref Figure 59, “compare view
(with calltree graph)”) views. These are generated by selecting the “Compare By
Process”, “Compare By Rank” or “Compare” option in the “Mode” combo-box. In
addition, the Load Balance view allows the user to see the minimum, maximum and
average times for each function captured during the experiment execution. Along
with the minimum and maximum time values the associated component name is
identified. For the average time value the nearest component is identified by name
(ref Figure 60, “load balance view (with calltree graph)”).

 208

Figure 57 - compare by process view (with calltree graph)

Figure 58 - compare by rank view (with calltree graph)

 209

Figure 59 - compare view (with calltree graph)

Figure 60 - load balance view (with calltree graph)

13.6.1.2.12 Using the O|SS GUI to Analyze “mpip” Experiment Results

 210

Upon loading the “mpip” experiment the default view appears showing the exclusive
time metric values for the functions view. Currently there is no graph generated in
the Metric Plot View. However, a calltree graph showing all the caller-callee
relationships captured during the experiment execution can be generated and
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode”
combo-box (ref Figure 61, “mpip experiment default view (with calltree graph)”).

Figure 61 - mpip experiment default view (with calltree graph)

Additional views of possible interest to help point out imbalance of processing
between processes or ranks are the Compare By Process (ref Figure 62, “compare by
process view (with calltree graph)”); Compare By Rank (ref Figure 63, “compare by
rank view (with calltree graph)”) views; and Compare (ref Figure 64, “compare view
(with calltree graph)”) views. These are generated by selecting the “Compare By
Process”, “Compare By Rank” or “Compare” option in the “Mode” combo-box. In
addition, the Load Balance view allows the user to see the minimum, maximum and
average times for each function captured during the experiment execution. Along
with the minimum and maximum time values the associated component name is
identified. For the average time value the nearest component is identified by name
(ref Figure 65, “load balance view (with calltree graph)”).

 211

Figure 62 - compare by process view (with calltree graph)

Figure 63 - compare by rank view (with calltree graph)

 212

Figure 64 - compare view (with calltree graph)

Figure 65 - load balance view (with calltree graph)

 213

13.6.1.2.12 Using the O|SS GUI to Analyze “mpit” Experiment Results

Upon loading the “mpit” experiment the default view appears showing the MPI
event timeline and exclusive time metric values for the functions view (ref Figure
66, “mpit experiment default view”).

Figure 66 - mpit experiment default view

The MPI event timeline shows every MPI function call that occurred within the given
graph time range. For the default view, the graph time range is the full experiment
time span. Each MPI function is drawn as a rounded rectangle where the left edge is
at the time the MPI function was called and the right edge is when the MPI function
call completed. Thus, the length of the rectangle can provide visual cues as to the
magnitude of the MPI call duration.

Select the “Trace” option from the “Mode” combo-box to show a list of detailed
information regarding each MPI event in the Metric Table View - the MPI function
name, the time the function was invoked and completed (in milliseconds from the
relative beginning of the experiment), the duration (in milliseconds), the rank from
which the MPI function was invoked, the destination rank, size of the message (in
bytes) and the MPI function return value (ref Figure 67, “MPI event list in Metric
Table View”).

The graph time range can be manipulated by holding the left-mouse button and
scrolling the mouse wheel forward to zoom into the graph and scrolling the mouse
wheel backward to zoom out. The graph range can be panned to the left or right by

 214

holding the left-mouse button down and sliding the mouse to the left or right. As the
visible time range is updated by the user, the list of MPI events in the Metric Table
View is updated to match the visible time range (ref Figure 68, “MPI event list in
Metric Table View (filtered to graph range – from experiment origin)”) and (ref
Figure 69, “MPI event list in Metric Table View (filtered to graph range – at
experiment end range)”).

Figure 67 - MPI event list in Metric Table View

 215

Figure 68 - MPI event list in Metric Table View (filtered to graph range – from experiment origin)

Figure 621 - MPI event list in Metric Table View (filtered to graph range – at experiment end range)

Once the MPI event list is available in the Metric Table View, if an item under the
“Time Begin (ms)” or “Time End (ms)” table column is selected, the corresponding
MPI event in the graph timeline is highlighted inside a slightly larger rounded
yellow rectangle (ref Figure 70, “locating MPI event in graph timeline”). In addition,

 216

as can be seen in Figure 70, a dashed bounding rectangle is also drawn to help locate
the event within a crowded event timeline (ref Figure 71, “locating MPI event in a
crowded MPI event timeline”).

The dashed bounding rectangle remains visible for 10 seconds during which time
the graph may be zoomed into the area being highlighted (ref Figure 72 – “Using
highlighting cues to zoom into selected event”). For the “Time Begin (ms)” item
selected in Figure 70, once the graph has been zoomed to bring the particular MPI
event into closer view, it can be seen that the event is an MPI_WaitAll call.
Sometimes even after the graph has been zoomed to the fullest extent the name of
the MPI function call may not be visible because the MPI function rectangle is still
too small to have visible text. However, as the graph range is manipulated, in this
case by zooming into the graph (i.e. reducing the visible graph range), the contents
of the Metric Table View are filtered to the visible graph range so that the applicable
MPI function name may be determined (ref Figure 72, “Using highlighting cues to
zoom into selected event”).

Figure 70 - locating MPI event in graph timeline

graph subrange
bounding rectangle

yellow
highlighting
rectangle

 217

Figure 71 - locating MPI event in a crowded MPI event timeline

Figure 72 - Using highlighting cues to zoom into selected event

yellow
highlighting
rectangle

graph subrange
bounding
rectangle

 218

13.6.1.2.13 Using the O|SS GUI to Analyze “pthreads” Experiment Results

Upon loading the “pthreads” experiment the default view appears showing the
exclusive time metric values for the functions view. Currently there is no graph
generated in the Metric Plot View. However, a calltree graph showing all the caller-
callee relationships captured during the experiment execution can be generated and
displayed in the Metric Plot View by selecting the “CallTree” option in the “Mode”
combo-box (ref Figure 73, “pthreads experiment default view (with calltree
graph)”).

Figure 73 - pthreads experiment default view (with calltree graph)

13.6.1.2.14 Using the O|SS GUI to Analyze Performance of NVIDIA CUDA Applications

To demonstrate how the new GUI can be used to view CPU and GPU activity within
an application and generate summary metric results and detailed CUDA event lists
two different examples will be discussed.

The default view for the CUDA experiment can be seen in Figure 74. As seen here
the user changed the main window configuration to completely close the
“Experiment Panel” normally visible on the left-hand side of the main window so
that the right-hand panels take the full width of the main window. This is
accomplished by using the “handles” in the border area between two panels (ref. the
annotation in Figure 74 and Figure 75 for a zoomed in view of the splitter handle
between the Metric Plot and Metric Table Views).

 219

Figure 74 - Default View for the GEMM Experiment

Figure 75 - Zoomed View of Panel Splitter Handles

For the screenshot shown in Figure 76 one can see the CUDA events in the graph timeline. The CUDA
events are currently placed on the CPU graph of the CPU + GPU graph view. The rational for placing
them on the CPU graph is so that it does not obstruct the GPU sample counter histogram and the user
can clearly see the magnitude of each histogram bar as there should be a direct relationship with
CUDA event activity. As discussed previously a red pastel colored rectangle corresponds to a Data
Transfer event and a green pastel colored rectangle to a Kernel Execution event. Thus, for the graph
shown in Figure 6 there are two Data Transfer events, followed by 5 Kernel Execution events,
followed by one Data Transfer event (see annotations on screenshot). There is another annotation
linking one of the Kernel Execution events in the Details View to the corresponding graph item in the
CUDA timeline. The “Time Begin (ms)” value of the Kernel Execution event will be the x-axis position
of the left-edge of the Kernel Execution event rectangle on the graph timeline and the “Time End
(ms)” value will be the position of the right edge of the Kernel Execution event rectangle. This
screenshot represents the “Details – All Events” view in the area below the Metric Plot View. The
additional two screenshots show the “Details – Data Transfers” and “Details – Kernel Executions”
views that just contain CUDA Data Transfer or CUDA Kernel Execution events respectively (ref.

Panel splitter “handle” locations

Panel splitter “handle”

 220

Figures 77 and 78).

Figure 76 - CUDA Events in Graph Timeline and Details Mode View

For the Data Transfer and Kernel Execution Details views many more columns are
displayed showing all the available event information. For the All Events Details
view only the common set of event information is shown.

As discussed previously the metric values displayed in the “Metric” mode or the
events listed in the various “Details” mode views use the visible time range in the
graph timeline as input to the metric computations or filtering logic for which CUDA
events to show.

1 Data Transfer
Event

5 Kernel
Execution

Events

2 Data Transfer
Events

 221

Figure 77 - Data Transfer Details View

Figure 78 - Kernel Execution Details View

Another CUDA example will be discussed starting with the performance data
collection by running the “osscuda” convenience script on a CUDA program which
executes several different implementations of matrix multiplication using various
performance optimization techniques to demonstrate performance differences,
including:

1. Tiling

2. Memory coalescing

3. Avoiding memory bank conflicts

4. Increase floating portion by outer product.

5. Loop unrolling

6. Prefetching

A discussion of the matrix multiplication problem, the various performance
optimization techniques used in the application and source-code can be found at
https://sites.google.com/site/5kk70gpu/matrixmul-example.

https://sites.google.com/site/5kk70gpu/matrixmul-example

 222

$ osscuda "./matrixmul"
[openss]: cuda counting all instructions for CPU and GPU.
[openss]: cuda using default periodic sampling rate (10 ms).
[openss]: cuda configuration: "interval=10000000,PAPI_TOT_INS,inst_executed"
Creating topology file for frontend host eluv
Generated topology file: ./cbtfAutoTopology
Running cuda collector.
Program: ./matrixmul
Number of mrnet backends: 1
Topology file used: ./cbtfAutoTopology
executing sequential program: cbtfrun -c cuda --mrnet ./matrixmul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GTX 1060" with compute capability 6.1

[CUDA 5632:0] CUPTI_metrics_start(): The selected CUDA device doesn't support continuous GPU event sampling. GPU events
will be sampled at CUDA kernel entry and exit only (not peridiocally). This also implies CUDA kernel execution will be
serialized, possibly exhibiting different temporal behavior than when executed without performance monitoring.
Naive CPU (Golden Reference)
Processing time: 279.404175 (ms), GFLOPS: 0.360278
threads: x=16 y=16
grid: x=24 y=16
Naive GPU
Processing time: 1.555232 (ms), GFLOPS: 64.725580
Total Errors = 0
Tiling GPU
Processing time: 0.944896 (ms), GFLOPS: 106.533736
Total Errors = 0
Global mem coalescing GPU
Processing time: 1.168640 (ms), GFLOPS: 86.137128
Total Errors = 0
Remove shared mem bank conflict GPU
Processing time: 0.853728 (ms), GFLOPS: 117.910264
Total Errors = 0
Threads perform computation optimization GPU
Processing time: 0.825312 (ms), GFLOPS: 121.969984
Total Errors = 0
Loop unrolling GPU
Processing time: 0.862624 (ms), GFLOPS: 116.694296
Total Errors = 0
Prefetching GPU
Processing time: 1.037664 (ms), GFLOPS: 97.009520
Total Errors = 0
default view for /home/gschultz/Downloads/exercises/cuda/matrixMul/matrixmul-cuda-3.openss
[openss]: The restored experiment identifier is: -x 1
Performance data spans 0.461198 ms from 2017/02/16 23:26:30 to 2017/02/16 23:26:31

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count
 Exclusive
 Time
 0.605867 32.275192 1 matrixMul_coalescing(float*, float*, float*, int, int) (matrixmul: matrixMul_coalescing.cuh,31)
 0.496201 26.433165 1 matrixMul_naive(float*, float*, float*, int, int) (matrixmul: matrixMul_naive.cuh,17)
 0.257925 13.739944 1 matrixMul_tiling(float*, float*, float*, int, int) (matrixmul: matrixMul_tiling.cuh,31)
 0.211493 11.266461 1 matrixMul_noBankConflict(float*, float*, float*, int, int) (matrixmul:
matrixMul_noBankConflict.cuh,32)
 0.108675 5.789235 1 matrixMul_prefetch(float*, float*, float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31)
 0.107011 5.700592 1 matrixMul_compOpt(float*, float*, float*, int, int) (matrixmul: matrixMul_compOpt.cuh,31)
 0.090019 4.795410 1 matrixMul_unroll(float*, float*, float*, int, int) (matrixmul: matrixMul_unroll.cuh,32)

Upon completion of the CUDA experiment the O|SS experiment database will be in
the same directory as the profiled application. For this run it is in the file named
“matrixmul-cuda-3.openss”. First let’s open the experiment in the O|SS CLI:

 223

opens -cli -f matrixmul-cuda-3.openss

Once the CLI has loaded the experiment the following series of commands are issued
to produce metric data:

expview -vexec -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104
expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104
expview -vexec -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981
expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981

The following is a capture of the session:

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Kernel Kernel Time

 Execution Execution (ms)

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.605867 0.605867 0.605867 0.605867 matrixMul_coalescing(float*, float*,

float*, int, int) (matrixmul: matrixMul_coalescing.cuh,31)

 0.496201 0.496201 0.496201 0.496201 matrixMul_naive(float*, float*, float*,

int, int) (matrixmul: matrixMul_naive.cuh,17)

 0.257925 0.257925 0.257925 0.257925 matrixMul_tiling(float*, float*, float*,

int, int) (matrixmul: matrixMul_tiling.cuh,31)

 0.211493 0.211493 0.211493 0.211493 matrixMul_noBankConflict(float*, float*,

float*, int, int) (matrixmul: matrixMul_noBankConflict.cuh,32)

 0.108675 0.108675 0.108675 0.108675 matrixMul_prefetch(float*, float*,

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31)

 0.107011 0.107011 0.107011 0.107011 matrixMul_compOpt(float*, float*, float*,

int, int) (matrixmul: matrixMul_compOpt.cuh,31)

 0.090019 0.090019 0.090019 0.090019 matrixMul_unroll(float*, float*, float*,

int, int) (matrixmul: matrixMul_unroll.cuh,32)

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Data Data Time

 Transfer Transfer (ms)

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.973283 0.973283 0.973283 0.046347 runTest(int, char**) (matrixmul:

matrixMul.cu,163)

openss>>expview -vexec -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Kernel Kernel Time

 Execution Execution (ms)

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.108675 0.108675 0.108675 0.108675 matrixMul_prefetch(float*, float*,

float*, int, int) (matrixmul: matrixMul_prefetch.cuh,31)

 0.090019 0.090019 0.090019 0.090019 matrixMul_unroll(float*, float*, float*,

int, int) (matrixmul: matrixMul_unroll.cuh,32)

openss>>expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981

Exclusive Min CUDA Max CUDA Average Function (defining location)

Time (ms) Data Data Time

 Transfer Transfer (ms)

 224

 Time Across Time Across

 ThreadIds(ms) ThreadIds(ms)

 0.287658 0.287658 0.287658 0.047943 runTest(int, char**) (matrixmul:

matrixMul.cu,163)

Now let’s launch the new GUI automatically loading the same experiment database:

openss-gui –f matrixmul-cuda-3.openss

The series of screenshots shown in Figures 79-82 show the view configuration to
achieve the same performance metric results in the GUI as obtained using the CLI.

Figure 79 - “expview -vexec -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104”

 225

Figure 80 - "expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I432.892:444.104"

Figure 81 - "expview -vexec -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981"

 226

Figure 82 - "expview -vxfer -mexclusive_time,threadmin,threadmax,avg -I441.384:443.981"

Each screenshot caption indicates the corresponding “expview” command in the
O|SS CLI.

These screenshots demonstrate that the user can alter the column ordering by
holding the left-mouse button when the mouse cursor is over one of the columns
and dragging it into a new position. The columns were re-ordered to match the
ordering of the CLI views.

 227

14 Special System Support (Static Executables)

14.1 Cray and Blue Gene

The normal mode of operation with respect to running experiments in O|SS doesn’t
work when the system shared library support is limited. Users must link the
collectors into the static executable. O|SS currently has static support on Cray and
the Blue Gene P/Q platforms. Users must relink the application with the osslink
command to add the O|SS collectors and support libraries into their application.

The osslink command is a script that will help with linking. Calls to it usually are
embedded inside an application’s makefile. The user generally needs to locate the
makefile target that creates the actual static executable and create a collector target
that links in the selected collector. This is an example for re-linking the smg2000
application:

smg2000: smg2000.o
 @echo "Linking" $@ "... "
 ${CC} –o smg2000 smg2000.o ${LFLAGS}

smg2000-pcsamp: smg2000.o
 @echo "Linking" $@ "... "
 osslink –v ‐c pcsamp ${CC} ­o smg2000-pcsamp smg2000.o ${LFLAGS}

smg2000-usertime: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c usertime ${CC} -o smg2000-usertime smg2000.o ${LFLAGS}

smg2000­hwcsamp: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c hwcsamp ${CC} ­o smg2000-hwcsamp smg2000.o ${LFLAGS}

smg2000-io: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c io ${CC} ­o smg2000­io smg2000.o ${LFLAGS}

smg2000-iot: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c iot ${CC} ­o smg2000­iot smg2000.o ${LFLAGS}

smg2000-mpi: smg2000.o
 @echo "Linking" $@ "... "
 osslink ‐v ‐c mpi ${CC} –o smg2000­mpi smg2000.o ${LFLAGS}

Running the re-linked executable will cause the application to write the raw data
files to the location that the environment variable OPENSS_RAWDATA_DIR specifies.
Normally, in the cluster environment in which shared/dynamic executables are run,
the conversion from raw data to an O|SS database happens under the hood.
However, in this case users must employ the ossutil command to manually create
the database file. Of course, users can add the ossutil command to a batch script to

 228

eliminate manually issuing the command. Once the O|SS database files are created,
users can view them normally with the GUI or CLI.

Here’s an example of a job script that will execute these steps:

#PBS ­q debug
#PBS ­N smg2000-pcsamp
…
must have a clean raw data directory each run
rm ­rf /home/USER/smg2000/test/raw
mkdir /home/USER/smg2000/test/raw

setenv OPENSS_RAWDATA_DIR /home/USER/smg2000/test/raw
setenv OPENSS_DB_DIR /home/USER/smg2000/test/

cd /home/jgalaro/smg2000/test

needs –b to have the original executable path available and match where
the application was run when doing ossutil
aprun ­b ­n 16 /home/USER/smg2000/test/smg2000­pcsamp

creates a X.0.openss database file, please
load the module pointing to openspeedshop before accessing ossutil
ossutil /home/jgalaro/smg2000/test/raw

The executable path that is used to process symbols after the run is complete must
match where the executable was run. The executable path must match the path in
the raw data that is written to the directory that OPENSS_RAWDATA_DIR
represents. If the aprun “-b” option is not used, then the executable is run in a
temporary system directory and the raw data reflects that directory path for the
executable instead of the path where the executable is located when the job is
initiated. As a result, ossutil will be unable to resolve the symbols.

There have been recent changes to the shared library support in O|SS. Dynamic
shared library support is now available in newer Cray and Blue Gene operating
systems. There is support for both shared and static binaries on the Cray and Blue
Gene Q platforms.

14.1.1 osslink Command Information

The osslink command links the O|SS collectors and runtime libraries into the static
executable and manages setting the appropriate libraries based on the collector
value input to the command. Here is the help output for osslink:

osslink --help

Usage: /opt/osscbtf_cmake_only_july10/bin/osslink -c collector [options] compiler file ...

 -h, --help

 229

 -c, --collector <collector name>
Where collector is the name of the O|SS collector to link into the application. See the
openss man page for a description of the available experiments provided by O|SS. This is a
mandatory option.

 -i | --mpitype

For MPI experiments, set the OPENSS_MPI_IMPLEMENTATION value to the MPI implementation
specified. Valid options are:
 mpich
 mpich2
 mvapich
 mvapich2
 openmpi
 mpt
 lam
 lampi

 -v, --verbose

14.1.2 Cray-Specific Static aprun Information

Note: In the above execution of the statically linked executable, the –b option must
be added to the aprun call. The option is needed because O|SS stores information
about the executable location when it is running. Without the –b option the
executable is run in a temporary location that is unavailable when the raw data
information is converted into the O|SS database file.

14.1.3 Changing parameters to the experiments

Note: When running the statically linked executable with the O|SS collectors linked
in, the workflow is different. Since the more flexible convenience scripts can’t be
used, users must set environment variables to change the arguments to the
experiments.

Examples of the environment variables that can be changed are as follows:

Environment Variable Represents Experiment Type
OPENSS_PCSAMP_RATE Sampling Rate. pcsamp
OPENSS_USERTIME_RATE Sampling Rate. usertime
OPENSS_HWC_EVENT PAPI or Native Event

Name.
hwc

OPENSS_HWC_THRESHOLD How many event
occurrences before
sample taken.

hwc

OPENSS_HWCSAMP_EVENTS List of PAPI or Native
Event Names.

hwcsamp

OPENSS_HWCSAMP_RATE Sampling Rate. hwcsamp

 230

OPENSS_HWCTIME_EVENT PAPI or Native Event
Name.

hwctime

OPENSS_HWCTIME_THRESHOLD How many event
occurrences before
sample taken.

hwctime

OPENSS_IO_TRACED List of I/O functions
to collect data for.

io

OPENSS_IOT_TRACED List of I/O functions
to collect data for.

iot

OPENSS_MPI_TRACED List of MPI functions
to collect data for.

mpi

OPENSS_MPIT_TRACED List of MPI functions
to collect data for.

mpit

 231

15 Setup and Build for O|SS

O|SS is set up to work with a variety of processor types, including Intel, AMD, Intel
Phi, PPC and ARM architectures. It has been tested on many Linux Distributions,
including SLES, SUSE, RHEL, Fedora Core, CentOS, Debian, Ubuntu and many others.
It has been installed on IBM Blue Gene and Cray systems. The O|SS website contains
information on special builds and usage instructions.
Build information can be found on the O|SS website:

http://www.openspeedshop.org

Build guidelines are described in the following sections. We recommend using
spack to build O|SS if at all possible. It is the easiest, cleanest method compared to
the previous install-tool mechanism. Spack also creates the runtime environment
module file as well. This makes it much easier to build and use O|SS.

15.1 Installing O|SS with Spack

Spack is a multi-platform package manager that builds and installs multiple versions and

configurations of software. It works on Linux, macOS, and many supercomputers. Spack

is non-destructive: installing a new version of a package does not break existing

installations, so many configurations of the same package can coexist. Most importantly,

Spack is simple. It offers a simple spec syntax so that users can specify versions and

configuration options concisely. Spack is also simple for package authors: package files

are written in pure Python, and specs allow package authors to maintain a single file for

many different builds of the same package. If you’re new to spack and want to start

using it, see Getting Started, or refer to the full manual below.

O|SS can be built with spack by downloading the spack package source, as described
in the O|SS Spack Build Guide. It is possible to build O|SS with one spack install
command. Spack will download all the dependent packages that O|SS needs, build
and install them. After the dependent packages are built, spack will download,
build, and install O|SS. Spack creates module file for all the packages that it builds.
The instructions below identify where to find the module file and how to load it.

Spack allows for enabling and disabling O|SS optional build arguments/parameters
via a spack feature named variants. For O|SS, the main variants are MPI
implementation identifiers which are used to build the MPI collectors for those MPI
implementations. The spack build command:

spack install openspeedshop +openmpi +mvapich2
will build O|SS with all the collectors, including MPI collectors that will work on
OpenMPI and Mvapich2 based applications. Without those variants, all the non-mpi
specific experiments will be built, but not the MPI collectors (no ossmpi, ossmpip,
and ossmpit support).

http://www.openspeedshop.org/
https://spack.readthedocs.io/en/latest/getting_started.html

 232

Please use the install information in the O|SS Spack Build guide, which can be found
on this webpage: https://openspeedshop.org/documentation

15.2 Installing O|SS with the install-tool command

O|SS comes with a set of bash install scripts that will build O|SS and any components
it needs from source tarballs. First it will check to see if the correct supporting
software is installed on the system. If the needed software isn’t installed, it will ask
to build it for the user. The only thing users must do is provide a few arguments for
the install script. For a normal setup, just specify the directory to install in, what
build task is desired and the location of the MPI and QT installs. For example:

Build only the krell-root

./install-tool --build-krell-root

--krell-root-prefix /opt/krellroot_v2.4.0
--with-openmpi /opt/openmpi-1.8.2

Build cbtf components using the krell-root

./install-tool --build-cbtf-all

--cbtf-prefix /opt/cbtf_only_v2.4.0
--krell-root-prefix /opt/krellroot_v2.4.0
--with-openmpi /opt/openmpi-1.8.2
--with-cupti /usr/local/cuda-6.5/extras/CUPTI
--with-cuda /usr/local/cuda-6.5

Build only OSS using the cbtf components and the krell-root

./install-tool --build-oss

--cbtf-prefix /opt/cbtf_only_v2.4.0
--krell-root-prefix /opt/krellroot_v2.4.0
--openss-prefix /opt/osscbtf_v2.4.0
--with-openmpi /opt/openmpi-1.8.2
--with-cupti /usr/local/cuda-6.5/extras/CUPTI
--with-cuda /usr/local/cuda-6.5

After the install has successfully completed, a few important environment variables
must be set. Set a variable for the install location, so it can be reused. If O|SS was
installed with more than one MPI version, specify which to use with
OPENSS_MPI_IMPLEMENATION. Lastly, add the O|SS and Krell externals (root) bin
directory to your PATH and add lib64 directories to your LD_LIBRARY_PATH. See
the sections below for examples of the necessary environment variables that must
be set.

https://openspeedshop.org/documentation

 233

15.3 Execution Runtime Environment Setup

If O|SS was built with Spack, the runtime environment setup files are generated for
you. Just load the module file created for O|SS and your environment is initialized
for use.

If using the install-tool mechanism, then this section gives an example of a module
file, softenv file and dotkit that can be used to set up the O|SS execution
environments.

NOTE: For versions 2.3.0 and beyond the old O|SS module files will need
updating because these versions now use a multicast network that is
incorporated into the Component Based Tool Framework (CBTF) components.
The new module file needs new settings to set up and operate the CBTF
components and the multicast network. New module example files are listed
below.

Also: For builds of O|SS done with a compiler installed in a non-standard
location (a module was loaded for the compiler), please set up the library path
to that compiler’s libraries in the O|SS module file. See an example below.

15.3.1 Example module file

Here is an example of a module file used for a cluster installation. Use module load
<filename of module file> to activate the O|SS runtime environment:

#%Module1.0###

openss modulefile

proc ModulesHelp { } {
 global version openss

 puts stderr "\topenss - loads the OpenSpeedShop software & application environment"
 puts stderr "\n\tThis adds $oss/* to several of the"
 puts stderr "\tenvironment variables."
 puts stderr "\n\tVersion $version\n"
}

NOTE ---
The paths may need adjustment for different library naming schemes
NOTE ---

module-whatis "Loads the OpenSpeedShop runtime environment."

for Tcl script use only
set version 2.4.0.latest

Set up variables to reference later for the krell root, cbtf, and OpenSpeedShop proper
set base /home/fred/openss/power

 234

set root ${base}/krellroot_v2.4.0.latest
set cbtf ${base}/cbtf_v2.4.0.latest
set cbtfk ${base}/cbtf_v2.4.0.latest
set oss ${base}/osscbtf_v2.4.0.latest
set qtgraph ${base}/QtGraph-1.0.0
set graphviz ${base}/graphviz-2.41.0

XPLAT_RSH is needed for MRNet which is now needed for use in CBTF
setenv XPLAT_RSH ssh

For the mpi experiments only - specify the MPI implementation of your
application that will be run with OpenSpeedShop. These are the
mpi, mpit, and mpip experiments. All other experiment types will
ignore this setting. It is only needed for mpi, mpit, and mpip.
setenv CBTF_MPI_IMPLEMENTATION openmpi
setenv OPENSS_MPI_IMPLEMENTATION openmpi

This is needed if you use the --offline argument following the
convenience scripts, for example: osspcsamp --offline "mpirun -np 4 ./nbody"
This is the offline mode of operation which is now built into the
CBTF based version of OpenSpeedShop
setenv OPENSS_RAWDATA_DIR .

Only need these CBTF specific variables for situations where the environment is not passed
setenv MRNET_COMM_PATH $cbtfk/sbin/cbtf_mrnet_commnode
setenv CBTF_MRNET_BACKEND_PATH $cbtfk/sbin/cbtf_libcbtf_mrnet_backend

Set up the paths for the OSS/CBTF version of OpenSpeedShop
prepend-path PATH $root/bin
prepend-path PATH $cbtf/bin
prepend-path PATH $cbtfk/sbin
prepend-path PATH $cbtfk/bin
prepend-path PATH $oss/bin
prepend-path MANPATH $oss/share/man

Set up the dyninst runtime library path for the OSS/CBTF version of OpenSpeedShop
This is required for finding loops and gathering symbol table information.
setenv DYNINSTAPI_RT_LIB $root/lib/libdyninstAPI_RT.so

Set up the library paths for the OSS/CBTF version of OpenSpeedShop
prepend-path LD_LIBRARY_PATH $root/lib64
prepend-path LD_LIBRARY_PATH $root/lib
prepend-path LD_LIBRARY_PATH $cbtf/lib64
prepend-path LD_LIBRARY_PATH $cbtfk/lib64
prepend-path LD_LIBRARY_PATH $oss/lib64
prepend-path LD_LIBRARY_PATH $qtgraph/lib/5.6.1
prepend-path LD_LIBRARY_PATH $graphviz/lib
prepend-path LD_LIBRARY_PATH /usr/local/cuda-8.0/extras/CUPTI/lib64

Set up the python path so that the python scripting API can find
the openss python module files.
setenv PYTHONPATH $oss/lib64/openspeedshop

Here is an example module file for a Cray installation:
#%Module1.0###

oss cbtf 2.4.0 modulefile

proc ModulesHelp { } {

 235

 global version openspeedshop-cbtf

 puts stderr "\topenspeedshop-cbtf - Loads the OpenSpeedShop software target back-end (be) and front-end
(fe) execution environment for Cray"
 puts stderr "\n\tVersion $version\n"
}

module-whatis "Loads the OpenSpeedShop target back-end node (be) and front-end (fe) execution
environment."

for Tcl script use only
set version 2.4.0
set root_prefix /p/home/galarowi/openss/krellroot_v2.4.0
set cbtf_prefix /p/home/galarowi/openss/cbtf_v2.4.0
set oss_prefix /p/home/galarowi/openss/osscbtf_v2.4.0
Path to the qt3 toolkit
set qt /p/home/galarowi/openss/krellroot_v2.4.0/qt3
Path to the libraries needed for the qt4/qt5 toolkit needed for the new Qt4/Qt5 based gui
set graphviz /p/home/galarowi/openss/graphviz-2.40.1
set qtgraph /p/home/galarowi/openss/QtGraph-1.0.0
#set papi /opt/cray/papi/5.4.3.1

setenv OPENSS_DOC_DIR $oss_prefix/share/doc/packages/OpenSpeedShop

This is needed if you use the --offline argument following the
convenience scripts, for example: osspcsamp --offline "mpirun -np 4 ./nbody"
This is the offline mode of operation which is now built into the
CBTF based version of OpenSpeedShop
setenv OPENSS_RAWDATA_DIR .

For the mpi experiments only - specify the MPI implementation of your
application that will be run with OpenSpeedShop. These are the
mpi, mpit, and mpip experiments. All other experiment types will
ignore this setting. It is only needed for mpi, mpit, and mpip.
setenv CBTF_MPI_IMPLEMENTATION mpich
setenv OPENSS_MPI_IMPLEMENTATION mpich

XPLAT_RSH is needed for MRNet which is now needed for use in CBTF
setenv XPLAT_RSH ssh

Only need these CBTF specific variables for situations where the environment is not passed
setenv MRNET_COMM_PATH $cbtf_prefix/sbin/cbtf_mrnet_commnode
setenv CBTF_MRNET_BACKEND_PATH $cbtf_prefix/sbin/cbtf_libcbtf_mrnet_backend

oss_prefix_target/bin must come first to
find the osslink in the target directory

#prepend-path PATH $papi/bin
prepend-path PATH $root_prefix/bin
prepend-path PATH $oss_prefix/bin
prepend-path PATH $cbtf_prefix/bin
prepend-path PATH $cbtf_prefix/sbin
prepend-path MANPATH $oss_prefix/share/man

eval set [array get env HOME]
set ownmoddir $HOME/privatemodules

Set up the dyninst runtime library path for the OSS/CBTF version of OpenSpeedShop
This is required for finding loops and gathering symbol table information.
setenv DYNINSTAPI_RT_LIB $root_prefix/lib64/libdyninstAPI_RT.so

 236

Might need this if you use the system installed papi, here as a hint
#prepend-path LD_LIBRARY_PATH $papi/lib64

Setup the library paths for the runtime environment
prepend-path LD_LIBRARY_PATH $root_prefix/lib
prepend-path LD_LIBRARY_PATH $root_prefix/lib64
prepend-path LD_LIBRARY_PATH $cbtf_prefix/lib64
prepend-path LD_LIBRARY_PATH $oss_prefix/lib64

Setup the library paths for the qt3 runtime environment
prepend-path LD_LIBRARY_PATH $qt/lib64
Setup the library paths for the libraries needed for the qt4/qt5 new GUI runtime environment
prepend-path LD_LIBRARY_PATH $graphviz/lib
prepend-path LD_LIBRARY_PATH $qtgraph/lib64/4.8.6

15.3.2 Example softenv file

This is an example of a softenv file used for a O|SS offline version Blue Gene/Q
installation. Use the “resoft <filename of softenv file>” command to activate the
O|SS runtime environment:

The O|SS .soft file.
Remember to type "resoft" after working on this file.

OSS = /home/projects/oss/oss
KROOT = /home/projects/krellroot
TARCH = bgq

Set up OSS environment variables

Find the executable portions of O|SS (order is important here)
PATH += $KROOT/$TARCH/bin
PATH += $KROOT/bin
PATH += $OSS/$TARCH/bin
PATH += $OSS/bin

Find the libraries for O|SS (order is important here)
LD_LIBRARY_PATH += $KROOT/$TARCH/lib64
LD_LIBRARY_PATH += $KROOT/lib64
LD_LIBRARY_PATH += $KROOT/lib
LD_LIBRARY_PATH += $OSS/$TARCH/lib64
LD_LIBRARY_PATH += $OSS/lib64

Find the runtime collectors
OPENSS_PLUGIN_PATH = $OSS/$TARCH/lib64/openspeedshop

Find Dyninst for generation of per-loop statistics
DYNINSTAPI_RT_LIB $KROOT/lib64/libdyninstAPI_RT.so

Tell the tool what the application MPI implementation is
Needed if supporting multiple implementations and running the "mpi", "mpit", or "mpiotf" experiments
OPENSS_MPI_IMPLEMENTATION = mpich2

Paths to documentation and man pages
OPENSS_DOC_DIR = $OSS/share/doc/packages/OpenSpeedShop

 237

MANPATH = $OSS/share/man

Use the basic environment.
@default

15.3.3 Example dotkit file

Here is an example of a dotkit file used for a 64-bit cluster platform original offline
version O|SS installation, where all components were installed into the same prefix.
It is not generalized to support platforms other than the 64-bit cluster it was written
for. Use the “use <filename of dotkit file>” command to activate the O|SS runtime
environment. Note: Do not include the “.dk” portion of the filename when using the
“use” command.

#c performance/profile
#d O|SS (Version 2.4.0)
dk_setenv OPENSS /usr/global/tools/openspeedshop/oss-dev/OSS_2.4.0
dk_setenv KROOT /usr/global/tools/openspeedshop/oss-dev/krellroot_2.4.0
dk_setenv CBTF /usr/global/tools/openspeedshop/oss-dev/cbtf_2.4.0
XPLAT_RSH is needed for MRNet which is now needed for use in CBTF
dk_setenv XPLAT_RSH ssh
If cuda present, then we need hooks to the CUPTI interface
dk_setenv CUDA_PATH /usr/global/tools/cuda-8.0
If the new Qt4/Qt5 GUI was built, we the paths to graphviz and QtGraph
dk_setenv QTGRAPH /usr/ global/tools/openspeedshop/oss-dev/QtGraph-1.0.0
dk_setenv GRAPHVIZ /usr/ global/tools/openspeedshop/oss-dev/graphviz-2.40.1

For the mpi experiments only - specify the MPI implementation of your
application that will be run with OpenSpeedShop. These are the
mpi, mpit, and mpip experiments. All other experiment types will
ignore this setting. It is only needed for mpi, mpit, and mpip.
dk_setenv OPENSS_MPI_IMPLEMENTATION mvapich2

dk_setenv OPENSS_PLUGIN_PATH $OPENSS/lib64/openspeedshop
dk_setenv OPENSS_DOC $OPENSS/share/doc/packages/OpenSpeedShop/

Find Dyninst for generation of per-loop statistics
dk_setenv DYNINSTAPI_RT_LIB $KROOT/lib64/libdyninstAPI_RT.so

dk_alter PATH $KROOT/bin
dk_alter PATH $OPENSS/bin

dk_alter PATH $CBTF/bin
dk_alter PATH $CBTF/sbin
dk_alter LD_LIBRARY_PATH $CBTF/lib64
dk_alter LD_LIBRARY_PATH $KROOT/lib64
dk_alter LD_LIBRARY_PATH $KROOT/lib

dk_alter LD_LIBRARY_PATH $OPENSS/lib64
dk_alter LD_LIBRARY_PATH $QTGRAPH/lib/5.6.1
dk_alter LD_LIBRARY_PATH $GRAPHVIZ/lib
dk_alter LD_LIBRARY_PATH $CUDA_PATH/extras/CUPTI/lib64

 238

16 Additional Information and Documentation Sources

16.1 Final Experiment Overview

In the table below we match up a few general questions users may ask with the
experiments they may want to run to find answers.

Where does my code spend most of its time?

 Flat profiles (pcsamp)
 Getting inclusive/exclusive timings with call paths (usertime)
 Identifying hot call paths (usertime + HP analysis)

How do I analyze cache performance?

 Measure memory performance using hardware counters (hwc)
 Compare to flat profiles (custom comparison)
 Compare multiple hardware counters (N x hwc, hwcsamp)

How to identify I/O problems?

 Study time spent in I/O routines (io, iot and lightweight iop)
 Compare runs under different scenarios (custom comparisons)

How to identify memory problems?

 Study time spent in memory allocation/de-allocation routines (mem)
 Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in OpenMP and/or threaded applications?

 Study time spent in POSIX thread routines (pthreads)
 Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in MPI applications?

 Study time spent in MPI routines (mpi, mpit, and lightweight mpip)
 Look for load imbalance (LB view) and outliers (CA view)

How do I find parallel inefficiencies in NVIDIA CUDA applications?

 Study time spent in CUDA routines and the CUDA event execution trace. (cuda)

16.2 Additional Documentation

The Python scripting API documentation can be found at
http://www.openspeedshop.org/docs/pyscripting_doc or in the
…/share/doc/packages/openspeedshop/pyscripting_doc folder in the install
directory.

There also are man pages for openss and every convenience script. There’s also a
quick-start guide available for download from http://www.openspeedshop.org.

There is an O|SS Forum-type email alias where users can ask questions and read
previous posts: oss-questions@openspeedshop.org. Use this URL to sign up:
https://groups.google.com/a/krellinst.org/forum/?hl=en - !forum/oss-questions

There also is an email list to which users can send questions without joining the
group: oss-contact@openspeedshop.org.

http://www.openspeedshop.org/docs/pyscripting_doc
http://www.openspeedshop.org/
mailto:oss-questions@openspeedshop.org
https://groups.google.com/a/krellinst.org/forum/?hl=en#!forum/oss-questions
mailto:oss-contact@openspeedshop.org

 239

 240

17 Convenience Script Basic Usage Reference Information

This section provides a quick overview of the convenience scripts available to either
compare experiment data with other experiment data or to gather performance information
for each of the various performance metric types that O|SS supports.

17.1 Suggested Workflow
We recommend an O|SS workflow consisting of two phases: gathering the performance data
using the convenience scripts, then using the GUI or CLI to view the data.

17.2 Convenience Scripts
Users are encouraged to employ the convenience scripts (for dynamically linked
applications) that hide some of the underlying options for running experiments. The full
command syntax can be found in the User’s Guide. The script names correspond to the
experiment types and are: osspcsamp, ossusertime, osshwc, osshwcsamp, osshwctime,
ossio, ossiot, ossmpi, ossmpit, ossiop, ossmem, ossomptp, osspthreads, ossmpip and
osscuda, plus an osscompare script. Note: If using the offline operating mode, be sure to
set OPENSS_RAWDATA_DIR. (See KEY ENVIRONMENT VARIABLES section for
information.)

O|SS no longer gathers loop information by default, the “--loops” option is required for the
loop level information to be gathered and subsequently viewed. For example: osspcsamp
--loops “mpirun -np 256 ./smg2000 -n 5 5 5”

O|SS will gather information about the vector instructions that were executed in the
application run, provided that a sample was taken at the address that corresponds to a
vector instruction. There are three options that will enable this feature:

 --vinstr128 Find vector instructions with operand sizes that are 128 bits or greater

 --vinstr256 Find vector instructions with operand sizes that are 256 bits or greater

 --vinstr512 Find vector instructions with operand sizes that are 512 bits or greater

For example: osspcsamp –vinstr512 “mpirun -np 256 ./smg2000 -n 5 5 5”

When running O|SS, use the same syntax that is used to run the
application/executable outside of O|SS, but enclosed in quotes; for example:

Using MPI drivers like mpirun:
 osspcsamp “mpirun -np 512 ./smg2000 -n 5 5 5”
Using SLURM/srun:
 osspcsamp “srun -N 64 -n 512 ./smg2000 -n 5 5 5”

Redirection to/from files inside quotes can be problematic. See the convenience
script “man pages for more information.

17.3 Report and Database Creation

Running the pcsamp experiment on the sequential program named mexe, with the
command:
osspcsamp mexe

 241

results in a default report and the creation of a SQLite database file:
mexe-pcsamp.openss
in the current directory.

Here’s the report:
% CPU Time CPU time Function
48.990 11.650 f3 (mexe: m.c, 24)
33.478 7.960 f2 (mexe: m.c,15)
17.451 4.150 f1 (mexe: m.c,6)
 0.084 0.020 work(mexe:m.c,33)

To access alternative views in the GUI, use the command:
openss –f mexe-pcsamp.openss
to load the database file. Then use the GUI toolbar to select desired views.

When using the CLI, the command:
openss –cli –f mexe-pcsamp.openss
loads the database file. Then use the expview command options for desired views.

17.4 osscompare: Compare Database Files

General form:
osscompare “<db_file1>, < db_file2>[,<db_file>...]” [time | percent | <other
metrics>] [rows=nn] [viewtype=functions| statements | linkedobjects] > [oname =
<csv filename>]

Where:

“<db_file>” represents an O|SS database file created by running an O|SS
experiment on an application.

[time | percent | <other metrics>] represent the metric that the comparison
will use to differentiate the performance information for each experiment
database.

[rows=nn] indicates how many rows of output you want to have listed.

[viewtype=functions| statements | linkedobjects] selects the granularity of
the view output. The comparison is either done at the function, statement, or
library view level. Function level is the default granularity.

[oname = <csv filename>] Name the output filename when comma
separated list output is requested.

Example:
osscompare “smg-run1.openss,smg-run2.openss” 

 242

osscompare “smg-run1.openss,smg-run2.openss” percent rows=10

Please type “man osscompare” for more details.

17.5 osspcsamp: Program Counter Experiment

General form:
osspcsamp “<command> < args>” [high | low | default | <sampling rate>]

Sequential job example:
osspcsamp “smg2000 –n 50 50 50”

Parallel job example:
osspcsamp “mpirun –np 128 smg2000 –n 50 50 50”

Additional arguments:

high: twice the default sampling rate (samples per second)
low: half the default sampling rate
default: default sampling rate is 100
<sampling rate>: integer value sampling rate

17.6 ossusertime: Call Path Experiment

General form:
ossusertime “<command> < args>” [high | low | default | <sampling rate>]

Sequential job example:
ossusertime “smg2000 –n 50 50 50” 

Parallel job example:
ossusertime “mpirun –np 64 smg2000 –n 50 50 50”

Additional arguments:

high: twice the default sampling rate (samples per second)
low: half the default sampling rate
default: default sampling rate is 35
<sampling rate>: integer value sampling rate

17.7 osshwc, osshwctime: HWC Experiments

General form:
osshwc[time] “<command> < args>” [default | <PAPI_event> | <PAPI threshold> |
<PAPI_event><PAPI threshold>]

 243

Sequential job example:
osshwc[time] “smg2000 –n 50 50 50” 

Parallel job example:
osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50” 

Additional arguments:
default: event (PAPI_TOT_CYC), threshold (10000)
<PAPI_event>: PAPI event name
<PAPI threshold>: PAPI integer threshold

17.8 osshwcsamp: HWC Experiment

General form:
osshwcsamp “<command>< args>” [default | <PAPI_event_list>|
<sampling_rate>]

Sequential job example:
osshwcsamp “smg2000 –n 50 50 50”

Parallel job examples:
osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50”
osshwcsamp “srun –N 32 –n 128 sweep3d.mpi” PAPI_L1_DCM,PAPI_L1_DCA 200

Additional arguments:
default: events(PAPI_TOT_CYC and PAPI_FP_OPS), sampling_rate is 100
<PAPI_event_list>: Comma separated PAPI event list 
<sampling_rate>: integer value sampling rate

17.9 ossio, ossiot: I/O Experiments

General form:
ossio[t] “<command> < args>” [default | f_t_list]

Sequential job example:
ossio[t] “smg2000 –n 50 50 50”

Parallel job example:
ossio[t] “mpirun –np 128 smg2000 –n 50 50 50”

Additional arguments:

 244

default: trace all I/O functions
< f_t_list>: Comma-separated list of I/O functions to trace; one or more of the
following: close, creat, creat64, dup, dup2, lseek, lseek64, open, open64,
pipe, pread, pread64, pwrite, pwrite64, read, readv, write and writev

17.10 ossmpi, ossmpip, ossmpit: MPI Experiments

General form:
ossmpi[p|t] “<mpirun><mpiargs><command><args>” [default | f_t_list]

Parallel job example:
ossmpi[p|t] “mpirun –np 128 smg2000 –n 50 50 50”

Additional arguments:
default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero
or more of: MPI_Allgather, MPI_Waitsome and/or zero or more of the
MPI group categories:

MPI Category Argument
All MPI Functions
Collective Communicators
Persistent Communicators
Synchronous Point to Point
Asynchronous Point to Point
Process Topologies 
Groups Contexts
Communicators
Environment 
Datatypes
MPI File I/O

all
collective_com
persistent_com
synchronous_p2p
asynchronous_p2p
process_topologies
graphs_contexts_comms
environment 
datatypes
fileio

17.11 ossmem: Memory Analysis Experiment

General form:
ossmem “<command> < args>” [default | f_t_list]

Sequential job example:
ossmem “smg2000 –n 50 50 50”

Parallel job example:
ossmem “mpirun –np 128 smg2000 –n 50 50 50”

 245

Additional arguments:

default: trace all supported memory functions
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or
more of: malloc, free, memalign, posix_mem align, calloc and realloc

17.12 ossomptp: OpenMP Specific Profiling Experiment

General form:
ossomptp “<command> < args>”

Sequential job example:
ossomptp “openmp_stress < stress.input”

Parallel job example:
ossomptp “mpirun –np 128 openMP_MD”

17.13 osspthreads: POSIX Thread Analysis Experiment

General form:
osspthreads “<command> < args>” [default | f_t_list]

Sequential job example:
osspthreads “smg2000 –n 50 50 50”

Parallel job example:
osspthreads “mpirun –np 128 smg2000 –n 50 50 50”

Additional arguments:

default: trace all POSIX thread functions
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or
more of: pthread_create, pthread_mutex_init, pthread_mutex_destroy,
pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock,
pthread_cond_init, pthread_cond_destroy, pthread_cond_signal,
pthread_cond_broadcast, pthread_cond_wait, and
pthread_cond_timedwait

17.14 osscuda: NVIDIA CUDA Tracing Experiment

General form:
osscuda “<command> < args>”

Sequential job example:
osscuda “eigenvalues --matrix-size=4096”

 246

Parallel job example:
osscuda “mpirun -np 64 -npernode 1 lmp_linux -sf gpu < in.lj”

17.15 cbtfsummary: Overview/Summary Multiple Metric Experiment

General form:
cbtfsummary “<command> < args>”

Sequential job example:
cbtfsummary “./matmul < matmul.input”

Parallel job example:
osscuda “mpirun –np 128 smg2000 –n 50 50 50”

17.16 Key Environment Variables

 247

Execution Related Variables Description

OPENSS_RAWDATA_DIR Used on cluster systems where a /tmp file
system is unique on each node. It specifies the
location of a shared file system path which is
required for O|SS to save the “raw” data files on
distributed systems.
OPENSS_RAWDATA_DIR=”shared file system
path” Example: export
OPENSS_RAWDATA_DIR=/lustre4/fsys/userid

OPENSS_ENABLE_MPI_PCONTROL Activates the MPI_Pcontrol function recognition;
otherwise O|SS will ignore MPI_Pcontrol function
calls.

OPENSS_DATABASE_ONLY When running the O|SS convenience scripts, only
create the database file and do NOT put out the
default report. Used to reduce the size of the
batch file output files if user is not interested in
looking at the default report.

OPENSS_RAWDATA_ONLY When running the O|SS convenience scripts, only
gather the performance information into the
OPENSS_RAWDATA_DIR directory, but do NOT
create the database file and do NOT put out the
default report.

OPENSS_DB_DIR Specifies the path to where O|SS will build the
database file. On a file system without file locking
enabled, the SQLite component cannot create the
database file. This variable is used to specify a
path to a file system with locking enabled for the
database file creation. This usually occurs on
Lustre file systems that don’t have locking
enabled. OPENSS_DB_DIR=”file system
path” Example: export
OPENSS_DB_DIR=/opt/filesys/userid

 248

OPENSS_MPI_IMPLEMENTATION Specifies the MPI implementation the application
is using; only needed for the mpi, mpit, and mpip
experiments. These are the currently supported
MPI implementations: openmpi, lampi, mpich,
mpich2, mpt, lam, mvapich, mvapich2. For
Cray, IBM and Intel MPI implementations, use
mpich2.
OPENSS_MPI_IMPLEMENTATION=”MPI impl.
name” Example:
export
OPENSS_MPI_IMPLEMENTATION=openmpi
In most cases, O|SS can auto-detect the MPI in
use.

OPENSS_DEFER_VIEW Allow overriding display of the default view for
cases where users may not want or need it
displayed.

CBTF_CSVDATA_DIR Sets directory path for the location for the
cbtfsummary experiment csv files.

 249

Appendix A: cbtfsummary csv file format

Application and Host/Rank/Thread Information

DESCRIPTION

Of Data (Rows

1­2)

Host that the

data was

obtained

from

Process Id for

this data

MPI rank for

this data

Thread

id for this

data

POSIX thread id
Application

Name

Total time in

Seconds

Row 1: header

information
host pid rank tid posix_tid executable total_time_seconds

Row 2: data

matching row

1 header

localhost 19879 1 3 140376294303616 lulesh2.0 4.909129

Information in row 1 (header) and 2 (values corresponding to the header):

 Host that the data was obtained from

 Process Id

 MPI rank

 OpenMP thread Id

 POSIX thread Id

 Application name

 Application run time in seconds

Notes on Row 1 - 2:

 The host, process, etc. information is currently always in the first two rows of the

csv file

Potential Derived/Non-Derived Information Displayed in Report Form:

 The host, process, etc. information is currently always in the first two rows of the

csv file

getrusage type Information

DESCRIPTION

Of Data (Rows 3­4)
Maximum resident storage size User time in seconds System time in seconds

Row 3: header information maxrss_bytes utime_seconds stime_seconds

Row 4: data matching row 3

header
45644 1.839830 0.539242

 250

Information in row 3 (header) and 4 (values corresponding to the header):

 Maximum resident storage size (high water mark) obtained from getrusage

 User time seconds obtained from getrusage

 System time in seconds obtained from getrusage

Notes on Row 3 - 4:

 The rusage information is currently always in the first third and fourth rows of the

csv file

PAPI dmem (Dynamic Memory) Information

DESCRIPTION

Of Data (Rows 5­6)

Dynamic memory

size

Dynamic resident

memory usage

Dynamic memory usage

high water mark

Dynamic

memory usage

that was in

shared memory

Dynamic memory usage

that was in heap memory

Row 5: header

information
dmem_size dmem_resident dmem_high_water_mark dmem_shared dmem_heap

Row 6: data

matching row 1

header

301568 30952 45644 12100 38176

Information in row 5 (header) and 6 (values corresponding to the header):

 Dynamic memory sized obtained from the papi dmem interface

 Dynamic memory resident size obtained from the papi dmem interface

 Dynamic memory high water mark obtained from the papi dmem interface

 Dynamic memory usage that was in shared memory obtained from the papi dmem

interface

 Dynamic memory usage that was in heap memory obtained from the papi dmem

interface

Notes on Row 5 – 6:

 The papi dmem information is currently always in the first fifth and sixth rows of

the csv file

POSIX I/O Information

DESCRIPTION

Of Data (I/O if

present)

Time spent in POSIX

I/O calls

Time spent in POSIX

read

I/O calls

Time spent in POSIX

write

 I/O calls

Number of bytes via

POSIX read I/O calls

Number of bytes via

POSIX write I/O calls

I/O Row 1: header

information
io_total_time read_time write_time read_bytes writebytes

 251

I/O Row 2: data

matching row 1

header

0.000120 0.000059 0.000061 13618 1961

Information in I/O row 1 (header) and I/O row 2 (values corresponding to the header):

 Time spent in POSIX I/O calls obtained from cbtf I/O wrappers

 Time spent in POSIX read I/O calls obtained from cbtf I/O wrappers

 Time spent in POSIX write I/O calls obtained from cbtf I/O wrappers

 Number of bytes read via POSIX read I/O calls obtained from cbtf I/O wrappers

 Number of bytes written via POSIX write I/O calls obtained from cbtf I/O
wrappers

Notes on I/O Rows:

 • If I/O is present this information will (currently) show up in row 7 and 8 of the csv

file

POSIX Memory Allocation Call Information

DESCRIPTION

Of Data (mem rows)

Time spent in allocation

(malloc, calloc, realloc, etc) calls
Number of allocation calls Number of bytes allocated

Mem Row 1: header information allocation_time allocation_calls allocation_bytes

Mem Row 2: data matching row 1

header
0.000001 5 317

Information in mem row 1 (header) and mem row 2 (values corresponding to the

header):

 Time spent in allocation (malloc, calloc, realloc, etc) calls obtained from cbtf
mem wrappers

 Number of allocation (malloc, calloc, realloc, etc) calls obtained from cbtf mem
wrappers

 Number of bytes allocated via allocation (malloc, calloc, realloc, etc) calls
obtained from cbtf mem wrappers

Notes on Row mem rows:

 • TBD

POSIX Memory Free Call Information

DESCRIPTION

Of Data (Mem free rows)
Time spent inf free calls Number of calls to free

Mem free row 1: header information free_time free_calls

Mem free row 2: data matching row 1 header 0.000001 1

 252

Information in mem free row 1 (header) and mem free row 2 (values corresponding to the

header):

 Time spent in memory free calls obtained from cbtf mem wrappers

 Number of free calls obtained from cbtf mem wrappers

Notes on mem free rows:

 • TBD

MPI Function Call Information

DESCRIPTION

Of Data (MPI rows)
Total time spent in MPI functions

MPI Row 1: header information total_mpi_time

MPI Row 2: data matching row 1 header 0.340121

Information in MPI row 1 (header) and MPI row 2 (values corresponding to the header):

 Time spent in MPI function calls obtained from cbtf mpi wrappers

Notes on MPI rows:

 • This could be refined in the future to contain timing by MPI categories.

Hardware Counter Event Count Information

DESCRIPTION

Of Data (HWC

Rows)

PAPI counter

for total cycles

PAPI counter

for total

instructions

PAPI counter

for load

instructions

PAPI counter

for level 3

total cache

misses

PAPI counter for

level 2 total cache

misses

PAPI counter

for level 1

total cache

misses

More papi

counters…….

HWC row 1:

header

information

PAPI_TOT_CYC PAPI_TOT_INS PAPI_LD_INS PAPI_L3_TCM PAPI_L2_TCM PAPI_L1_TCM …

HWC row 2:

data matching

row 1 header

6100004039 5511171256 1950917099 9663853 20989452 77687293 . . .

Information in HWC row 1 (header) and HWC row 2 (values corresponding to the

header):

 Hardware counter event occurrences obtained from cbtf hardware counter

collectors

 253

 List of default hardware counters that are cycled through and used if they are
found to be available on the system the application is running on:

◦ PAPI_TOT_CYC Total cycles

◦ PAPI_TOT_INS Total instructions

◦ PAPI_LD_INS Load instructions

◦ PAPI_VEC_DP Double precision vector/SIMD instructions

◦ PAPI_DP_OPS Double precision floating point operations

◦ PAPI_FDV_OPS Floating point divide operations

◦ PAPI_FP_INS Floating point instructions

◦ PAPI_FP_OPS Floating point operations

◦ PAPI_L3_TCM Level 3 cache misses

◦ PAPI_L2_TCM Level 2 cache misses

◦ PAPI_L1_TCM Level 1 cache misses

◦ PAPI_TLB_IM Instruction translation lookaside buffer misses

◦ PAPI_REF_CYC Reference clock cycles

◦ PAPI_REF_NS

◦ PAPI_FUL_CCY Cycles with maximum instructions completed

◦ PAPI_RES_STL Cycles stalled on any resource

Notes on HWC rows:

 • This could be refined in the future to contain timing by MPI categories.

OpenMP Time Information

DESCRIPTION

Of Data

(OpenMP

Rows)

Implicit Task

Time
Serial time Barrier time Barrier wait time Idle time

OpenMP Row

1: header

information

implicit_task_time serial_time barrier_time wait_barrier_time idle_time

OpenMP Row

2: data

matching row

1 header

4.903256 0.006370 0.0 0.0 18446694400.000000

Information in OpenMP row 1 (header) and OpenMP row 2 (values corresponding to the

header):

 Implicit task time obtained from cbtf omptp based OpenMP wrappers

 Serial task time obtained from cbtf omptp based OpenMP wrappers

 Barrier task time obtained from cbtf omptp based OpenMP wrappers

 Wait Barrier task time obtained from cbtf omptp based OpenMP wrappers

 Idle task time obtained from cbtf omptp based OpenMP wrappers

Notes on OpenMP rows:

 254

 • TBD

