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Abstract 
This report examines the PAPI interface to the Intel Performance Monitor Counters (PMC). The 
PMC is a hardware mechanism for reporting performance-related processor core and memory 
events. These events include such things as an L1 cache miss or a load instruction completed. 
Information such as this can be extremely useful when working to improve application 
performance. 
 
In this report we explore various uses of the counters for examining application performance. 
We provide a useful selection of event types to count for general use. We provide definitions 
of the counters as they are defined on Intel Sandy Bridge. We also give definitions of 
commonly useful derived metrics, such as CPI, that highlight performance issues. We show 
how to use them and give several examples of their use.  
 
This approach also extends to systems based on Intel Broadwell processors as well as others. 
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NOMENCLATURE 

Abbreviation Definition 

ALU Arithmetic Logic Unit 
AVX Advanced Vector Extensions 
BLAS Basic Linear Algebra Subroutine package mathematical library 
CPI Clocks per instruction 
CPU Central Processing Unit 
DAXPY Double-precision vector A (times) X plus Y routine 
DGEMM Double-precision general matrix multiplication routine 
DGETRF Double-precision general matrix factorization with partial pivoting 
DP Double-precision 
E5-2670 2.6 GHz Intel E5-2670 Sandy Bridge processor 
FLOP Floating-point operation 
FP Floating-point 
GB/s Gigabytes per second, or 1,000,000,000 bytes per second 
GF/s Gigaflops per second, billions of floating-point operations per second 
GHz Gigahertz, or 1,000,000,000 cycles per second 
KiB Kilobytes, or 1,024 bytes 
L1, L2, L3 Level 1 (or 2 or 3) cache 
LAPACK Linear Algebra Package of mathematical subroutines 
LU Matrix factorization into lower- and upper-triangle form 
MB Megabytes, or 1,000,000 bytes 
MB/s Megabytes per second, or 1,000,000 bytes per second 
MFLOP/sec Megaflops per second, or 1,000,000 DP floating-point operations per second 
MHz Megahertz, or 1,000,000 cycles per second 
MiB Megabytes, or 1,024 x 1,024 bytes 
MPI Message Passing Interface 
NUMA Non-uniform memory access 
OPS Operations 
PAPI Performance Application Program Interface 
PAPI_* See Appendix A for definitions of PAPI events 
PCHASE Pointer chasing micro-benchmark that measures memory latency 
PMC Performance Monitor Counters 
QPI Quick Path Interconnect 
TDP Thermal Design Point 
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1. INTRODUCTION 
Optimization is the process of maximizing benefit gained while minimizing the resources used. 
Application performance optimization attempts to provide the most efficient use of computer 
system resources in order to minimize the amount of time to complete a task. Successful 
optimization requires detailed knowledge about how operations within the application are 
making use of the available hardware resources, including low-level processor core components 
such as various levels of cache, floating-point units, and so forth.  
 
Gathering this information requires multiple steps, including: selecting the instrumentation to be 
used, placing the instrumentation at key locations within the code, gathering the data from the 
running application, and analyzing the data for opportunities to improve the code.  
 
The Intel Performance Monitor Counters, or PMC, is a set of eight flexible counters per 
processor core that track core-level events. Core-level events include the completion of any 
instruction, or the completion of only certain types of instructions, such as branch or floating-
point instructions. They also include cache misses for each level of cache. PMC counters give a 
detailed view into what the processor is doing to execute an application, and that information can 
be extremely useful for code optimization.  
 
PAPI is a library package that provides convenient access to the Intel PMC facility. It provides 
subroutines to set up, start, and stop the counters. It provides standardized names for each class 
of events, and handles the hardware specific event codes that often make using such facilities 
difficult. PAPI can be accessed through its native API, and it is used by other packages, such as 
TAU and Open|SpeedShop, to provide low-level performance data through higher-level 
performance tools.  
 
But PMC and PAPI are complex and often subtle facilities. PAPI itself is fairly simple, but PMC 
is not, and though PAPI hides the more complex mechanics of PMC from the user, it cannot hide 
the complexities of interpreting the output of the counters themselves.  
 
This report attempts to accomplish several things. First, we look carefully at what the counters 
are actually counting. We look for values that are reported consistently from one run to the next, 
and we try to establish what units are being counted. For example, does a certain event represent 
an instruction or an operation? Vector addition can be a single instruction that performs multiple 
floating-point operations. Which is being counted? 
 
Second, we look for ways to add the counters to a program. TAU and Open|SpeedShop offer 
ways to use the counters without recompiling the application, but they may count more than is 
actually wanted. Adding PAPI instrumentation manually is more effort, but it can give more 
narrowly focused results. 
 
Third, we look for ways of using the event counts to learn something useful about the 
performance of an application. To do that we use four micro-benchmarks that are already well 
understood, to learn what the counters can tell us. We look at the counters to see how they map 
to program behavior.  
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But counters by themselves don't tell us enough about program performance. They only tell us 
how many events have taken place, not whether there is opportunity for improvement. So finally, 
we look at some derived metrics that give useful information, not just data, about application 
performance.  
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2. PROFILES AND TRACES 
There are many types of instrumentation one might use to analyze program behavior. At the 
highest level, there are two major styles to choose from: profiling and tracing. Profiles aggregate 
the data over time, whereas traces record ordered sequences of events. Profiles allow a user to 
answer such questions as, "How much time did I spend in this subroutine?" or, "How many times 
was that block of code executed?" Profiles generally record resource usage, whatever the notion 
of a resource might be. Resources might be CPU time, wall clock time, execution passes, 
floating-point and integer operations, cache hits or misses, memory loads and stores, and so 
forth. But profiles do not record any notion of event ordering or time stamps, so they cannot tell 
you whether this block of code was executed before or after some other block of code. For that, a 
trace is required.  
 
Traces record ordered sequences of events. The events may be time stamped, but that isn't 
always the case. Events may also record resource usage at the time of the event, but that is also 
not required. The sequence need not even be a total ordering of events. A trace might indicate 
that event B occurred before event A, and event C also occurred before event A, yet give no 
indication whether event B occurred before or after event C. Time stamps help impose a total 
ordering on events, but distributed systems may also have distributed clocks, so even time 
stamps may not resolve the issue.  
 
Comparing profiles and traces, profiles tend to be much smaller than traces, with data that is 
most useful in figuring out where the problems might be hiding. They give you a "big picture" 
view of the program. Traces often give you much more detail, but can be much larger and more 
intrusive as a result. 

Optimization often needs to be focused on portions of code where the most time is spent. The 
greater the time spent in a block of code, the greater the potential benefit of optimizing that code. 
Amdahl's Law talks about limits to program speed improvements when a portion of the code can 
be parallelized. Specifically, speed-up can be approximated by looking at the amount of serial 
code, parallel code, and the degree of parallelization, using the equation Sn = 1/((1-P) + P/n). In 
this equation, Sn is the speed-up with n processors and P is the parallelizable portion of the code. 
As n gets very large, the equation asymptotically approaches 1/(1-P) and that is all you can do.  

The point of Amdahl's Law is that performance improvements are always limited by the portion 
of code not being improved. That principle applies to all code optimization, not just running 
code in parallel. If the section of code you're working on uses 10% of the total running time, the 
best your efforts could ever achieve would be 1/(1-0.1) or approximately 11% improvement, and 
that assumes you can optimize it away completely. The conclusion is, generally speaking, for 
best results, start with the most time consuming portions of code. That is where you have the 
greatest potential improvement. And, to find out how much time (or other resource) each portion 
of code uses, start with a profile. 

This document is intended to discuss PAPI rather than performance tool instrumentation in 
general, so from this point forward we assume the use of PAPI in the context of gathering profile 
data rather than traces. PAPI can certainly be used in generating trace data, though, and the 
principles discussed here are every bit as relevant to traces as they are to profiles. 
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3. SYSTEM ARCHITECTURE AND PAPI EVENT COUNTERS 
OK, we're going to profile our code, maybe the whole program, or maybe only some small 
portion of it. What are we looking for? We want to focus our efforts on some of the more time 
consuming portions of code, sure. But it's not enough to know that this function or that code 
block uses 90% of the time. Besides, we don't need PAPI for that kind of information, anyway. 
PAPI can tell us that, but other tools, such as gprof, can tell us that kind of information more 
easily. We also need to have some idea of what the code is doing with that time, in order to have 
some idea of how, or even whether, we might try to improve it. For that we need to have at least 
a basic understanding of the underlying architecture.  
 
A compute cluster consists of a collection of compute servers connected together by some sort of 
communication fabric, such as Infiniband or Ethernet. Compute servers are sometimes referred 
to as "compute nodes", and compute nodes communicate using a communication library such as 
MPI. The cluster may also have storage nodes, administrative nodes, log-in nodes, visualization 
nodes, etc. But for running a program, it is the compute nodes that are most important. 
 
Each compute node consists of one or more processors, memory, storage devices and 
communication adapters. Typical compute nodes have two processors. Storage devices and 
communication adapters are attached through an I/O bridge integrated into one of the processors. 
Each processor has its own memory controller and memory, but both processors can use all 
memory. Each processor also has several cores, and each core has its own collection of 
Arithmetic Logic Units (ALUs) that do the work of executing its own stream of instructions. 
 
Each core comes with its own 32 KiB L1 data cache, 32 KiB L1 instruction cache, 256 KiB L2 
unified data and instruction cache, and 2.5 MiB shared L3 cache. L1 and L2 caches are only used 
by their respective core, but all L3 cache blocks are shared over an internal network. Memory 
references that miss L1 cache are forwarded to L2, references that miss L2 cache are forwarded 
to L3, and references that miss all blocks of L3 cache are passed on to the correct memory 
controller. References to local memory are passed to the local memory controller, while 
references to remote memory are passed over the QPI subsystem to be handled by the remote 
processor's memory controller. 
 
A simplified block diagram of a processor can be seen in Figure 1. 
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Figure 1 – Basic Processor Architecture 

 
PAPI event counters focus almost exclusively on the execution of instructions within each core. 
Each core has a collection of hardware event counters that PAPI uses to gather data. Hardware 
events include things like the number of load and store instructions, floating-point instructions, 
or branch instructions that were executed, the number of references to each level of cache that 
missed, the total number of clock cycles completed, etc. A complete list of PAPI counters that 
are available on Sandy Bridge systems, along with their description, is given in Appendix A. 
PAPI counters do not include events related to the operation of storage or communication 
devices, or to the execution of operating system services. Neither does it count events related to, 
or distinguish between local vs. remote memory references. Its focus is primarily instruction 
execution and cache. 
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4. DERIVED METRICS 
Armed with this information we can see that individual event counts, by themselves, are not 
much help. If a program executes 2 billion floating-point instructions, is that good or bad? What 
if there were 400 million L2 cache misses? From that data alone it is hard to tell. It is only when 
counters are combined that a useful picture emerges.  
 
For example, suppose a program running on a single core executes 2 billion double precision 
floating-point instructions in about 100 million nanoseconds. From this we can compute an 
execution rate of about 20 gigaflops per second (20 GF/s). It's still not enough information by 
itself, but further knowing that we have a 2.6 GHz processor that can be accelerated to 3.2 GHz, 
and an AVX unit capable of 8 floating-point operations per clock, we can determine that the 
peak rate per core is about 25 GF/s. Now the fact that we're achieving 20 GF/s on a single core 
sounds pretty good. We've hit 80% of peak performance, and from experience we know we're 
not likely to do much better than that. 
 
Measurements of program performance that are computed from event counts are referred to as 
"derived metrics". PAPI directly supports a few derived metrics, such as program megaflops, but 
there are many more that are useful. A fairly complete collection of derived metrics for Sandy 
Bridge can be found in Appendix B. The list isn't exhaustive, but it captures many of the more 
important ones.  
 
The importance of derived metrics is that they describe how the program makes use of computer 
resources. It is true that by themselves they are useful for comparing system performance, but to 
optimize a program we need to know how we are using system resources relative to its maximum 
capacity. It's not enough to know that we are computing at a rate of 20 GF/s on a single core, we 
also have to know that the core is capable of no more than 25 GF/s. Efficiency numbers like that 
tell us whether there is opportunity for improvement. 
 
There are several metrics that are good indicators of improvement opportunities. Floating-point 
rates, when shown relative to peak rates, are an obvious choice that is easy to understand. 
Another good indicator is cache usage. Data in L1 cache can be moved into registers in under 
two nanoseconds. Moving data from memory to registers requires anywhere from 10 
nanoseconds for stride-one access, to 95 nanoseconds for random access. Clearly, the closer the 
data can be kept to the core, the faster the program will run.  
 
But when it comes to cache, of course, it is never quite that simple. An occasional few references 
to memory during a very long running program is not going to affect performance all that much, 
but a large number of memory references can severely impact performance. How do you know 
when the number of memory loads is limiting performance? Ideally, it is by comparing the 
amount of time the program is delayed loading data from memory against the total running time 
of the program. Unfortunately, we don't have counters to measure that. 
 
It seems like the next best thing would be to compare the number of load instructions against the 
execution time. Unfortunately, that doesn't tell us whether the program is being delayed waiting 
for data from memory or the program is very good at interleaving data operations with other 
operations. Suppose, for example, that we are doing the worst thing possible, that is, loading lots 
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of data from random locations in memory. The number of load instructions per unit time would 
be very low, because each load instruction takes so long to complete. On the other hand, consider 
a program that is highly efficient and only occasionally loads data from L1 cache. The number of 
load instructions per unit time would still be low, not because the program is performing poorly, 
but because it is performing well! 
 
The key issue is whether data load operations are delaying program execution. One way to see 
this is by comparing the number of memory hits to the total number of instructions over the same 
period. If there are many memory hits and few instructions executed over a period of time, that's 
a good indicator that performance is limited by memory performance and perhaps the data layout 
might benefit from restructuring. 
 
On the other hand, the program might be one that has no other choice but to move lots of data 
between memory and core. In that case, comparing the memory hits per second against the 
system maximum memory throughput could be very useful. Each memory hit moves 64 bytes 
from memory to cache. Furthermore, each processor has one memory controller, each memory 
controller has four memory channels, each channel is 8 bytes wide, and operates at 1,600 MHz. 
Thus, each server has a peak memory bandwidth of 2 processors x 4 channels x 8 bytes wide x 
1,600 MHz equals 102,400 MB/s, or about 100 GB/s. But there are always inefficiencies in the 
system, and the best throughput a program can actually achieve is around 78 GB/s. If the 
program in question must move large data blocks around and it does so at or near 78 GB/s, it is 
doing well. 
 
Another good general indicator of how well memory is managed is the average number of clocks 
per instruction, or CPI. One core may issue and retire up to four instructions per clock. If the 
core sustains this peak rate, the CPI will be 0.25. Values close to this can only occur when most 
data is in registers, branches are accurately predicted, and few conflicts arise between core 
functional units. When the opposite is true, that is, when data is in memory and memory accesses 
are random, CPI can reach 150 or more. CPI may also be high when problems unrelated to data 
motion occur, but CPI will be high when excess data motion occurs. 
 
Two other indicators that are sometimes useful are vector operations per floating-point operation 
and floating-point operations per load instruction. The first, vector operations per floating-point 
operation, gives the vectorization rate. Vector operations can be significantly faster than scalar 
operations. For starters, scalar operations require the processor to issue and retire more 
instructions than vector operations to accomplish the same work. Vector operations are also 
better equipped to pipeline the operations, resulting in faster execution. The exception to this rule 
is when data must come from memory and memory throughput is saturated. In that case, the 
pipeline must stall waiting for data whether the operations are scalar or vector, and there is no 
advantage to vector operations. 
 
The second indicator, floating-point operations per load instruction, is sometimes called the 
arithmetic intensity, or floating-point intensity. It compares the number of desirable operations -- 
floating-point operations -- against the number of undesirable operations -- memory operations. 
It is also an indication of the level of data reuse. When re-use is high and data movement is low, 
performance will also tend to be high. The standard definition of this metric is floating-point 
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operations per byte of data loaded from memory, but in our case it must be floating-point 
operations per data load instruction. The two metrics are closely related but different. The event 
counters do not track the number of bytes loaded, only the number of load instructions, so this 
alternate definition must be used. The drawback is that load instructions may load from 1 to 32 
bytes, so additional knowledge of program behavior may also be needed. 
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5. INSTRUMENTATION SELECTION 
With so many possible events to choose from, selecting the most useful set of events can be 
challenging. This is made even more challenging by the limited number of counters available.  
 
The way this works is that each processor core has eight event counters available for use. 
Hyperthreading makes two contexts available per core, so when it is enabled, each of the two 
Hyperthreads gets half of the counters, or four counters each. Compute servers generally do not 
benefit from Hyperthreads, though, so they are disabled.  
 
Of the eight counters that are available, the operating system often uses one of the counters for a 
watchdog timer. A watchdog timer is used to prevent the system from hanging. At certain key 
times the operating system resets the timer, always long before the timer should expire. If the 
timer ever does expire, it is because a device driver has hung attempting to access a device that 
has failed, or a privileged component has failed to manage locks correctly. If a watchdog timer 
expires, it raises a high priority interrupt to get control back to the operating system, where it can 
either recover or fail gracefully. 
 
The seven remaining counters are generally available and can be used for nearly any selection of 
PAPI events. When a counter is initialized, the event type is set, the counter scope is set, and the 
event count is initialized to a known value. Each time an event of the type specified occurs, the 
counter is incremented. The counter continues to increment until it rolls over, that is, until the 
sign of the value changes, at which time it raises an interrupt. The interrupt causes a handler to 
record the fact that the value rolled over, reset the counter value, and handle any bookkeeping 
details that might be needed.  
 
Since the number of counters is limited, event selection must be tailored to fit the investigation. 
For example, if nothing is known about a code, the FLOP rate might be a useful place to start. If 
only double precision adds and multiplies are counted, it requires only one counter, for 
PAPI_DP_OPS events. Division instructions can be included with an additional counter for 
PAPI_FDV_INS. A third counter is needed to include single precision operations. Elapsed time 
can be measured using the Linux function gettimeofday or the PAPI function 
PAPI_get_real_ns.  
 
The number of memory loads per instruction is also a good place to start. Memory loads 
generally occur when a load instruction misses all levels of cache. This is recorded by the 
PAPI_L3_TCM event. Each time L3 is missed, a cache line is read from memory into L1 cache, 
which may cause a cache line to be evicted from L1, L2 and L3. Memory can also be read 
directly, bypassing cache, using non-temporal read instructions. Non-temporal read operations 
are not counted by PAPI_L3_TCM. Total number of instructions is counted by 
PAPI_TOT_INS. 
 
CPI is another good place to start. CPI requires the total number of instructions, using 
PAPI_TOT_INS, and the number of clocks, using PAPI_TOT_CYC.  
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Notice that there is a difference between the total number of cycles, PAPI_TOT_CYC, and the 
number of reference cycles, PAPI_REF_CYC. Reference cycles are driven by the processor base 
frequency and occur at a constant rate. They may be measured using an event counter, using the 
PAPI_REF_CYC event, or by using the Time Stamp Counter, with the PAPI_get_real_cyc 
function. Either way the result is the same. In contrast, the total number of cycles can vary as the 
clock frequency goes up and down with the system load. Total cycles are only measured with an 
event counter and the event PAPI_TOT_CYC. 
 
Vectorization rates can be obtained by collecting the total floating-point operations with 
PAPI_DP_OPS and the vector operations with PAPI_VEC_DP. Note that PAPI_VEC_DP 
records the number of floating-point operations that were initiated by a vector instruction, not the 
number of vector instructions issued.  
 
Finally, the number of memory references per instruction can be obtained by gathering 
PAPI_L3_TCM and PAPI_TOT_INS events. 
 
When only double precision floating-point operations are used, these five metrics can be 
collected together. The events would be: PAPI_DP_OPS, PAPI_FDV_INS, PAPI_L3_TCM, 
PAPI_TOT_INS, PAPI_VEC_DP, and PAPI_TOT_CYC. Elapsed time could be measured 
using the functions PAPI_get_real_cyc and PAPI_get_real_ns.  
 
Note that the above list uses six of the seven available counters, leaving room for one more. L3 
hits are expensive, though not so expensive as memory hits, so counting L2 misses using 
PAPI_L2_TCM might be useful. L3 hits can then be derived from the events collected. Detailed 
cache studies generally require that several events be counted together, though. Other events, 
such as branch mispredictions or stalled cycles might also provide some insight. Potentially most 
useful, though, is PAPI_LD_INS, to provide insight into the number of floating-point 
operations per load instruction. 
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6. INSTRUMENTATION PLACEMENT AND DATA GATHERING 
Once the PAPI counters have been selected, they must somehow be added to the application, in 
the locations where they will usefully measure interesting behavior. This means either adding the 
instrumentation by hand, or using a performance tool, such as TAU or Open Speed Shop, to add 
it for you. Adding instrumentation by hand can be tedious and error prone, but it gives very 
precise control over where the instrumentation is placed and when it is activated. Using 
performance tools can be simpler, but it may also be more difficult to gather the data wanted 
without extraneous noise. Examples of each will be shown. 

6.1. TAU Instrumentation 
First we start with an example from TAU. 
 
$ bin="../../../bin" 
$ module purge 
$ . /projects/tau/tau.bashrc 
$ module load mkl/15.0 
$ /bin/rm -rf MULTI__* profile.* 
$ export TAU_METRICS=TIME,PAPI_DP_OPS,PAPI_VEC_DP,PAPI_FDV_INS,PAPI_TOT_INS,\ 
PAPI_TOT_CYC,PAPI_L3_TCM 
$ tau_exec -T serial,papi $bin/daxpy_64_mkl -threads 1 -size 1000 -iterations 10000000 
$ paraprof 
 
It is important to remove any files named profile.* and directories named MULTI__*, as 
that is where the data will be stored. TAU does not take steps to ensure its data collection will 
take place without difficulty, and pre-existing files with those names can interfere in subtle ways 
with data gathering and display. 
 
Once the program has run and the data has been gathered, the PAPI counts are displayed using 
paraprof. The initial screen shows the metrics as sub-entries in the navigation pane. An 
example is shown in Figure 2. 
 
Double-clicking on one of the counters, such as PAPI_DP_OPS, opens a new window that 
shows the range of values for that metric. An example is shown in Figure 3. Unfortunately the 
data is in graphical form. Double-click on "node 0" to see the numerical value for that metric 
(Figure 4). 
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Figure 2 – TAU ParaProf Manager 

 

 
Figure 3 – TAU Metric Window 
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Figure 4 – TAU Metric Window 

 
There are several down sides to this process. First, collecting data for many counters becomes an 
exercise in creating and deleting ParaProf windows. You must point and click twice to find the 
data, copy the data to paper or spreadsheet, then delete the windows you've created. Second, 
TAU often truncates the number of digits, losing precision that might be useful. Third, while 
convenient, this form of instrumentation gathers data for the whole program, which may include 
code you don't want to include in your measurements. TAU has other ways to add PAPI counters 
into code that offer a little more precision, and they are discussed in detail in TAU 
documentation. 

6.2. Open|SpeedShop Instrumentation 
Open|SpeedShop also offers the ability to instrument a code without recompiling it. (See below.) 
 
$ module add tools/openss-openmpi 
$ osshwcsamp "$bin/daxpy_64_mkl -threads 1 -size 1000 -iterations 10000000" \ 
PAPI_DP_OPS,PAPI_TOT_CYC,PAPI_FDV_INS,PAPI_L3_TCM,PAPI_TOT_INS,PAPI_VEC_DP 
 
[openss]: hwcsamp experiment using input papi event: 
"PAPI_DP_OPS,PAPI_TOT_CYC,PAPI_FDV_INS,PAPI_L3_TCM,PAPI_TOT_INS,PAPI_VEC_DP". 
[openss]: hwcsamp experiment using the hwc experiment default sampling_rate: "100". 
[openss]: hwcsamp experiment calling openss. 
[openss]: Setting up offline raw data directory in ./offline-oss 
[openss]: Running offline hwcsamp experiment using the command: 
"../../../bin/daxpy_64_mkl -threads 1 -size 1000 -iterations 10000000" 
 
Routine     Elements Bytes/Thread Time (sec) Iterations          MFLOPS            MB/s 
-------|------------|------------|----------|----------|---------------|--------------- 
  daxpy         1000        16000     2.8789   10000000       6947.1154      83365.3850 
 
 
[openss]: Converting raw data from ./offline-oss into temp file X.0.openss 
 
Processing raw data for daxpy_64_mkl ... 
Processing processes and threads ... 
Processing performance data ... 
Processing symbols ... 
Resolving symbols for /home/dmpase/projects/microbenchmarks/bin/daxpy_64_mkl 
Updating database with symbols ...  
Finished ...  
 
[openss]: Restoring and displaying default view for: 
 /home/dmpase/projects/microbenchmarks/pub/cblas/oss/daxpy_64_mkl-hwcsamp-10.openss 
[openss]: The restored experiment identifier is:  -x 1 
 
Exclusive    % of CPU  papi_dp_ops  papi_tot_cyc  papi_fdv_ins  papi_l3_tcm  papi_tot_ins  
papi_vec_dp  Function (defining location) 
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 CPU time        Time                                                                                
       in                                                                                            
 seconds.                                                                                            
 2.860000   99.651568  24497864411   9386176728          138         145  24360778635  
24497859092  cblas_daxpy (daxpy_64_mkl: cblas_daxpy.c,12) 
 0.010000    0.348432     85633584     32824677                              85163493     
85633584  main (daxpy_64_mkl: daxpy.c,40) 
 2.870000  100.000000  24583497995   9419001405          138         145  24445942128  
24583492676  Report Summary 
 
The Open|SpeedShop output is somewhat difficult to read when copied to this page, but it's a 
little easier on a wide terminal. Open|SpeedShop does limit the number of PAPI counters to six, 
even when seven counters are available in the system.  

6.3. Manual Instrumentation 
Adding instrumentation by hand to an application is rarely a preferred method for instrumenting 
a code. It can be tedious and error prone, not only to add the instrumentation when first gathering 
data, but also when removing it after it is no longer needed. It is more suitable as a method of last 
resort. However, at least in simple cases, PAPI instrumentation is easy to add and remove. All 
that is required is an array of events to count and a few simple routines. For example, in the 
DAXPY program example, the code looks something like this: 
 
    #include <papi.h> 
    int events[] = { 
        PAPI_DP_OPS,                // vector and scalar DP ops 
        PAPI_FDV_INS,               // floating-point divisions 
        PAPI_VEC_DP,                // vector DP ops 
        PAPI_L3_TCM,                // L3 total cache misses 
        PAPI_TOT_INS,               // total instructions 
        PAPI_TOT_CYC,               // total cycles (TurboBoosted) 
    }; 
    const int len = sizeof events / sizeof *events; 
 
    long long *vals = (long long *) malloc(len * sizeof(long long)); 
    PAPI_start_counters(events, len); 
 
    for (i=0; i < iterations; i++) { 
        cblas_daxpy(size, scalar, x, 1, y, 1); 
    } 
 
    PAPI_stop_counters(vals, len); 
 
This code works for a single thread, but more work would be required for this to handle 
multithreaded code correctly. A particularly valuable advantage, though, is that the output can be 
designed to suit any preferences. Not a big deal when the number of interesting counters is small, 
but PAPI supports 50 counters on Sandy Bridge and for that, or when the number of 
instrumented regions is large, the convenience can be significant. 
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7. PERFORMANCE ANALYSIS 
Once the data has been collected, it's time to figure out what's really going on in the application. 
To help illustrate what one might expect to see with these counters, we ran four benchmarks with 
a selection of carefully chosen input parameters. The benchmarks are: DAXPY, to show the 
effects of strided memory access; PCHASE, to show the effects of random memory access; and 
DGEMM and DGETRF, to show high performance floating-point codes. Detailed descriptions of 
the benchmarks and their performance characteristics are given in Appendix C. 

7.1. DAXPY 
In a nutshell, DAXPY loads two vectors, multiplies the first one by a scalar, adds the vectors 
together and stores the sum back into the second vector. For each vector element, it loads two 
double precision floating-point values and stores one. It has very few floating-point operations 
for each reference to memory. References are all stride-one, that is, they hit successive locations 
in memory. That makes it very easy for a cache prefetch engine to predict where the next 
reference will hit, which allows the engine to load the next cache line while the current line is 
being used.  
 
The vector size can be used to predict where in the cache hierarchy the data will be found. Each 
double precision floating-point vector element is 8 bytes, so two vectors of length 1,000 uses 
16,000 bytes. This fits nicely within the 32 KiB L1 data cache and two vectors of length 10,000 
fit within L2 cache. Vectors of length 100,000 and 1,000,000 fit within L3 cache, while larger 
vectors fit only within memory. 
 
DAXPY has yet one more advantage: it can be easily executed as either vector code or scalar 
code, allowing us to see how the counters differentiate between the two.  
 
For this exercise, we used vector lengths of 1,000 up to 1,000,000,000 elements. For each vector 
length, we gathered counter values for the cache counters PAPI_L1_TCM, PAPI_L2_TCM, 
PAPI_L3_TCM, and for the instruction counters PAPI_DP_OPS, PAPI_FDV_INS, 
PAPI_TOT_CYC, PAPI_TOT_INS, and PAPI_VEC_DP. Counter values for the scalar and 
vector versions were gathered separately. The values are recorded in Appendix D, Tables D.1 
and D.3. The derived metrics discussed in previous sections are also recorded in Appendix D, 
Tables D.2 and D.4. 
 
Now that the data has been gathered, the next step in this analysis is to verify that the 
PAPI_DP_OPS event collects useful data. Starting with floating-point operations, Tables D.1 
and D.3 show the number of DP OPS to be approximately 20,000,000,000. We expect the 
number of DP OPS to be 2 x length x iterations, which in every case is also 20,000,000,000, so 
the counter appears to be accurate. Furthermore, Figure 5 shows the gigaflops per second 
calculated from PAPI counters, which matches the blue (single core) performance curve in 
Figure C.1. 
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Figure 5 – DAXPY Gigaflops Per Second  

 
From Figure 5 we see that the number of gigaflops per second is well below what the processor 
AVX floating-point unit is capable of, which we calculated earlier to be about 25 GF/s/core. 
Whatever else might be going on, we know the AVX unit isn't the limiting factor here. We aren't 
floating-point performance limited. 
 
If the benchmark had been FP performance limited, we would look to systems with faster clocks, 
faster vector units, or more cores (greater parallelism).  
 
What's more, we can see that performance declines as the vectors become larger. While we know 
a priori that this is due to data fitting into various levels of cache, we will be able to see it 
directly from later measurements. 
 
Our next step is to look at the rate that instructions are issued and retired. We will actually use its 
inverse - Clocks Per Instruction. This data is shown in Figure 6. CPI is based on the 
PAPI_TOT_INS event. The measurement of 45,000,000,000 total instructions for 
20,000,000,000 scalar floating-point instructions seems plausible, although we have no way to 
verify this more closely. 
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Figure 6 – DAXPY CPI  

 
CPI tells us whether the core itself is running at full speed. We've determined that the floating-
point units aren’t fully utilized. Is that because the integer units, or some other components, are 
heavily used? If so, this could affect us in any of several ways. One way is the units that issue 
and retire instructions may be fully loaded. There's work to do, the data is there, but the core just 
isn't able to go any faster. Another is that there is simply a lot of integer work to do, and it's 
getting the bulk of the core. 
 
At most the core can issue/retire 4 instructions per clock. If the CPI is close to its theoretical 
limit of 0.25, we know that the core is operating at full speed. Essentially, we would be core 
limited, also referred to as being clock frequency limited. If that were the case, then to go faster 
we would need faster clocks or more cores. 
 
We can see from Figure 6 that we are not core limited. We also see that the core becomes 
progressively idle as the vectors become longer. Our next step will be to examine the 
contribution of the memory subsystem, to see how it affects performance. 
 
Ideally we would be able to measure how much time the core is delayed waiting for data from 
cache, but nothing like that is available. Instead we have cache miss counts for each level of 
cache. Those events are PAPI_L1_TCM, PAPI_L2_TCM and PAPI_L3_TCM. There are other 
related events that could also be used, but these three event types give a count of all cache 
misses, including instructions and data, for each level of cache.  
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It's important to note that each cache miss represents a cache line to be loaded into cache. New 
cache lines are always loaded into L1, which may cause a ripple effect of data being evicted from 
each layer of cache.  
 
In order to see whether our performance is impacted by data being away from the core, we look 
at the number of instructions executed, on average, between cache misses. This information is 
shown in Figure 7. 
 

 
Figure 7 – DAXPY Instructions Retired Per Cache Miss 

 
We can see several things from looking at Figure 7. When the vector length is 1,000, the number 
of instructions per miss is very high for all three levels of cache. This is a strong indication that 
cache misses are not impacting performance. This is as we expect, because we know that the data 
fits completely in L1 cache.  
 
When the vector length is 10,000, the number of instructions per miss is low for L1 cache (blue 
lines), but high for L2 and L3 caches (red and green lines). This means we are missing L1 often, 
but hitting in L2 and L3. We know this is true because we know the vectors fit in L2 cache. But 
had this been an unfamiliar piece of code, we could also see it from the data. This same pattern is 
also repeated for L3. 
 
Restructuring a code to increase cache reuse is a complex topic, but these three metrics clearly 
show when there may be an opportunity to improve program performance by increasing cache 
hits.  
 
There are several other generally useful metrics. Two of them are the vectorization rate and the 
"Turbo GHz". The vectorization rate measures how well a code is vectorized. Not surprisingly, 
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our two examples of DAXPY show opposite extremes. The scalar version has a vectorization 
rate of zero, while our vectorized version shows a rate of 100%. Vectorization rate is computed 
using PAPI_DP_OPS, which counts all double precision adds and multiplies, and 
PAPI_VEC_DP, which counts only vector DP operations. (Divisions are not counted either 
way.) 
 
"Turbo GHz" (our term) is a measure of how much the processor clock is allowed to increase 
while staying within the core thermal limits (aka Thermal Design Point, or TDP). It can be 
shown as a ratio of total clocks to reference clocks, or as an effective clock frequency. The 
effective clock frequency tells you what frequency, on average, the core is really operating at. 

7.2. PCHASE 
The PCHASE benchmark measures memory random access latency by repeatedly chasing a 
chain of pointers distributed randomly throughout a block of memory. The benchmark is 
described in greater detail in Appendix C, but the most important point to understand is that each 
link in the chain loads a new cache line into cache. Each pointer, each link in the chain, is placed 
so as to be completely unpredictable to any cache prefetch engine, forcing the full latency for 
each pointer fetch. No other operations are performed, other than to check for the end of the 
chain.  
 
Furthermore, chains are formed from a contiguous block of memory, and the size of the memory 
block determines its cache residency. These tests used sizes ranging from 12,800 bytes to 
12,800,000,000 bytes, with each test having 10x more links in the pointer chain and 10x fewer 
iterations over the chain, than the previous test. The first test fits entirely in L1 cache, the next 
test in L2, followed by two tests in L3, and the remaining tests in local memory. 
 
Our first step with this benchmark is to make a quick consistency check on the counters. We 
gather the same 8 events as before and look for reasonable counts. By increasing the chain length 
and decreasing the iteration count simultaneously, the total number of instructions should be very 
close from one run to the next. The inner loop itself consists of a load instruction, an increment, 
and a conditional branch. Furthermore, the chain length times the iteration count always equals 
2,000,000,000, so there should be about 6,000,000,000 instructions counted. Looking at Table 
D.5 we see that PAPI_TOT_INS count is approximately that. 
 
The floating-point counters are easy to check. PAPI_DP_OPS, PAPI_FDV_INS and 
PAPI_VEC_DP are all near zero, as they should be. They aren't all exactly zero, but relative to 
the number of instructions executed, they are "close enough". 
 
The cache events, PAPI_L1_TCM, PAPI_L2_TCM and PAPI_L3_TCM, are the most 
interesting events in the list. The critical value is the chain length times the iteration count, as 
that gives the number of cache lines to be loaded for each benchmark run. As mentioned, that 
value is 2,000,000,000 in all cases. The total number of cache misses for all three caches for the 
test run that fits in L1 cache (size is 12,800) is very close to zero. The test that fits into L2 cache 
shows roughly 2,000,000,000 L1 cache misses, and nearly zero misses for L2 and L3. The two 
L3 tests show 2,000,000,000 L1 and L2 cache misses, and low miss counts for L3. The memory 
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tests show approximately 2,000,000,000 cache misses for all three levels of cache. It appears that 
each of these event types is working correctly in this case.  
 
Next we examine the counters as if we were analyzing the performance of an unfamiliar 
program, and compare that with what we know about the program. We start with CPI. From 
Figure 8 (and Table D.6), we see the CPI in all cases is well above the value of 0.25 we would 
like to see. From this we know that we are not limited by core performance and would suspect 
we are limited by the time to fetch data from cache or memory (which in this case we know is 
true). 
 

 
Figure 8 – PCHASE CPI  

 
Since CPI is very high, we look at the cache miss behavior. In particular, we look at the number 
of instructions per cache miss for each of the levels of cache.  
 
When the chain size is small enough to fit in the L1 cache (12,800 bytes), Figure 9 shows that 
the average number of instructions between L1 (blue line), L2 (red line), and L3 (green line) 
misses is very large. In essence, for the 12,800-byte test, missing cache at any level did not affect 
performance. That being the case, we could also look at the PAPI_LD_INS event and compare 
it against the PAPI_L1_TCM counter. With 2,000,000,000 load instructions and very few L1 
cache misses, the loads are hitting L1 and that is what limits performance, especially when we 
consider 1 instruction in 3 is a load instruction. 
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Figure 9 – PCHASE Instructions Retired Per Cache Miss  

 
When the chain size is 128,000 bytes and all data fits in L2, we see a similar effect. However, 
since the chain no longer fits into L1, the number of instructions executed per L1 miss drops to 3, 
while the number of instructions executed per L2 or L3 miss remains very high. This tells us 
immediately that we are hitting in L2. Again, since 1 instruction in 3 is a load instruction, it is the 
speed of L2 that limits performance. Similarly, when data is in L3 cache, the number of 
instructions per L2 miss drops to 3 while the number of instructions per L3 miss remains high. 
When data is too large for the L3 cache, the number of instructions per cache miss drops to very 
low numbers for all three levels of cache. 
 
Optimizing a program whose performance is limited by the performance of random memory 
access requires significant restructuring of the data in memory. Data must be moved into lower 
levels of cache and reused extensively. How this might be done depends on the nature of the 
program and is beyond the scope of this paper. 

7.3. DGEMM 
So far we have examined a program that strides through memory, DAXPY, and a program that 
randomly accesses memory, PCHASE. The next two programs, DGEMM and DGETRF, are 
highly optimized and make very efficient use of the core floating-point unit. We know the 
number of floating-point operations they perform and that the number of load operations is 
proportional to the number of floating-point operations. We will use the PAPI event counters to 
see what we can learn about these two benchmarks. 
 
DGEMM is a routine from the Level 3 BLAS, or Basic Linear Algebra Subroutine package. It 
multiplies two matrixes together and adds the result to a third matrix. Details of this operation 
are described in Appendix C. This routine is able to achieve very high performance over a wide 
variety of matrix sizes, exceeding 95% of the theoretical maximum double precision floating-
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point performance in many cases. The actual floating-point performance is shown in Figure 10. 
We see that the performance rapidly approaches 25 gigaflops/second. Since we know the single 
core double precision floating-point performance peak is just over 25 gigaflops/second, we can 
see that we are limited by core performance.  
 

 
Figure 10 – DGEMM Gigaflops Per Second  

 
CPI is also very flat and low, at approximately 0.35. (See Figure 11.) This means that three out 
of every four instruction slots have an instruction available for execution. This is a very high 
rate. 
 
The vectorization rate across the board is at 100%. 
 
Once again we look at the rate of instructions retired per cache miss to see whether 
improvements might be possible. But from Figure 12 we see that cache access is quite balanced 
and infrequent enough that cache misses are not a limiting factor. The number of instructions 
executed before an L1 miss occurs is about 40 instructions. An L1 miss that is satisfied in L2 
requires about 12 clock cycles, which gives plenty of time to load data into registers. The number 
of instructions before an L2 miss is about 140, compared to an L2 miss satisfied in L3, which is 
about 45 clock cycles.  
 
It is interesting to note that 40:12 and 140:45 are both about 3:1, which is the number of 
instructions per clock we see from the CPI (i.e., 1/0.35 = 2.85). This may be an indication that 
the cache is a slight limiting factor to performance. 
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Figure 11 – DGEMM CPI  

 

 
Figure 12 – DGEMM Instructions Retired Per Cache Miss  

 
There are about 1,660 instructions before an L3 miss, and an L3 miss of strided memory costs 
around 10 nanoseconds. Clearly 1,660 instructions take more than enough time to prefetch data 
into L3. The performance of memory does not appear to be a limiter to performance based on 
this evidence. 
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Given this information, it appears the best ways to increase performance here are a faster vector 
floating-point unit, or possibly a larger L2 or L3 cache. This code is obviously making very 
efficient use of the available hardware. 

7.4. DGETRF 
DGETRF is a subroutine from the linear algebra package library called LAPACK. It solves a 
system of N linear equations in N unknowns using a technique known as LU factorization with 
partial pivoting. The system of equations is represented as a dense, rectangular matrix. Like 
DGEMM, DGETRF also makes efficient use of an available core, although not quite to the same 
degree. We know the number of floating-point operations that DGETRF performs for any given 
size of system. We also know that the number of load operations is proportional to the number of 
floating-point operations, and that ratio of floating-point to load operations is very small.  
 
As with the other benchmarks, raw event counts and derived metrics are given in Appendix D. 
DGETRF event counts are in Table D.9 and derived metrics are in Table D.10. 
 
We start our analysis with the floating-point performance (Figure 13) and see that floating-point 
performance increases as N increases. In this case we reach about 22.5 gigaflops per second 
when N is 14,000, which represents about 88% of peak performance.  
 
CPI (Figure 14) shows a mirror image of the floating-point performance because floating-point 
operations dominate this benchmark. As N becomes large enough, CPI approaches 0.35, which is 
the same CPI number we saw for DGEMM. But while the CPI performance might be the same, 
the floating-point performance is not, because DGETRF requires more integer operations to 
manage internal details of the algorithm.  
 

 
Figure 13 – DGETRF Gigaflops Per Second  
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Figure 14 – DGETRF CPI  

 
The cache behavior (Figure 15 or Table D.10) is also very similar to DGEMM, though perhaps 
not quite as favorable. Looking at the number of instructions before an L1 cache miss, DGETRF 
executes about 30 to 40 instructions before an L1 miss, 80 to 150 instructions before an L2 miss, 
and 900 to 1,400 instructions before an L3 miss. If instructions and data references were 
perfectly overlapped, there is just enough time that neither one becomes a major bottleneck. 
 

 
Figure 15 – DGETRF Instructions Retired Per Cache Miss  

 
Like DGEMM, it appears that DGETRF balances its demands on the major core components to 
achieve high performance. The floating-point performance is high, the CPI is low, and data 
references hit cache and memory with a low enough frequency that they do not impede 
performance.  
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8. SUMMARY 
PAPI is a useful means for obtaining low-level performance data. The Intel Sandy Bridge 
processor implements eight event counters per core, of which up to seven are available to system 
users. Many different event types can be counted, but knowing what those counters represent, or 
how to use them to analyze the performance of an application, can be difficult. Furthermore, 
Intel has acknowledged, at least in private communication, that some event types are not 
implemented correctly. 
 
In this document we have verified that a selection of the most useful counters do give consistent 
and reasonable results, at least for our limited tests. We have also demonstrated ways of using 
those counters for analyzing the performance of an application, from selecting the counters, to 
inserting them into an application, to interpreting the results.  
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APPENDIX A - PAPI EVENTS 

Name:		 PAPI_BR_CN 
Units:			 Instructions	
Description:	Conditional branch instructions	
Notes:	 Counts the	total	number	of	conditional	branch	instructions	retired,	including	

those	from	if,	for,	while,	and	switch	constructs.	 
 
Name:		 PAPI_BR_INS 
Units:	 		 Instructions	
Description:	Branch instructions	
Notes:	 Counts the total number of branch instructions retired, including conditional 

branches, unconditional branches, subroutine calls and subroutine exits. 
 
Name:		 PAPI_BR_MSP 
Units:	 		 Instructions	
Description:	Conditional branch instructions mispredicted	
Notes:	 Counts the total number of conditional branch instructions that were mispredicted. 

When a processor core encounters a conditional branch instruction, it guesses 
which direction the branch will take and speculatively executes along that branch. 
If the guess is correct, the core has saved time by overlapping instructions along 
the branch with the time required to evaluate the condition. If the guess is wrong, 
though, the core must undo anything it has done along the wrong branch and 
begin to execute along the correct branch. This event counts the guesses that are 
wrong. 

 
Name:		 PAPI_BR_NTK 
Units:	 		 Instructions	
Description:	Conditional branch instructions not taken	
Notes:	 Counts the number of conditional branches not taken. When a processor core 

encounters a conditional branch, it has a choice of either taking the branch or 
falling through to the next instruction. This event counts the number of 
conditional branches that fall through to the next instruction. 

 
Name:		 PAPI_BR_PRC 
Units:	 		 Instructions	
Description:	Conditional branch instructions correctly predicted	
Notes:	 Counts the total number of conditional branch instructions that were mispredicted. 

When a processor core encounters a conditional branch instruction, it guesses 
which direction the branch will take and speculatively executes along that branch. 
If the guess is correct, the core has saved time by overlapping instructions along 
the branch with the time required to evaluate the condition. If the guess is wrong, 
though, the core must undo anything it has done along the wrong branch and 
begin to execute along the correct branch. This event counts the guesses that are 
right.  
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Name:		 PAPI_BR_TKN 
Units:	 		 Instructions	
Description:	Conditional branch instructions taken	
Notes:	 Counts the number of conditional branches taken. When a processor core 

encounters a conditional branch, it has a choice of either taking the branch or 
falling through to the next instruction. This event counts the number of 
conditional branches that do not fall through to the next instruction.  

 
Name:		 PAPI_BR_UCN 
Units:	 		 Instructions	
Description:	Unconditional branch instructions	
Notes:	 Counts the number of unconditional branches executed. Unconditional branches 

include subroutine calls and exits, and the branches at the bottom of loops and 
that separate else clauses in conditional constructs.  

 
Name:		 PAPI_DP_OPS 
Units:	 		 Double precision floating-point operations	
Description:	Floating point operations; optimized to count scaled double precision vector 

operations	
Notes:	 Counts all double precision addition and multiplication floating-point operations, 

whether from scalar or vector instructions. It does not include division operations. 
 
Name:		 PAPI_FDV_INS 
Units:	 		 Floating-point division instructions	
Description:	Floating point divide operations	
Notes:	 Counts all floating-point division operations, whether single or double precision. 
 
Name:		 PAPI_FP_INS 
Units:   Floating-point instructions	
Description:	Floating point instructions	
Notes:	 Counts all single precision and double precision scalar operations, but not vector 

operations. Note that for scalar instructions, instructions and operations are the 
same thing. Note also that this event gives the same results as PAPI_FP_OPS. 

 
Name:		 PAPI_FP_OPS 
Units:   Floating-point operations	
Description:	Floating point operations	
Notes:	 Counts all single precision and double precision scalar operations, but not vector 

operations. Note that for scalar instructions, instructions and operations are the 
same thing. Note also that this event gives the same results as PAPI_FP_INS. 
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Name:		 PAPI_L1_DCM 
Units:   64-byte cache lines	
Description:	Level 1 data cache misses	
Notes:	 Counts the number of accesses that miss, causing a 64-byte cache line to be read-

in to the L1 data cache. Accesses include both load and store operations. Thus a 
program with stride-one access and data not in the L1 cache will have one data 
cache miss out of eight 8-byte load operations it performs. Note that this event 
gives very similar results as PAPI_L2_DCA. 

 
Name:		 PAPI_L1_ICM 
Units:   64-byte cache lines	
Description:	Level 1 instruction cache misses	
Notes:	 Counts the number of instructions that miss, causing a 64-byte cache line to be 

read-in to the L1 instruction cache.  
 
Name:		 PAPI_L1_LDM 
Units:   64-byte cache lines	
Description:	Level 1 load misses	
Notes:	 Counts the number of load operations that miss the L1 cache. Each load miss 

causes a 64-byte cache line to be read-in to the L1 data cache. 
 
Name:		 PAPI_L1_STM 
Units:   64-byte cache lines	
Description:	Level 1 store misses	
Notes:	 Counts the number of store operations that miss the L1 cache. A cache store miss 

causes a 64-byte cache line to be read-in to the cache, then modified by the store 
operation, before the operation completes. 

 
Name:		 PAPI_L1_TCM 
Units:   64-byte cache lines	
Description:	Level 1 cache misses	
Notes:	 Counts all misses, including all loads and stores, to the L1 data and instruction 

caches. Note that this event should give results that are very similar to 
PAPI_L2_TCA. 

 
Name:		 PAPI_L2_DCA 
Units:   64-byte cache lines	
Description:	Level 2 data cache accesses	
Notes:	 Counts all accesses, including all loads and stores, to the L2 cache. (Intel uses a 

unified L2 data/instruction cache.) This includes all accesses whether they hit or 
miss the cache. Note that this event gives results that are very similar to 
PAPI_L1_DCM.  
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Name:		 PAPI_L2_DCH 
Units:   64-byte cache lines	
Description:	Level 2 data cache hits	
Notes:	 Counts the number of hits to the L2 cache. (Intel uses a unified L2 

data/instruction cache.) Each hit results from an L1 miss and causes a 64-byte 
cache line to be copied from L2 to the L1 data cache. Any subsequent references 
to that data will be satisfied from L1 until it is flushed from the L1 cache. Data 
copied to L1 may cause a cache line to be evicted from L1, which may then be 
stored in L2, causing an eviction to L3, which may, in turn, cause an L3 eviction 
to memory. 

 
Name:		 PAPI_L2_DCM 
Units:   64-byte cache lines	
Description:	Level 2 data cache misses	
Notes:	 Counts the number of misses to the L2 cache. (Intel uses a unified L2 

data/instruction cache.) Each miss causes a 64-byte cache line from L3 cache or 
from memory. Each L2 miss ultimately results from an L1 miss, so the cache line 
is copied into L1 cache. Intel uses a non-exclusive cache design, so the cache line 
may or may not reside in more than one level of cache at any time. Note that this 
event gives very similar results as PAPI_L3_DCA. 

 
Name:		 PAPI_L2_DCR 
Units:   64-byte cache lines	
Description:	Level 2 data cache reads	
Notes:	 Counts the number of reads to the L2 cache. (Intel uses a unified L2 

data/instruction cache.) L2 cache reads result from L1 cache misses, so each read 
results in a 64-byte cache line being written to the L1 cache. If the cache line 
resides in L2 cache, it is copied from L2 to L1. If it does not, it is brought in from 
L3 or from memory.  

 
Name:		 PAPI_L2_DCW 
Units:   64-byte cache lines	
Description:	Level 2 data cache writes	
Notes:	 Counts the number of L2 cache writes, whether or not the data actually resides in 

L2 cache. In a write-back cache configuration, which is most common, temporal 
write operations cause a cache line read to L1, if needed, followed by an update to 
the cache line using the written data. Afterwards, the modified cache line resides 
in L1. However, introducing a new cache line to L1 may evict a cache line to L2. 
This is the source of L2 cache writes. An L2 cache write may also cause a cache 
line to be evicted to L3, and subsequently an L3 cache line may be evicted to 
memory. Note that Intel uses a unified L2 data/instruction cache design, so this 
event will give very similar results to PAPI_L2_TCW. 
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Name:		 PAPI_L2_ICA 
Units:   64-byte cache lines	
Description:	Level 2 instruction cache accesses	
Notes:	 Counts the number of L2 accesses that result from instruction fetches. An 

instruction access results from an L1 instruction cache miss, and causes a 64-byte 
cache line to be copied to the L1 instruction cache. 

 
Name:		 PAPI_L2_ICH 
Units:   64-byte cache lines	
Description:	Level 2 instruction cache hits	
Notes:	 Counts the number of L2 hits that result from instruction fetches. An instruction 

hit results from an L1 instruction cache miss, and causes a 64-byte cache line to 
be copied from L2 to the L1 instruction cache. 

 
Name:		 PAPI_L2_ICM 
Units:   64-byte cache lines	
Description:	Level 2 instruction cache misses	
Notes:	 Counts the number of L2 misses that result from instruction fetches. An 

instruction miss results from an L1 instruction cache miss, and causes a 64-byte 
cache line to be copied from L3 or from memory.  

 
Name:		 PAPI_L2_ICR 
Units:   64-byte cache lines	
Description:	Level 2 instruction cache reads	
Notes:	 Counts the number of L2 reads that result from instruction fetches. An instruction 

read results from an instruction fetch that misses the L1 instruction cache. If the 
cache line resides in L2, it is copied to the L1 instruction cache. If it does not, it is 
copied to L1 from L3 or memory.  

 
Name:		 PAPI_L2_STM 
Units:   64-byte cache lines	
Description:	Level 2 store misses	
Notes:	 Counts the number of store operations that miss the L2 cache. L2 store operations 

that miss have also missed the L1 cache, and the cache line must be copied to L1 
from L3 or memory. 

 
Name:		 PAPI_L2_TCA 
Units:   64-byte cache lines	
Description:	Level 2 total cache accesses	
Notes:	 Counts the number of total accesses to L2 cache. Accesses include both load and 

store operations, whether or not the data resides in cache at the time. L2 accesses 
generally result from L1 cache misses, and often result in data being copied to L1 
cache. However, the use of non-temporal loads and stores can cause data to be 
accessed in L2 without being copied to L1. Note that this event should give very 
similar results as PAPI_L1_DCM. 
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Name:		 PAPI_L2_TCM 
Units:   64-byte cache lines	
Description:	Level 2 total cache misses	
Notes:	 Counts the number of misses, both loads and stores, to L2 cache. L2 misses are 

the result of L1 misses, and generally result in data being copied from L3 or 
memory to L1 cache. An L1 miss can be from either L1 data cache or L1 
instruction cache. Note that this event should give very similar results as 
PAPI_L3_TCA. 

 
Name:		 PAPI_L2_TCR 
Units:   64-byte cache lines	
Description:	Level 2 total cache reads	
Notes:	 Counts the total number of L2 cache reads, whether or not the data actually 

resides in L2 cache. L2 reads are the result of an L1 read miss, and result in a 64-
byte cache line being sent to L1 cache. 

 
Name:		 PAPI_L2_TCW 
Units:   64-byte cache lines	
Description:	Level 2 total cache writes	
Notes:	 Counts the total number of L2 cache writes, whether or not the data actually 

resides in L2 cache. In a write-back cache configuration, which is most common, 
temporal write operations cause a cache line read to L1 followed by an update to 
the cache line using the written data. Afterwards, the modified cache line resides 
in L1. However, introducing a new cache line to L1 may evict a cache line to L2. 
An L2 cache write may also cause a cache line to be evicted to L3, and 
subsequently an L3 cache line may be evicted to memory. Note that Intel uses a 
unified L2 data/instruction cache design, so this event will give very similar 
results to PAPI_L2_DCW. 

 
Name:		 PAPI_L3_DCA 
Units:   64-byte cache lines	
Description:	Level 3 data cache accesses	
Notes:	 Counts all accesses, including all loads and stores, to the L3 cache. (Intel uses a 

unified L3 data/instruction cache.) This includes all access whether they hit or 
miss the cache. Note that this event often gives very similar results to 
PAPI_L2_TCM, because an L3 access rarely occurs without an L2 miss. 

 
Name:		 PAPI_L3_DCR 
Units:   64-byte cache lines	
Description:	Level 3 data cache reads	
Notes:	 Counts the number of reads to the L3 cache. (Intel uses a unified L3 

data/instruction cache.) L3 cache reads result from L2 cache misses, so each read 
results in a 64-byte cache line being written to the L2 cache. If the cache line 
resides in L3 cache, it is copied from L3 to L2. If it does not, it is brought in from 
memory. 
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Name:		 PAPI_L3_DCW 
Units:   64-byte cache lines	
Description:	Level 3 data cache writes	
Notes:	 Counts the total number of L3 cache writes, whether or not the data actually 

resides in L3 cache. In a write-back cache configuration, which is most common, 
temporal write operations cause a cache line read to L1 followed by an update to 
the cache line using the written data. Afterwards, the modified cache line resides 
in L1. However, introducing a new cache line to L1 may evict a cache line to L2, 
which may also cause a cache line to be evicted to L3, and subsequently an L3 
cache line may be evicted to memory. Note that Intel uses a unified L3 
data/instruction cache design, so this event will give very similar results to 
PAPI_L3_TCW. 

 
Name:		 PAPI_L3_ICA 
Units:   64-byte cache lines	
Description:	Level 3 instruction cache accesses	
Notes:	 Counts the number of L3 accesses that result from instruction fetches. An 

instruction access results from an L2 instruction read miss, and causes a 64-byte 
cache line to be copied to the L1 instruction cache. 

 
Name:		 PAPI_L3_ICR 
Units:   64-byte cache lines	
Description:	Level 3 instruction cache reads	
Notes:	 Counts the number of L3 reads that result from instruction fetches. An instruction 

read results from an instruction fetch that misses the L2 instruction cache. If the 
cache line resides in L3, it is copied to the L1 instruction cache. If it does not, it is 
copied from memory. 

 
Name:		 PAPI_L3_TCA 
Units:   64-byte cache lines	
Description:	Level 3 total cache accesses	
Notes:	 Counts the number of total accesses to L3 cache. Accesses include both load and 

store operations, whether or not the data resides in cache at the time. L3 accesses 
generally result from L2 cache misses, and often result in data being copied to L1 
cache. However, the use of non-temporal loads and stores can cause data to be 
accessed in L3 without being copied to L1. Note that this event should give very 
similar results as PAPI_L2_TCM. 

 
Name:		 PAPI_L3_TCM 
Units:   64-byte cache lines	
Description:	Level 3 total cache misses	
Notes:	 Counts the number of misses, both loads and stores, to L3 cache. L3 misses are 

the result of L1 and L2 misses, and generally result in data being copied from 
memory to L1 cache. An L1 miss can be from either L1 data cache or L1 
instruction cache. Note that this event indicates that memory was read, although it 
gives no indication whether it was local or remote memory. 
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Name:		 PAPI_L3_TCR 
Units:   64-byte cache lines	
Description:	Level 3 total cache reads	
Notes:	 Counts the total number of L3 cache reads, whether or not the data actually 

resides in L3 cache. L3 reads are the result of an L1 and L2 read miss, and result 
in a 64-byte cache line being sent to L1 cache. 

 
Name:		 PAPI_L3_TCW 
Units:   64-byte cache lines	
Description:	Level 3 total cache writes	
Notes:	 Counts the total number of L3 cache writes, whether or not the data actually 

resides in L3 cache. In a write-back cache configuration, which is most common, 
temporal write operations cause a cache line read to L1 followed by an update to 
the cache line using the written data. Afterwards, the modified cache line resides 
in L1. However, introducing a new cache line to L1 may evict a cache line to L2, 
which may also cause a cache line to be evicted to L3, and subsequently an L3 
cache line may be evicted to memory. Note that Intel uses a unified L3 
data/instruction cache design, so this event will give very similar results to 
PAPI_L3_DCW. 

 
Name:		 PAPI_LD_INS 
Units:   Instructions	
Description:	Load instructions	
Notes:	 Counts the number of load instructions executed. Note that this is the number of 

instructions and not the number of operands fetched, so a vector load represents a 
single event even though it may fetch up to four operands.  

 
Name:		 PAPI_REF_CYC 
Units:   Processor core clock cycles	
Description:	Reference clock cycles	
Notes:	 Counts the number of processor core base clock cycles, also known as the core 

reference cycles. This reflects the nominal frequency of the core before any 
TurboBoost acceleration takes place. It remains constant even when clock 
acceleration takes place. It does not require an actual event counter, but comes 
from the Time Stamp Counter. This value is obtained by calling 
PAPI_get_real_cyc(). 

 
Name:		 PAPI_REF_NS 
Units:   Nanoseconds	
Description:	Reference	nanoseconds	
Notes:	 Counts the number of nanoseconds that transpires. Like the PAPI_REF_CYC 

counter, it does not require an event counter but comes from the Time Stamp 
Counter instead. This value is obtained by calling PAPI_get_real_nsec(). 
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Name:		 PAPI_SP_OPS 
Units:   Single precision floating-point operations	
Description:	Floating point operations; optimized to count scaled single precision vector 

operations	
Notes:	 Counts all single precision addition and multiplication floating-point operations, 

whether from scalar or vector instructions. It does not include division operations. 
 
Name:		 PAPI_SR_INS 
Units:   Instructions	
Description:	Store instructions	
Notes:	 Counts the number of store instructions executed. Note that this is the number of 

instructions and not the number of operands stored, so a vector store represents a 
single event even though it may store up to four operands. 

 
Name:		 PAPI_STL_ICY 
Units:   Processor core clock cycles	
Description:	Cycles with no instruction issue	
Notes:	 Counts the number of processor core clock cycles that were stalled, that is, no 

new instructions could be issued because of either resource conflicts within the 
ALUs or the next instruction block was pending arrival from memory or cache. 

 
Name:		 PAPI_TLB_DM 
Units:   Instructions	
Description:	Data translation lookaside buffer misses	
Notes:	 Counts the number of instructions that caused Data Translation Look-Aside 

Buffer (DTLB) misses. The TLB caches physical address ranges and speeds up 
the process of converting a virtual address to a physical address. TLB misses 
increase the latency of fetching or storing data to memory.  

 
Name:		 PAPI_TLB_IM 
Units:   Instructions	
Description:	 Instruction translation lookaside buffer misses	
Notes:	 Counts the number of instructions that caused Translation Look-Aside Buffer 

(TLB) misses when fetching the instructions from memory. The TLB caches 
physical address ranges and speeds up the process of converting a virtual address 
to a physical address. TLB misses increase the latency of fetching or storing data 
to memory. 

 
Name:		 PAPI_TOT_CYC 
Units:   Processor core clock cycles	
Description:	Total cycles	
Notes:	 Counts the total number of processor core clock cycles completed. This count 

includes the additional cycles that occur when the clock frequency is increased 
through TurboBoost. 
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Name:		 PAPI_TOT_INS 
Units:   Instructions	
Description:	 Instructions completed	
Notes:	 Counts the total number of instructions retired. This includes all types of 

instructions, such as floating-point and integer instructions, branch instructions, 
etc. 

 
Name:		 PAPI_VEC_DP 
Units:   Double precision vector floating-point operations	
Description:	Double precision vector/SIMD instructions	
Notes:	 Counts the total number of double precision vector floating-point operations (not 

instructions) executed. In purely vector codes, PAPI_VEC_DP and 
PAPI_DP_OPS give similar values. 

 
Name:		 PAPI_VEC_SP 
Units:   Single precision vector floating-point operations	
Description:	Single precision vector/SIMD instructions	
Notes:	 Counts the total number of single precision vector floating-point operations (not 

instructions) executed. In purely vector codes, PAPI_VEC_SP and 
PAPI_SP_OPS give similar values. 
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APPENDIX B - DERIVED METRICS 

Name:		 Processor Core Base Frequency 
Formula:	 PAPI_REF_CYC / PAPI_REF_NS 
Description:	Nominal processor core frequency before TurboBoost, in GHz	
Notes:	 May be used to verify or determine the processor base frequency. Larger values 

are usually better. 
 
Name:		 Double-Precision FLOP Rate (GFLOPS or GFLOP/s) 
Formula:	 (PAPI_DP_OPS + PAPI_FDV_INS) / PAPI_REF_NS 
Description:	Double precision floating-point performance, in gigaflops/second	
Notes:	 Computes the floating-point performance, in double precision floating-point 

operations per second. Larger values are usually better. 
 
Name:		 Clocks Per Instruction (CPI) 
Formula:	 PAPI_TOT_CYC / PAPI_TOT_INS 
Description:	Core instruction retirement rate, in cycles per instruction	
Notes:	 Computes the number of instructions retired per accelerated processor clock. The 

Intel Architecture is able to issue and retire up to 4 instructions per processor 
clock period, so the smallest this value can be is 0.25. In the other extreme, a 
program that is constantly stalled waiting for memory can see this value in the 
hundreds. Smaller values are usually better. 

 
Name:		 Processor Turbo Ratio 
Formula:	 PAPI_TOT_CYC / PAPI_REF_CYC 
Description:	Performance increase due to TurboBoost	
Notes:	 Intel processors support increasing the clock frequency to improve performance, 

as long as doing so remains within the required thermal envelope. Vector floating-
point instructions tend to push the thermal envelope, while memory and other 
instructions tend to cool the processor. The increased clock frequency is reflected 
in the total number of elapsed cycles, while the nominal frequency is reflected in 
the reference cycles. The ratio of these two values gives the percentage of clock 
improvement. Larger values are usually better. 

 
Name:		 Processor Turbo Frequency 
Formula:	 PAPI_TOT_CYC / PAPI_REF_NS 
Description:	Accelerated processor core frequency due to TurboBoost, in GHz	
Notes:	 Intel processors support increasing the clock frequency to improve performance, 

as long as doing so remains within the required thermal envelope. Vector floating-
point instructions tend to push the thermal envelope, while memory and other 
instructions tend to cool the processor. The increased clock frequency is reflected 
in the total number of elapsed cycles, while the nominal frequency is reflected in 
the reference cycles. The ratio of total cycles to reference nanoseconds gives the 
effective processor clock frequency. Larger values are usually better. 
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Name:		 Ratio of Load Instructions 
Formula:	 PAPI_LD_INS / PAPI_TOT_INS 
Description:	Ratio of load instructions to all instructions	
Notes: Measures the ratio of load instructions to all instructions in the measured range. 

Instructions that move memory, load and store instructions, are often viewed as a 
necessary expense to set up a computation rather than useful work. They are also 
expensive in that they require anywhere from 3 clocks for an L1 cache hit, to 
many hundreds of clocks to load data from remote memory. This metric gives an 
indication of how intensely the memory hierarchy is used. Smaller values are 
usually better, but higher values are not necessarily bad. If the CPI is high and this 
ratio is also high, then performance may be limited by the many references to 
memory. 

 
Name:		 Time Per Load Instruction 
Formula:	 PAPI_REF_NS / PAPI_LD_INS 
Alternate:	 PAPI_TOT_CYC / PAPI_LD_INS 
Description:	Time in nanoseconds per load instruction	
Notes:	 Measures the time between load instructions. Instructions that move memory, 

load and store instructions, are often viewed as a necessary expense to set up a 
computation rather than useful work. They are also expensive in that they require 
anywhere from 3 clocks for an L1 cache hit, to many hundreds of clocks to load 
data from remote memory. This metric gives an indication of how intensely the 
memory hierarchy is used. Smaller values are usually better, but higher values are 
not necessarily bad. If the CPI is high and this ratio is also high, then performance 
may be limited by the many references to memory. 

 
Name:		 Vectorization Rate 
Formula:	 PAPI_VEC_DP / (PAPI_DP_OPS + PAPI_FDV_OPS) 
Description: Floating-point vectorization rate	
Notes: Measures the fraction of floating-point instructions that are vector instructions. 

Vector instructions are generally faster than scalar instructions, so a higher 
percentage of vector instructions is generally desirable. However, it is also worth 
noting that the effectiveness of vectorization depends on how effectively the data 
can be kept near the processor. Vector operations when data is in registers and L1 
cache show significantly higher performance than similar scalar operations. On 
the other hand, when data is in memory, vector operations show no advantage 
over similar scalar operations. 

 
Name:		 Ratio of Floating-Point Instructions 
Formula:	 PAPI_DP_OPS / PAPI_TOT_INS 
Description: Ratio of floating-point instructions to all instructions	
Notes:	 Programs generally consist of instructions that do the intended work, instructions 

that set up the work, and control instructions. For many programs, floating-point 
instructions do the desired work, while instructions are considered overhead. High 
FLOP rates can only be achieved when many of the instructions executed are 
floating-point instructions. So, larger values are usually better. 
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Name:		 Floating-Point Intensity or Arithmetic Intensity 
Formula:	 PAPI_DP_OPS / PAPI_LD_INS 
Description:	Floating-point operations per load instruction	
Notes: Programs generally consist of instructions that do the intended work and other 

instructions, overhead, that set up the work to be done. While there are several 
types of overhead, data movement is potentially the most expensive. Loading data 
from a random location in memory can take many hundreds of clock cycles, 
compared to a floating-point operation that takes only a few. For best 
performance, there should be many operations per load, and data should be close, 
so larger values are usually better. Something to be aware of, though, is that load 
instructions may bring in anything from a single byte to a vector of several words, 
and that is not reflected in the number of load instructions. But since actual data 
movement is in units of cache lines, this may be less of a problem than it might 
appear to be. 

 
Name:		 Memory Hits Per Load 
Formula:	 PAPI_L3_TCM / PAPI_LD_INS 
Description:	Cache lines read from memory per load instruction	
Notes:	 Load operations from memory are expensive. A typical memory load takes 80 to 

95 nanoseconds, or about 200 to 250 processor clocks. High memory hits per 
load, coupled with high CPI values and a high ratio of loads per instruction, 
indicate the number of memory references may limit performance. Fewer memory 
hits are usually better. 

 
Name:		 Memory Hits Per Instruction 
Formula:	 PAPI_L3_TCM / PAPI_TOT_INS 
Description:	Cache lines read from memory per instruction	
Notes:	 Load operations from memory are expensive. A typical random memory load 

takes 80 to 95 nanoseconds, or about 200 to 250 processor clocks. A typical 
strided load may take about 10 nanoseconds, because the prefetch engine starts 
the load before it is actually requested. Either way it takes relatively few memory 
hits before memory speed dominates program performance. As such, smaller 
values for this metric are usually better.  

 
Name:  L3 Cache Hits 
Formula:	 PAPI_L2_TCM - PAPI_L3_TCM 
Description: Cache line requests satisfied in L3 cache	
Notes: L3 cache hits are generally expensive, about 17.5 ns, or 45 clocks, per hit, though 

much less expensive than hits to memory. This metric indicates the number of 
cache lines loaded from L3 cache. Smaller values are usually better. 
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Name:		 L3 Cache Hits Per Load 
Formula:	 (PAPI_L2_TCM - PAPI_L3_TCM) / PAPI_LD_INS 
Description:	Cache lines read from L3 cache per load instruction	
Notes:	 Load operations from L3 cache are expensive, although less expensive than 

memory. A typical random L3 cache load takes 15 to 18 nanoseconds, or about 38 
to 45 processor clocks. Strided loads take closer to 7 nanoseconds. High L3 hits 
per load, coupled with high CPI values or high loads per instruction, indicate the 
number of L3 cache references may limit performance. Fewer L3 hits are usually 
better. 

 
Name:		 L3 Cache Hits Per Instruction 
Formula:	 (PAPI_L2_TCM - PAPI_L3_TCM) / PAPI_TOT_INS 
Description:	Cache lines read from L3 cache per instruction	
Notes:	 Load operations from L3 cache are expensive, although less expensive than 

memory. A typical random L3 cache load takes 15 to 18 nanoseconds, or about 38 
to 45 processor clocks. Strided loads take closer to 7 nanoseconds. High L3 hits 
per instruction indicate the number of L3 cache references may limit performance. 
Fewer L3 hits are usually better. 

 
Name:  L2 Cache Hits 
Formula:	 PAPI_L1_TCM - PAPI_L2_TCM 
Description: Cache line requests satisfied in L2 cache	
Notes: L2 cache hits are moderately inexpensive, about 4.65 ns, or 12 to 15 clocks, per 

hit. This metric indicates the number of cache lines loaded from L2 cache.  
 
Name:		 L2 Cache Hits Per Load 
Formula:	 (PAPI_L1_TCM - PAPI_L2_TCM) / PAPI_LD_INS 
Description:	Cache lines read from L2 cache per load instruction	
Notes:	 Load operations from L2 cache are moderately inexpensive. A typical random L2 

cache load takes 4.65 nanoseconds, or about 12 to 15 processor clocks. Strided 
loads take closer to 3.5 nanoseconds. High L2 hits per load, coupled with high 
CPI values or high loads per instruction, indicate the number of L2 cache 
references may limit performance. 

 
Name:		 L2 Cache Hits Per Instruction 
Formula:	 (PAPI_L1_TCM - PAPI_L2_TCM) / PAPI_TOT_INS 
Description:	Cache lines read from L2 cache per instruction	
Notes:	 Load operations from L2 cache are moderately inexpensive. A typical random L2 

cache load takes 4.65 nanoseconds, or about 12 to 15 processor clocks. Strided 
loads take closer to 3.5 nanoseconds. High L2 hits per instruction indicate the 
number of L2 cache references may limit performance.  
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APPENDIX C - BENCHMARK DETAILS 

DAXPY 
 
The DAXPY benchmark consists of a simple timed loop that repeatedly computes the vector 
operation y[i]=a*x[i]+y[i]. The values a, x and y are all double precision floating-point 
values. Access is stride-one. The size of the vectors x and y determines whether the operations 
will take place from L1, L2, or L3, or from memory. For vectors of size N, the amount of 
memory used is 2 vectors x 8 bytes per element x N elements per vector. The number of 
operations is 2 x N for each complete iteration through the vectors. Thus DAXPY is a reasonable 
proxy for approximating certain program behavior when dense vectors and matrixes are used.  
 
DAXPY performance is limited almost entirely by the speed of fetching data from the memory 
hierarchy. Floating-point operations can be issued every clock, but at best data can be fetched 
from L1 cache, which takes from 3 to 5 clocks per reference. At 3.2 GHz (effective boosted 
frequency of a 2.6 GHz E5-2670), the best scalar performance is 3.9 GF/s and the best vector 
performance is 7.4 GF/s per core. It drops off quite severely when data only fits in L2 or L3 
cache, or in memory. This performance is clearly shown in Figure C.1. 
 

 
Figure C.1 – DAXPY Performance Using Vector Operations (Intel MKL) 

 
The effect of the memory hierarchy is clearly seen in this diagram. The first performance spike 
occurs when all data is in L1 cache. The performance slopes upward as the overhead of calling 
the routine is gradually amortized over longer vector lengths. Performance peaks at around 1440 
elements per vector, which is 22.5 KiB of memory for the two vectors, or just under the 32 KiB 
size of the L1 data cache. Beyond that point both vectors fit in L2 cache, but not L1, and 
performance falls to the second plateau.  
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The second plateau occurs where all data fits in the 256 KiB L2 cache. Interestingly, the plateau 
begins its decline when the two vectors reach about 8,000 elements (128 KiB), or half of the L2 
cache. The author has no explanation why the transition begins here, but between this size and 
about 28,000 elements the data is split between the L2 and L3 caches. Performance for this 
plateau is about 70% of the peak, when all data fits in L1 cache. 
 
The third plateau begins when all data fits into L3 cache and is no longer found in the L2. The 
L3 is shared across cores, so fewer cores in use means a larger plateau. The performance at this 
plateau is about 40% of the peak.  
 
The final plateau begins when data no longer fits into L3 cache and is found only in memory. 
Note that the performance of this final plateau depends on the number of cores in use, but only 
up to a point. It's not shown on the graph, but that point is about 3 or 4 cores per socket. After 
that, the memory bandwidth is completely saturated, and adding cores does not improve 
performance. Performance at this plateau is less than 10% of peak. 
 
In this collection of results, only local memory is used. Remote memory, or memory that is 
attached to the second NUMA domain, would be even slower to access.  
 
 
PCHASE 
 
PCHASE is a benchmark that measures unloaded memory latency. It gets its name because it 
creates a chain of randomly distributed pointers, then "chases" them repeatedly to measure the 
time it takes. The distribution of pointers is carefully designed to defeat any cache automatic 
prefetch mechanism in order to measure the native latency. 
 
PCHASE allocates a pool of memory to be used for creating a chain of pointers. The size of that 
pool determines whether the chain fits into L1, L2, L3 cache, or main memory. The pool can also 
be allocated in local memory or remote memory, to determine those latencies as well. For these 
tests, only local memory was used. 
 
A pointer chain is constructed from a pool of memory by first dividing the pool into cache lines. 
The cache lines are then arranged in a random order, to defeat any cache prefetch engine, and the 
pointer chain is constructed from the randomized cache lines. Exactly one pointer is allocated 
from each cache line. The benchmark allows the pointer to be allocated anywhere in the cache 
line, but for these tests, the pointer was always the first 8 bytes.  
 
The benchmark is executed by starting at the beginning of the chain and following the chain of 
pointers to its end. This process is repeated until a specified number of iterations have 
completed. The elapsed time is known, as well as the length of the chain and the number of 
iterations that were completed. This information is used to compute the average latency of 
accessing a random cache line from the pool. The results for this benchmark are shown in Figure 
C.2. 
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Figure C.2 – PCHASE Single Thread Unloaded Memory Latency 

 
From the figure it is easy to see the random access latency of the E5-2670 memory hierarchy. L1 
latency is from 3 to 5 clocks, L2 latency is 10 to 12 clocks, L3 latency is approximately 45 
clocks, and local main memory is from 80 ns to 95 ns.  
 
Even the split between near L3 and far L3 can be seen. This split comes about because each core 
has a block of 2.5 MiB of L3 cache. Each block is connected to every other block, creating a 
large shared L3 cache. In the chart, there is a transition in performance as the memory pool 
begins to spread into the L3 cache blocks of other cores. It is not clear to the author why this 
would be faster, but the transition is clearly visible. 
 
The important characteristics of this benchmark are that each load operation fetches exactly one 
cache line, and the location of that cache line is known. 
 
 
DGEMM 
 
The DGEMM benchmark measures the performance of the DGEMM subroutine from the 
LAPACK math library. It calculates the product of two matrixes, plus the sum of a third. 
Specifically, it computes aAB + bC, where a and b are scalars, and A, B and C are matrixes. 
 
This benchmark has the characteristic of having very high floating-point computation rates, as 
seen in Figure C.3. It accomplishes this by moving data into cache and registers, then repeatedly 
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operating on that data while it is in registers. Because the data is in registers, its performance is 
much higher than can be achieved by DAXPY or other operations that operate on data in cache 
or memory. Furthermore, its performance is relatively insensitive to its location in memory. 
 

 
Figure C.3 – DGEMM Performance For 1 Core 

 
The number of floating-point operations is also well known. For N x N matrixes A, B and C, the 
number of operations is 2N3 + N2. The number of loads and stores is proportional to the number 
of floating-point operations, but the constant of proportionality is very small. 
 
 
DGETRF 
 
The DGETRF benchmark is essentially identical to the LINPACK benchmark. It solves a system 
of N linear equations in N unknowns. It accomplishes this by performing an LU factorization of 
an N x N double-precision floating-point matrix that represents the equation coefficients. LU 
factorization is well known to be a highly efficient solution to solving a system of equations in 
dense matrixes, which occurs often in the real world. The performance of this solution is shown 
in Figure C.4. 
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Figure C.4 – DGETRF Performance For 1 Core 

 
The performance of LU factorization is well understood. The number of floating-point 
operations for LU factorization of an N x N matrix is 2N3/3. The number of operations for the 
back-fill portion, also included here, is 2N2. Like DGEMM, the number of load and store 
operations is proportional to the number of arithmetic operations and the constant of 
proportionality is very small. This is what gives both DGEMM and DGETRF a high degree of 
performance -- there are many operations for each load and store operation that references 
memory. It also makes them insensitive to the location of data in memory. 
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APPENDIX D - EVENT COUNTER VALUES 

DAXPY 
 

	Event\Length	 1,000	 10,000	 100,000	 1,000,000	 10,000,000	 100,000,000	 1,000,000,000	

PAPI_REF_CYC	 14,114,613,048	 16,291,115,808	 21,719,157,569	 23,193,892,371	 32,657,242,137	 32,460,283,540	 32,376,919,665	

PAPI_REF_NS	 5,441,884,247	 6,281,029,288	 8,373,813,925	 8,942,395,442	 12,590,986,536	 12,515,049,334	 12,482,908,643	

PAPI_L1_TCM	 53,265	 2,505,015,106	 2,521,161,599	 2,523,099,867	 2,521,814,545	 2,520,013,217	 2,521,670,685	

PAPI_L2_TCM	 963	 59,735,431	 1,493,143,231	 1,522,354,584	 1,765,581,926	 1,774,159,718	 1,777,214,102	

PAPI_L3_TCM	 2	 1	 56	 40,466,928	 305,232,575	 307,974,306	 309,284,335	

PAPI_DP_OPS	 20,000,157,921	 22,893,727,521	 24,133,977,879	 24,132,340,591	 24,183,706,030	 24,219,081,919	 24,178,759,265	

PAPI_FDV_INS	 81	 115	 108	 108	 172	 117	 130	

PAPI_TOT_CYC	 17,896,354,405	 20,651,661,230	 27,510,798,170	 29,267,921,760	 41,163,790,967	 40,968,254,996	 40,847,569,463	

PAPI_TOT_INS	 45,560,010,360	 45,056,011,200	 45,005,613,298	 45,000,573,931	 45,000,073,533	 45,000,023,023	 45,000,017,973	

PAPI_VEC_DP	 0	 0	 0	 0	 0	 0	 0	

Table D.1 – PAPI Counter Values For Scalar DAXPY 
 
 

	Metric\Length	 1,000	 10,000	 100,000	 1,000,000	 10,000,000	 100,000,000	 1,000,000,000	

GF/s	 3.6752	 3.6449	 2.8821	 2.6986	 1.9207	 1.9352	 1.9369	

CPI	 0.3928	 0.4584	 0.6113	 0.6504	 0.9147	 0.9104	 0.9077	

Vectorization	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	

Ins/L1M	 855,346	 18	 18	 18	 18	 18	 18	

Ins/L2M	 47,310,499	 754	 30	 30	 25	 25	 25	

Ins/L3M	 22,780,005,180	 45,056,011,200	 803,671,666	 1,112	 147	 146	 145	

Turbo	GHz	 3.29	 3.29	 3.29	 3.27	 3.27	 3.27	 3.27	

FP/Ins	 0.4390	 0.5081	 0.5362	 0.5363	 0.5374	 0.5382	 0.5373	

FP/L1M	 375,484	 9	 10	 10	 10	 10	 10	

FP/L2M	 20,768,596	 383	 16	 16	 14	 14	 14	

FP/L3M	 10,000,078,961	 22,893,727,521	 430,963,891	 596	 79	 79	 78	

Table D.2 – Derived Metrics For Scalar DAXPY 
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	Event\Length	 1,000	 10,000	 100,000	 1,000,000	 10,000,000	 100,000,000	 1,000,000,000	

PAPI_REF_CYC	 7,124,958,068	 9,790,140,892	 16,320,832,926	 18,540,016,032	 33,072,348,734	 32,894,296,958	 32,924,551,957	

PAPI_REF_NS	 2,747,025,004	 3,774,585,419	 6,292,490,250	 7,148,095,290	 12,751,030,749	 12,682,383,178	 12,694,048,282	

PAPI_L1_TCM	 20,782	 2,505,019,320	 2,534,489,633	 2,532,714,504	 2,517,494,384	 2,516,230,630	 2,516,200,806	

PAPI_L2_TCM	 856	 916,435	 2,450,046,098	 2,286,454,309	 2,285,801,777	 2,297,223,312	 2,299,880,139	

PAPI_L3_TCM	 8	 16	 115	 84,091,006	 812,224,757	 855,456,676	 855,181,170	

PAPI_DP_OPS	 20,000,139,760	 25,678,267,355	 30,031,582,803	 29,980,127,191	 29,823,973,087	 29,932,718,543	 29,920,737,429	

PAPI_FDV_INS	 43	 56	 69	 61	 114	 129	 1,749	

PAPI_TOT_CYC	 9,031,999,576	 13,556,193,842	 20,682,712,736	 23,571,931,457	 41,711,881,106	 41,637,636,902	 41,268,051,997	

PAPI_TOT_INS	 24,480,007,934	 23,823,008,984	 23,757,311,488	 23,750,742,396	 23,750,090,871	 23,750,025,219	 23,750,018,627	

PAPI_VEC_DP	 20,000,139,758	 25,678,267,354	 30,031,582,802	 29,980,127,188	 29,823,973,086	 29,932,718,542	 29,920,737,428	

Table D.3 – PAPI Counter Values For Vector DAXPY 
 
 

	Metric\Length	 1,000	 10,000	 100,000	 1,000,000	 10,000,000	 100,000,000	 1,000,000,000	

GF/s	 7.2807	 6.8029	 4.7726	 4.1941	 2.3389	 2.3602	 2.3571	

CPI	 0.3690	 0.5690	 0.8706	 0.9925	 1.7563	 1.7532	 1.7376	

Vectorization	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	

Ins/L1M	 1,177,943	 10	 9	 9	 9	 9	 9	

Ins/L2M	 28,598,140	 25,995	 10	 10	 10	 10	 10	

Ins/L3M	 3,060,000,992	 1,488,938,062	 206,585,317	 282	 29	 28	 28	

Turbo	GHz	 3.29	 3.59	 3.29	 3.30	 3.27	 3.28	 3.25	

FP/Ins	 0.8170	 1.0779	 1.2641	 1.2623	 1.2557	 1.2603	 1.2598	

FP/L1M	 962,378	 10	 12	 12	 12	 12	 12	

FP/L2M	 23,364,649	 28,020	 12	 13	 13	 13	 13	

FP/L3M	 2,500,017,470	 1,604,891,710	 261,144,198	 357	 37	 35	 35	

Table D.4 – Derived Metrics For Vector DAXPY 
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PCHASE 
 

	Event\Size	 12,800	 128,000	 1,280,000	 12,800,000	 128,000,000	 1,280,000,000	 12,800,000,000	

PAPI_REF_CYC	 6,500,990,068	 19,046,656,307	 70,998,805,505	 101,454,405,051	 498,164,028,229	 525,288,765,337	 784,743,520,704	

PAPI_REF_NS	 2,506,502,163	 7,343,572,129	 27,374,089,011	 39,116,459,940	 192,070,642,503	 202,528,760,770	 302,563,280,988	

PAPI_L1_TCM	 11,857	 2,003,017,463	 2,001,158,488	 2,890,378,606	 3,862,418,138	 4,139,752,543	 5,583,280,226	

PAPI_L2_TCM	 639	 70,383	 2,000,859,383	 2,008,300,222	 3,138,813,647	 3,922,467,000	 4,280,222,683	

PAPI_L3_TCM	 1	 8	 405	 33,073,941	 1,999,825,549	 2,005,248,246	 3,273,272,641	

PAPI_DP_OPS	 0	 0	 0	 0	 0	 0	 0	

PAPI_FDV_INS	 28	 93	 237	 240	 1,287	 1,377	 3,582	

PAPI_TOT_CYC	 8,241,872,681	 24,048,734,497	 89,913,133,879	 127,301,912,164	 630,259,469,026	 665,507,200,992	 993,918,026,631	

PAPI_TOT_INS	 6,110,007,670	 6,011,012,479	 6,001,132,531	 6,000,153,918	 6,000,211,485	 6,000,209,069	 6,000,307,938	

PAPI_VEC_DP	 0	 0	 0	 0	 0	 0	 0	

Table D.5 – PAPI Counter Values For PCHASE 
 
 

		 12,800	 128,000	 1,280,000	 12,800,000	 128,000,000	 1,280,000,000	 12,800,000,000	

CPI	 1.3489	 4.0008	 14.9827	 21.2164	 105.0395	 110.9140	 165.6445	

Ins/L1M	 515,308	 3	 3	 2	 2	 1	 1	

Ins/L2M	 9,561,827	 85,404	 3	 3	 2	 2	 1	

Ins/L3M	 6,110,007,670	 751,376,560	 14,817,611	 181	 3	 3	 2	

Turbo	GHz	 3.29	 3.27	 3.28	 3.25	 3.28	 3.29	 3.28	

Table D.6 – Derived Metrics For PCHASE 
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DGEMM 
 

	Event\Size	 500	 1,000	 1,500	 2,000	 2,500	 3,000	 10,000	

PAPI_REF_CYC	 31,951,495	 228,364,091	 741,147,781	 1,731,110,625	 3,348,056,733	 5,757,587,042	 209,928,892,934	

PAPI_REF_NS	 12,318,569	 88,046,656	 285,753,072	 667,438,674	 1,290,861,048	 2,219,869,072	 80,939,242,648	

PAPI_L1_TCM	 2,564,709	 19,154,106	 62,968,467	 149,403,269	 287,126,682	 497,405,644	 18,070,240,012	

PAPI_L2_TCM	 831,132	 5,992,534	 19,223,063	 46,148,990	 86,843,127	 149,407,742	 5,264,923,862	

PAPI_L3_TCM	 5,693	 195,606	 1,578,735	 3,992,851	 7,385,095	 12,241,004	 462,454,857	

PAPI_DP_OPS	 251,492,032	 2,011,852,632	 6,787,137,860	 16,089,628,532	 31,417,426,992	 54,290,967,520	 2,010,345,763,060	

PAPI_FDV_INS	 9,881	 10,092	 10,084	 10,077	 10,139	 10,047	 12,060	

PAPI_TOT_CYC	 38,506,140	 285,317,428	 933,803,606	 2,187,699,592	 4,235,645,463	 7,285,678,107	 265,830,802,688	

PAPI_TOT_INS	 101,050,933	 782,921,812	 2,631,250,594	 6,223,028,795	 12,146,819,377	 20,971,679,570	 775,658,321,113	

PAPI_VEC_DP	 251,492,032	 2,011,852,632	 6,787,137,860	 16,089,628,532	 31,417,426,992	 54,290,967,520	 2,010,345,763,060	

Table D.7 – PAPI Counter Values For DGEMM 
 
 

Metric\Size	 500	 1,000	 1,500	 2,000	 2,500	 3,000	 10,000	

GF/s	 20.4157	 22.8498	 23.7518	 24.1065	 24.3383	 24.4568	 24.8377	

CPI	 0.3811	 0.3644	 0.3549	 0.3515	 0.3487	 0.3474	 0.3427	

Vectorization	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	

Ins/L1M	 39	 41	 42	 42	 42	 42	 43	

Ins/L2M	 122	 131	 137	 135	 140	 140	 147	

Ins/L3M	 17,750	 4,003	 1,667	 1,559	 1,645	 1,713	 1,677	

Turbo	GHz	 3.13	 3.24	 3.27	 3.28	 3.28	 3.28	 3.28	

FP/Ins	 2.4888	 2.5697	 2.5794	 2.5855	 2.5865	 2.5888	 2.5918	

FP/L1M	 98	 105	 108	 108	 109	 109	 111	

FP/L2M	 303	 336	 353	 349	 362	 363	 382	

FP/L3M	 44,176	 10,285	 4,299	 4,030	 4,254	 4,435	 4,347	

Table D.8 – Derived Metrics For DGEMM 
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DGETRF 
 

	Event\Size	 500	 1,000	 2,000	 4,000	 8,000	 12,000	 16,000	

PAPI_REF_CYC	 27,559,904	 130,751,535	 833,977,269	 5,767,280,067	 41,870,078,689	 141,492,512,315	 317,801,419,593	

PAPI_REF_NS	 10,626,154	 50,412,481	 321,545,264	 2,223,607,429	 16,143,238,373	 54,553,195,959	 122,527,574,663	

PAPI_L1_TCM	 1,509,624	 9,138,055	 60,238,941	 442,449,048	 3,249,003,472	 10,953,800,961	 25,540,010,668	

PAPI_L2_TCM	 556,867	 3,053,019	 19,168,881	 130,682,493	 910,716,259	 3,183,829,111	 6,985,802,798	

PAPI_L3_TCM	 48,278	 256,991	 2,004,120	 13,426,458	 106,264,626	 355,758,057	 761,798,778	

PAPI_DP_OPS	 85,645,277	 676,994,679	 5,384,406,358	 42,947,417,510	 342,885,907,317	 1,156,586,098,579	 2,740,391,167,242	

PAPI_FDV_INS	 12,091	 14,170	 18,132	 26,291	 45,011	 67,357	 92,812	

PAPI_TOT_CYC	 26,730,419	 146,917,371	 1,007,833,659	 7,151,654,319	 51,750,061,386	 176,360,551,759	 397,279,902,727	

PAPI_TOT_INS	 45,036,478	 299,122,557	 2,227,085,492	 17,199,520,323	 134,984,713,172	 452,878,984,034	 1,069,849,352,156	

PAPI_VEC_DP	 85,636,586	 676,976,188	 5,384,369,460	 42,947,341,068	 342,885,749,300	 1,156,585,838,866	 2,740,390,825,276	

Table D.9 – PAPI Counter Values For DGETRF 
 
 

Metric\Size	 500	 1,000	 2,000	 4,000	 8,000	 12,000	 16,000	

GF/s	 8.0599	 13.4291	 16.7454	 19.3143	 21.2402	 21.2011	 22.3655	

CPI	 0.5935	 0.4912	 0.4525	 0.4158	 0.3834	 0.3894	 0.3713	

Vectorization	 0.9999	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	 1.0000	

Ins/L1M	 30	 33	 37	 39	 42	 41	 42	

Ins/L2M	 81	 98	 116	 132	 148	 142	 153	

Ins/L3M	 933	 1,164	 1,111	 1,281	 1,270	 1,273	 1,404	

Turbo	GHz	 2.52	 2.91	 3.13	 3.22	 3.21	 3.23	 3.24	

FP/Ins	 1.9017	 2.2633	 2.4177	 2.4970	 2.5402	 2.5539	 2.5615	

FP/L1M	 57	 74	 89	 97	 106	 106	 107	

FP/L2M	 154	 222	 281	 329	 377	 363	 392	

FP/L3M	 1,774	 2,634	 2,687	 3,199	 3,227	 3,251	 3,597	

Table D.10 – Derived Metrics For DGETRF 
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