[

Z \
KRELL, .. ASC
<) q)
o C18 TeCi8

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Martin Schulz: TU-Miinchen
Jennifer Green: LANL
Dave Montoya: LANL

Don Maghrak: Krell Institute
Jim Galarowicz: Krell Institute

_/ - Wz

S
Vel . Los Alamos
KRELL

MNATIONAL LABDRATORY |
5

LLNL-PRES-503451
Open | SpeedShop”

11/11/2018

Why This Tutorial? =~ é\g

< Performance Analysis is becoming more important
» Complex architectures and complex applications
> Mapping applications onto architectures is hard
> Today’s applications only use a fraction of the machine

< Performance analysis is more than just measuring time
> What are the critical sections in a code?
> |s a part of the code running efficiently or not?
> Is the code using the resources well (memory, TLB, 1/0, ...)?
> Where is the greatest payoff for optimization?

< Often hard to know where to start
> Which experiments to run first?
> How to plan follow-on experiments?
> What kind of problems can be explored?
> How to interpret the data?

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

- C \
Tutorial Goals = e\

< Basic introduction into performance analysis
> Typical pitfalls wrt. performance
> Wide range of types of performance tools and techniques

< Provide basic guidance on ...
> How to understand the performance of a code?
> How to answer basic performance questions?
> How to plan performance experiments?

< Provide you with the ability to ...
> Run these experiments on your own code
> Provide starting point for performance optimizations

< Practical Experience: Demos and hands-on Experience
> Introduction into Open|SpeedShop as one possible tool solution
> Basic usage instructions and pointers to documentation
> Lessons and strategies apply to any tool

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Open|SpeedShop Tool Set = A

< Open Source Performance Analysis Tool Framework
> Most common performance analysis steps all in one tool
> Combines tracing and sampling techniques
> Extensible by plugins for data collection and representation
> Gathers and displays several types of performance information

< Flexible and Easy to use
> User access through:
GUI, Command Line, Python Scripting, convenience scripts

< Scalable Data Collection
> Instrumentation of unmodified application binaries
> New option for hierarchical online data aggregation

< Supports a wide range of systems
> Extensively used and tested on a variety of Linux clusters
> Cray and Blue Gene support

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

C \
“Plan”/“Rules” -l ey

< Staggered approach/agenda
> First session: performance analysis basics and getting ready
> Second session: Digging deeper and going parallel
» Third session: more specialized topics (HWC and |/O)
» Fourth session: new architectural challenges (memory and GPU)
> Hands-on experiments in each session

<+ Let’s keep this interactive
> Feel free to ask questions as we go along
> Ask if you would like to see anything specific in the demos

<+ We are interested in feedback!
> What was clear / what didn’t make sense?
> What scenarios are missing?

<+ Updated slides available before SC
» https://www.openspeedshop.org/wp/category/tutorials
> Then choose SC2018 Sunday Nov 11 tutorial

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

https://www.openspeedshop.org/wp/category/tutorials

o \
Presenters ~ A
KRVEI.‘L 7 ‘HSC

< Martin Schulz: TU-Miinchen ~
< Jim Galarowicz: Krell Institute . J
< Donald Maghrak: Krell Institute m

< Jennifer Green: LANL
< David Montoya: LANL
< Greg Scantlen: CreativeC

< Hannes Schweiger: CreativeC

*

>

L)

*

Larger team: ya

Los Alamos
William Hachfeld, David Whitney: Krell Institute NATIONAL LABORATORY

Gregory Schultz: Argo Navis Technologies, LLC.

Mike Mason, David Shrader: LANL

Douglas Pase, Anthony Angelastos, Joel Stevenson: SNL
Matt Legendre and Chris Chambreau: LLNL

Dyninst group (Bart Miller: UW & Jeff Hollingsworth: UMD)
Phil Roth: ORNL

Koushik Ghosh: Engility . -
Mahesh Rajan: New Mexico Consortium e & |

L 4

VVVVYVYYVYVY

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

. o \
Outline ~ A
KRELL HSC

<+ Welcome

< Concepts in performance analysis

< Introduction into Tools and Open|SpeedShop

< How to run basic timing experiments and what they can do?
<+ How to deal with parallelism (MPI and threads)?

<+ <LUNCH>

<+ How to properly use hardware counters?

< Slightly more advanced targets for analysis
» How to understand and optimize 1/O activity?
> How to evaluate memory efficiency?
> How to analyze codes running on GPUs?

< DIY and Conclusions: DIY and Future trends

<+ Hands-on Exercises (after each section)
> On site cluster available
> We will provide exercises and test codes

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

. . \
Tutorial Survey 2 Y

< Tutorial surveys are entirely electronic this year
> No paper forms
> Tutorial attendees will receive an email reminder with the
evaluation information.

< QR code:
https://submissions.supercomputing.org/eval.png

< Evaluation site URL: http://bit.ly/SC18-eval

< Thanks for attending our tutorial!

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

https://submissions.supercomputing.org/eval.png
http://bit.ly/sc17-eval

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Open | SpeedShop”

Section 1

Concepts in Performance Analysis

B -

—)
» Los Alamos

NATIONAL LARDRATORY
5

11/11/2018

o i
F

. . \
Typical Development Cycle %\ e

< Performance tuning is an essential
part of the development cycle

> Potential impact at every stage v
* Message patterns Coding
e Data structure layout v
e Algorithms
> Should be done from early on in the life '
of a new HPC code Debugging
> ldeally continuously and automatically \ 4
< Typical use I 4
> Measure performance and store data Tuning
> Analyze data 4

» Modify code and/or algorithm
> Repeat measurements
> Analyze differences

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

A Case for Performance Tools

< First line of defense
> Full execution timings (UNIX: “time” command)
» Comparisons between input parameters
> Keep and track historical trends

< Disadvantages
> Measurements are coarse grain
> Can’t pin performance bottlenecks

< Alternative: code integration of performance probes
> Hard to maintain
> Requirements significant a priori knowledge

< Performance tools
> Enable fine grain instrumentation
> Show relation to source code
> Work universally across applications

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Performance Tools Overview

< Basic OS tools
> time, gprof, strace

%» Hardware counters
> PAPI APl & tool set
> hwctime (AIX)

< Sampling tools

> Typically unmodified binaries
> Callstack analysis

> HPCToolkit (Rice U.)

D)

*

Profiling/direct measurements
> MPI or OpenMP profiles
> mpiP (LLNL&ORNL)
» ompP (LMU Munich)

L)

*

Tracing tool kits
> Capture all MPI events
> Present as timeline
> Vampir (TU-Dresden)
> Jumpshot (ANL)

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

% Trace Analysis

> Profile and trace capture

> Automatic (parallel) trace analysis
» Kojak/Scalasca (JSC)

> Paraver (BSC)

R/
0’0

Integrated tool kits

> Typically profiling and tracing
Combined workflow
Typically GUI/some vis. support
Binary: Open|SpeedShop (Krell/TriLab)
Source: TAU (U. of Oregon)

YV V V VY

*

Specialized tools/techniques
» Libra (LLNL)
Load balance analysis
» Boxfish (LLNL/Utah/Davis)
3D visualization of torus networks
> Rubik (LLNL)
Node mapping on torus architectures

% Vendor Tools

11/11/2018

C \
How to Select a Tool? -l a

< A tool with the right features
> Must be easy to use
> Provides performance analysis of the code at different levels: libraries,
functions, loops, statements

< A tool must match the application’s workflow
> Requirements from instrumentation technique
* Access to and knowledge about source code? Recompilation time?
* Machine environments? Supported platforms?
> Interactive and batch mode analysis options
> Support iterative tuning with ability to compare key metrics across runs

< Why We Picked/Developed Open|SpeedShop?
> Sampling and tracing in a single framework
> Easy to use GUI & command line options for remote execution
* Low learning curve for end users
> Transparent instrumentation (preloading & binary)
* No need to recompile application

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

< Tools can collect lots of data
> At varying granularity

O \
Next Step: Interpret Data = L\

T en B Ra b — =

» At varying cost i
» At varying accuracy . —

[¥] ManageProcessesPanel [1 | BODOx

E’f 1r E'LD%‘ E@.{Eﬁi@ﬁui’n nowing Funcrions Report:

< Issue 1: Understand your

tool and its limitations
> No tool can do everything
(at least not well)
> Choose the right tool for
the right task

< Issue 2: Ask the right question
» Need to know basic issues to

look for to get started
> Need to understand expected behavior

55555555

11/11/2018

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

. \
Issue 1: Tool Types %\ a

< Data acquisition
> Event based data: triggered by explicit events
* Direct correlation possible, but may come in bursts

> Sampling based data: triggered by external events like timers
* Even distribution, but requires statistical analysis

< Instrumentation
» Source code instrumentation: exact, but invasive
> Compiler instrumentation: requires source, but transparent
> Binary instrumentation: can be transparent, but still costly
> Link-level: transparent, less costly, but limited to APIs
> Tradeoff: invasiveness vs. overhead vs. ability to correlate
> Big question: granularity

< Aggregation
> No aggregation: trace
> Aggregation over time and space: simplified profile
> Many shades of gray in between

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Z \
. AsC

Issue 2: Asking the Right Questions

< Step 1: Find where the problem actually is

> Where is the code spending time?
* Which code sections are even worth looking at?

> Where should it spend time?
* Have a (mental) model of your application

< Use overview experiments

> ldentify bottlenecks for your application
* Which resource in the system is holding you back?

> Decide where to dig deeper
* Important resource AND worth optimizing AND unexpected behavior

< Pick the right tool or experiment in a tool
> Target the specific bottleneck
> Decide on instrumentation approach
> Decide on useful aggregation
> Understand impact on code perturbation

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

What to Look For: Sequential Runs A
< Step 1: Identify computational intensive parts
> Where am | spending my time?
 Modules/Libraries CPU
* Loops
* Statements
* Functions
> |Is the tlme spentin ’ghe cp_mputatmnal kernels? | 1| cache
> Does this match my intuition?
< Impact of memory hierarchy) I
> Do | have excessive cache misses? | L2 Cache J
> How is my data locality? , |
> Impact of TLB misses? | Shared L3 Cache]

< External resources
> Is my /O efficient? Main Memory
> Time spent in system libraries?

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

< Shared memory model

P
> Single shared storage o
> Accessible from any CPU
] L1
< Common programming models
> Explicit threads (e.g., POSIX threads)
> OpenMP L2 Cache

J

i
{ Main Memory J

< Typical performance issues
> False cache sharing
> Excessive Synchronization

> Limited work per thread
> Threading overhead [Mem- H CPU CPU HMemJ

< Complications: NUMA

> Memory locality critical [Mem.H CPU CPU HMemJ
> Thread:Memory assignments

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

What to Look For: Message Passing

< Distributed Memory Model
» Sequential/shared memory nodes coupled by a network
> Only local memory access
» Data exchange using message passing (e.g., MPI)

< Typical performance issues
> Load imbalance; Processes waiting for data
> Large fraction of time on collective operations I
» Network and 1/O contention Application
> Non-optimal process placement & binding MPI Library

s

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

NIC

. \
What’s Next -l a

<+ Overview of Open|SpeedShop

> Help to understand demos and hands-on exercises

< Basic questions
> Where am | spending my time?
> How to understand the context of this information?

<+ Hardware/Resource utilization
> How to use hardware counters efficiently?
> How to turn this information into actionable insight?

< Next step beyond the computational core
» How well is my I/O doing?
> How well am | utilizing memory?
> How can | understand the performance on accelerators?

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Section 2

Emerging Performance Analysis models

Open | SpeedShop”

B -

)
» Los Alamos

NATIONAL LARDRATORY
5

11/11/2018

b .. i i
s

Z \
. AsC

Emerging Performance Monitoring

<+ New approach to performance tracking
> Light weight but with broad collection abilities
> Broad but not Deep

< Why?
> Discovery — looking for a place to start
> Easy — less difficult to run and understand

> Comparison — High level across architectures
* Or compilers
* Or System environments, File systems, etc.

> Always on — Option to add to monitoring infrastructures

< Monitoring and Analysis
> Add to broader monitoring infrastructures that are collecting
other data from multiple sources and aggregated for analysis

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Integrated Metrics/Analysis scope \

(Application perspective) o /‘
(oo AsC
[mode
LDMS dara - node dana LDMS Met Transport
Drarshan Gather
AppMon Darshan
with
Hoower
= MRMNeEt Tr:ll‘ls.pm
| Caliper | 0i55s

—

Application WF Resource
System Resilience Teams Archieciures WF Data Power Unllization Other

Open | SpeedShop‘“ How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

High-level versus In-depth perf. tools

< High level performance analysis versus traditional in-

depth tools

> In depth tools give per function, per statement, per loop type
information
> High level tools give an overview, per execution view

< Use high level tools to get an understanding of
application performance — forensic approach

< Use In-depth tools to “home-in” on solving the issues
found by using the high level tools.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

\

Lightweight and Monitoring Tool efforts [

KRELL AaAsc

< TAU execution command- tau_exec C%)

» MPI example - % mpirun -np 256 tau exec ./a.out
<+ ARM Performance Reports - (originally Allinea)
< Lightweight Distributed Metric Service - LDMS (SNL)

> Provides capabilities for lightweight run-time collection of high-
fidelity data. Node level, system data.

< 0SS — CBTF Summary - details later
< Caliper /SPOT (LLNL- in-development) K Niiper

> Instrumented calipers, included library, on-going collection and
analysis via web page

< Monitoring

> LLNL — Sonar monitoring infrastructure
> LANL — Insight monitoring infrastructure

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Value of High-level Performance Analysis

< High-level view valuable to:
» Analysts (End Users)
> System Administrators
> System Architects
> Code Developers

< Analysts/Users

> Show load balance (min,max,average) across processes (mpi)
and/or threads (openMP)

> Hardware counters metrics can give insight into processor
instruction and cache usage

> Memory metrics can show highwater memory mark (see the
maximum memory resident in your program), total allocation
calls and size, and total free calls. Comparing total allocations to
total frees can give an indication of memory leaks.

> 1/O metrics give insight to frequency of read/write calls and
total size of read/write calls.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Value of High-level Performance Analysis

< System Administrators
> Use continuous integration performance analysis to monitor
applications to see which ones are performing badly
> Monitor set of applications before and after system changes

< System Architects
> Use the information to extrapolate how new architecture
features would impact performance of hypothetical new

machine
* How to improve scalar performance?
* What happens if more vectorization could be done?
* Run the survey tool on multiple architectures and make projections

< Code Developers
> Analyze an application before and after source changes to it
> Decide what areas of the code need to have further
improvements

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

High-level Performance Analysis: O|SS [N

KRELL . ASC

Open|SpeedShop’s cbtfsummary tool

< The summary experiment currently gathers high-level

performance metrics, such as:
> Time spent in MPI routines
> Time spent in OpenMP (idle time, barrier time, task time)
» Hardware counters (multiplexes HW counters)
» Time spent in I/O (breaks down read and write times and byte
totals)

> Memory information
* Allocation calls, bytes, and time
* Free calls and time
* PAPlI dmem and statistics including high water mark
* rusage max rss

> rusage utime and stime

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

High level Performance Analysis: O|SS

Open|SpeedShop’s cbtfsummary tool
< Usage: cbtfsummary “normal app run script”

< Outputs:
> Human readable report to stdout
> Human readable report to text file
> Composite csv file
> Directory structure containing per-thread of execution
csv files

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

.

KRELL

High-level Performance Analysis: O|SS

< cbtfsummary tool example:

setenv CBTF_MPI_IMPLEMENTATION mvapich2
setenv CBTF_CSVDATA_DIR ./rzgenie_lulesh2_n64 omp2_csvdata

cbtfsummary "srun -n 64 ./lulesh2.0 -p -i 90"

Processing csv files in ./rzgenie_lulesh2_n64_omp2_csvdata/lulesh2-overview-csvdata-1
Metrics for thread 0 in 64 ranks

metric name max min avg

implicit_task_time_seconds 2.290756 1.707665 1.970446
serial_time_seconds 3.323400 2.740352 3.070070
PAPI_TOT_INS 32141739510 26835045450 29373460884
PAPI_DP_OPS 6851778300 5937733304 6162486573
PAPI_LD_INS 10179972804 8494295326 9310108000
PAPI_VEC_DP 6064913156 5325306542 5511166403
PAPI_TOT_CYC 17585366336 16103836394 16816938221

allocation_calls 20208 19435 19795
allocation_bytes 2393954217 2281932664 2308348507
allocation_time_seconds 0.025247 0.009769 0.011933
total_time_seconds 5.372663 5.214180 5.265309
free_calls 20044 19288 19642

free_time_seconds 0.510833 0.271222 0.399044
io_total_time_seconds 0.005593 0.002904 0.004288
write_time_seconds 0.005573 0.002877 0.004256
write_bytes 450 180 337
dmem_size_kB 405080 345592 366302
dmem_heap_kB 159272 158968 161593

dmem_high_water_mark_kB 74532 72180 73242

dmem_shared_kB 10520 8428 9122
dmem_resident_kB 34132 31816 32665
stime_seconds 1.782871 1.247015 1.476539

utime_seconds 3.603105 3.281256 3.457614
maxrss_kB 74532 72180 73242
total_mpi_time_seconds 2.928412 2.251567 2.596778

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

\

Z \
. AsC

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Introduction into Tools and Open|SpeedShop

Open | SpeedShop”

Section 3

/A
> I;)sAlamos

NATIONAL LARDRATORY
5

b .. i i
s

11/11/2018

Open|SpeedShop Tool Set = A

< Open Source Performance Analysis Tool Framework
> Most common performance analysis steps all in one tool
> Combines tracing and sampling techniques
> Extensible by plugins for data collection and representation
> Gathers and displays several types of performance information

< Flexible and Easy to use
> User access through:
GUI, Command Line, Python Scripting, convenience scripts

< Scalable Data Collection
> Instrumentation of unmodified application binaries
> New option for hierarchical online data aggregation

< Supports a wide range of systems

> Extensively used and tested on a variety of Linux clusters
> Cray, Blue Gene, ARM, Power 8, Intel Phi, GPU support

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Classifying Open |SpeedShop = A

<+ Offers both sampling and direct instrumentation
> Sampling for overview and hardware counter experiments
* Even and low overhead, overview information

> Direct instrumentation for more detailed experiments
* More in-depth information, but potentially bursty

> All instrumentation at link-time of runtime

< Multiple direct instrumentation options
> APl level instrumentation (e.g., /O or memory)
> Loop analysis based on binary instrumentation techniques
> Programming model specific instrumentation (e.g., MPl or OpenMP)

< Aggregation
> By default: aggregate profile data over time

* Example: intervals, functions, ...
* Full traces possible for some experiments (e.g.. MPI), but costly

> For parallel experiments: by default aggregation over threads,

processes, ...
* However, users can query per process/thread data

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Open|SpeedShop Workflow

srun —n4 —N1 smg2000 —n 65 65 65

osspcsamp “srun —n4 —N1 smg2000 —n 65 65 65”

—
Open|SpeedShop
Eile Lools pelp
®ipe Sampling [1] | % 00x
Process Control
- R j# cont) pause Bupdate
Status:|Process Loaded: Click on the "Run" button to begin the experiment.
= stats panel [1] | G [O x || msource Panel [1] | mOox
= T AlEvjctoton Exclusive CPU time i |/hm/jegmemsmemshczne_de-osf-pi/m/rh;.f
[' I [0 (3 [oV L [on [ge Showing Functions Report: ® Functions Statements Q Linked Objects | - .
T 25 integer jst1, jendi
. 26 double precision
Executables: 1u.C.256 Hosts:(16) hera1e.llnl.gov ... Pids: 256 Ranks: 256 Threads: 3 : 2 Gouble precision w21, ust, ual |
28 double precision tmp
& of CPU Time T[Exclusive CPU t]X of CPU Timd Function (defining locatid 29 double precision u21i, u3li, u4li, uSii
K) 3 9 rhs 6: rhs.f,5) 30 double precision w21j, u3lj, udlj, usl)
| 525 500000 21.717008 smpi_net_lookup (1ibmpich 31 double precision w21k, u31k, udlk, uSik
312.020000 5.341726 blts (10.C.256: blts.f,d) 32 double precision u2lind, uIliml, udlimi, uSlini
368440000 9.234537 buts_ (lu.C.256: buts f'd) 33 double precision wu21jmi, u3ijmi, udijmi, uSijmi
271 210600 B 119890 Jacld_ (10.6.256: jacid.f, 34 double precision u2ikmi, u3ikmi, udikmi, uSikmi
-235.250060 7.043266 jecu_ (1u.C.256: jacu.f,5) e
-121.930606 3.658522 s5sor_ (1u.C.286: ssor.f,4) o.610600
-75.380000 2.256839 exchange_3_ (1u.C.256: exc) 38
-63.120000 1.8887681 __GI_memcpy (libe-2.5.50) 6.000000
-33.646888 1.887165 pthread_spin_lock (libprhrdillll 6 53a00a
22.250000 8.666154 MPID_DeviceCheck (libmpich| 2.000008
21.210800 ©.641805 odu_test_new_connection (1[Il 5 340608
14.168008 B.422147 exchange 1. excfil|| 93 a2ea88 S—
-7.670008 ©.229636 MPID_SMP_Check_incoming (1] & 44 end do 4 EED BN EEN SN BN S .-
|-7.150000 8.214867 erhs_ (1u.C.256 s.f,4) 45 end do
5.770006 8.172751 exact_ (lu.C.256: exact.f, 46 end do
3.716086 8.1116876 MPID_SendContig (1libmpich 0.820000
|-3.200000 ©.095806 MPID_SMP_Eagerb_send short
|-2.200000 8.065867 MPIR_ToPointer (libmpich. sy
9.341720 2066000 ©.061675 MPI_Recv (libmpich.so.1.6 2
-1.660000 8.849700 MPID_SBalloc (libmpich.so 52
9.2345375 11990 OthEr -1.316008 9.638221 MPID_VIA_eager_send (libmp] 53 : . I . . .
[1240089 ©.e37125 viadev_post_send (libmpich 54 ¢ dex = flag : iex = @ north/south communication
|-1.238000 0630826 viadev_process_send (libmp 55 ¢ " i iex = 1 east/west communication
1.170800 ©.035629 MPI_send (Libmpich.so.1.a: 56 conneev . S
1.168088 ©.634738 pthread_spin_unlock (libptl 57 iex 8
-1.166008 ©.634730 MPID_Search_unexpected_gue 58
|-1.010800 9.030239 lznorm_ (1u.C.256: lznorm
8.950000 8.028443 MPID_Msg arrived (libmpich 8.010008
6 A986A0 A 426646 Sadey on P
I DTl o osacan I T
Conmand Panel (¥ ManageProcessesPanel [1] | B[00 =
Processes: [Rank | [Thread [status Process Sets TPID [Rank TThread T =
] D =+AlLl ALL
16748 1 46912529633216 bi A1l (288) pi...
16741 2 46912529633216 Disconnected 8 ecte
16742 3 46912529633216 Disconnected ~herad. L1nl.gov 16739 6 4691252633216
16743 4 46912529633216 pisconnected -heraa.11nl.gov 16748 1 6912529633216
16744 5 469125286G33216 Disconnected -herad.llnl.gov 16741 z 46912529633216
16745 8 6912529633216 pisconnected -heraa.1lnl.gov 16742 3 6912529633216
16746 7 46912529633216 Disconnected = herad.llnl.gov 16743 a 46912529633216
iz o £nineancans nioo e Vi oo iezas P nineanazanis
—

http://www.openspeedshop.org/

Open | SpeedShop‘” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Open|SpeedShop Workflow

srun —n4 —N1 smg2000 —n 65 65 65

osspcsamp --offline “srun —n4 —N1 smg2000 —n 65 65 65” MPI Application

T
OpenlSpeedshap
Eile Tools Help
®ipe Sampling [1] | % 00x
~ Process Control
» wn s] pauce
Status:|Process Loaded: Click on the "Run" button to begin the experiment.
= stats panel [1] | G [O x || msource Panel [1] | mOox
Choice i N N
- . e Exclusive CPU time inl/home/jeg/DEMOS/demos/sc2016_demos/mpi/Lu/rhs.f
T ELLD B 5 1B B Besvomino muncesons aaport: @ Fartions G Shatmeris O Liked abcts || | =l
T 25 integer jsti, jendi
26 double J
Executanles: 1u..250 Hosts:(16) herain.linl.gov ... pids: 250 Ranks: 256 Threads: 3 : 2 doublepreciston 4 e, wet 7
28 double precision tmp
& of CPU Time T[Exclusive CPU t]X of CPU Timd Function (defining locatid 29 double precision w21i, u31i, udli, uSii
K) 38 9 rhs 6: rhs.f,5) 30 double precision w21j, u3lj, udlj, usl)
| 525 500000 21.717008 smpi_net_lookup (1ibmpich 31 double precision w21k, u31k, udlk, uSik
312 020606 9.941720 blts_ (lo.C.256: blts.f,d) 32 double precision uzliml, u3liml, udlimi, uStini I I

33 double precision u2ijnd, udijmi, udijmi, uSijni I I
308.440600 0.234537 buts_ (1u.C.256: buts.f,4) s
et naaen Teetd fin e ost: Tesit u double precision u21kmi, utkmi, u4lkmi, uSikmi
{-235.250000 7.043266 jacu_ (1u.€.256: jacu.f,5) 28 L I J J
-121.930000 3.650522 ssor_ (1u.c.256: ssor.f,4)| [Ill & 510000 L - —— -—— -
-75.390800 2.256839 exchange 3_ (1u.C.256: exc| 38
-63.120006 1.889781 _GI_memcpy (libc-2.5.50) 0.0800800
-33.646880 1.867165 pthread_spin_lock (1ibpehrdllll 5 53a00a I
22.250000 8.666154 MPID_Devicecheck (Libmpich) 2.008008 EED BN NN SN SN -
21.410000 0.641005 odu_test_new_connection (1MlIl's 146680
14.168008 B.422147 exchange_1_ (1u.c.256: excl ||| a3 326888 S—
7.670000 ©.229636 MPID_SMP_Check_incoming (1| . a4 end do
i oy e e kT .15 e ost-mortem
5.770000 8.172751 exact_ (lu.C.256: exact.f, 46 end do
3.716006 ©.111676 MPID_SendContig (libmpich 0.020008
|-3.200000 ©.095806 MPID_SMP_Eagerb_send short
{-2.200000 8.865867 MPIR_ToPointer (libmpich. sy
9.341720 -2.660000 ©.061675 MPI_Recv (libmpich.so.1.a: 2
-1.660000 ©.949700 MPID_SBalloc (libmpich.so, F
9.2345375 11990 OthEr -1.316800 8.039221 MPID_VIA_eager_send (libmp| - U I
~1-240000 0.037125 viadev_post_send (libmpich 54 ¢ dex = flag : dex = @ north/south communication
|-1.230080 ©.630826 viadev_process_send (Libmp| 55 ¢ 9 i lex - 1 east/west communication
1.170800 ©.035629 MPI_send (Libmpich.so.1.a: 56 c-onnn- I L
1.166800 8.034730 pthread_spin_unlock (Libpt| 57 Frv——
i-1.100000 ©.634738 MPID_Search_unexpected_guef 58
|-1.0100800 0.036239 1znorm_ (1u.C.256: lznorm
0.950000 ©.628443 MPID Msg arrived (libmpichzlll| 6 810008
6 A986A0 A 426646 Sadey on P
I DIl o acacaa I I
Conmand Panel (¥ ManageProcessesPanel [1] | B[00 =
Frocesses: [Rank | [Thread [status = [Process sets TFio Tihread T =
] o: -
16740 1 46912529633216 bi
16741 2 6912529633216 Disconnected 5 n
16742 3 6912520633216 Disconnected ~herad. L1nl.gov 16739 6 4691252633216
16743 4 6912529633216 Disconnected -heraa.11nl.gov 16748 1 6912529633216
16744 5 6912528633210 Disconnected -herad.1lnl.gov 16741 2z 40912528633210
16745 8 6912529633216 pisconnected -heraa.1lnl.gov 16742 3 6912529633216
16746 7 6912529633216 Disconnected =} herad. 11nl.gov 16743 1 6912529633216 EJ
sz o fninmanmzanis i i et aon snzaa P AmninEanenanaz

http://www.openspeedshop.org/

Open | SpeedShop‘” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Alternative Interfaces =

< Scripting language

» Immediate command interface Experiment Commands
» O|SS interactive command line (CLI) expView
e openss -cli expCompare
P expStatus
List Commands
list -v exp
X PYthOﬂ module list -v hosts

import openss

my filename=openss.FilelList ("myprog.a.out")
my exptype=openss.ExpTypeList ("pcsamp")
my id=openss.expCreate (my filename,my exptype)

openss.expGo ()

My metric list = openss.MetricList ("exclusive")
my viewtype = openss.ViewTypeList ("pcsamp”)
result = openss.expView(my id,my viewtype,my metric list)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Central Concept: Experiments

<+ Users pick experiments:
» What to measure and from which sources?
» How to select, view, and analyze the resulting data?

<+ Two main classes of performance data collection:

» Statistical Sampling
» Periodically interrupt execution and record location
« Useful to get an overview
« Low and uniform overhead

» Event Tracing
« Gather and store individual application events
* Provides detailed per event information
» Can lead to huge data volumes

< O|SS can be extended with additional experiments

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Sampling Experiments in O|SS = A

< PC Sampling (pcsamp)
> Record PC repeatedly at user defined time interval
> Low overhead overview of time distribution
> Good first step, lightweight overview

< Call Path Profiling (usertime)
> PC Sampling and Call stacks for each sample
> Provides inclusive and exclusive timing data
> Use to find hot call paths, caller and callee relationships

<+ Hardware Counters (hwc, hwctime, hwcsamp)

> Provides profile of hardware counter events like cache & TLB misses
> hwcsamp:
* Periodically sample to capture profile of the code against the chosen counter
* Default events are PAPI_TOT _INS and PAPI_TOT_CYC
> hwc, hwctime:
* Sample a hardware counter till a certain number of events (called threshold)
is recorded and get Call Stack
* Default event is PAPI_TOT_CYC

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Tracing Experiments in O|SS -l A

< Input/Output Tracing (io, iot, iop)
> Record invocation of all POSIX I/O events
> Provides aggregate and individual timings
> Store function arguments and return code for each call (iot)
> Lightweight I/O profiling because not tracking individual call
details (iop)

<+ MPI Tracing (mpi, mpit, mpip)
> Record invocation of all MPI routines
> Provides aggregate and individual timings
> Store function arguments and return code for each call (mpit)
> Lightweight MPI profiling because not tracking individual call
details (mpip)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Tracing Experiments in O|SS = A

< Memory Tracing (mem)
> Tracks potential memory allocation call that is not later
destroyed (leak).
> Records any memory allocation event that set a new high-water
of allocated memory current thread or process.
> Creates an event for each unique call path to a traced memory

call and records:
* The total number of times this call path was followed
 The max allocation size
* The min allocation size
* The total allocation
* The total time spent in the call path
e The start time for the first call

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Additional Experiments in OSS/CBTF FoSleN

<+ CUDA NVIDIA GPU Event Tracing (cuda)
> Record CUDA events, provides timeline and event timings
> Traces all NVIDIA CUDA kernel executions and the data transfers
between main memory and the GPU.
> Records the call sites, time spent, and data transfer sizes.

< POSIX thread tracing (pthreads)
> Record invocation of all POSIX thread events
> Provides aggregate and individual rank, thread, or process
timings
<+ OpenMP specific profiling/tracing (omptp)
> Report task idle, barrier, and barrier wait times per OpenMP

thread and attribute those times to the OpenMP parallel
regions.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Performance Analysis in Parallel

Z \
AsSC

<+ How to deal with concurrency?

> Any experiment can be applied to parallel application
* Important step: aggregation or selection of data

> Special experiments targeting parallelism/synchronization

<+ O|SS supports MPI and threaded codes
» Automatically applied to all tasks/threads
» Default views aggregate across all tasks/threads
> Data from individual tasks/threads available
> Thread support (incl. OpenMP) based on POSIX threads

<+ Specific parallel experiments (e.g., MPI)
> Wraps MPI calls and reports

* MPI routine time
* MPI routine parameter information

> The mpit experiment also stores function arguments and return
codes for each call

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

How to Run a First Experiment in O|SS:

1. Picking the experiment
> What do | want to measure?
> We will start with pcsamp to get a first overview

2. Launching the application
» How do | control my application under O|SS?
> Enclose how you normally run your application in quotes
> osspcsamp “mpirun —np 4 smg2000 —n 50 50 50”

3. Storing the results
» O]SS will create a database
> Name: smg2000-pcsamp-0.openss

4. Exploring the gathered data
> How do | interpret the data?
> O/SS will print a default report
> Open the GUI to analyze data in detail (run: “openss”)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Example Run with Output =

< osspcsamp “mpirun —np 4 smg2000 —n 50 50 50” (1/2)

Bash>osspcsamp "mpirun -np 4 ./smg2000 -n 50 50 50"

[openss]: pcsamp experiment using the default sampling rate: "100".
Creating topology file for frontend host localhost

Generated topology file: ./cbtfAutoTopology

Running pcsamp collector.

Program: mpirun -np 4 ./smg2000 -n 50 50 50

Number of mrnet backends: 4

Topology file used: ./cbtfAutoTopology

executing mpi program: mpirun -np 4 cbtfrun --mpi --mrnet -c pcsamp ./smg2000 -n 50 50 50
Running with these driver parameters:

(nx, ny, nz) =(65, 65, 65)

<SMG native output>

Final Relative Residual Norm = 1.774415e-07
All Threads are finished.
default view for ./smg2000-pcsamp-0.openss

[openss]: The restored experiment identifier is: -x 1
Performance data spans 2.257689 seconds from 2016/11/09 13:33:33 to 2016/11/09 13:33:35

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Example Run with Output /\é

< osspcsamp “mpirun —np 4 smg2000 —n 50 50 50” (2/2)

Exclusive % of CPU Function (defining location)

CPU time
in
seconds.

2.850000 36.821705 hypre_SMGResidual (smg2000: smg_residual.c,152)
1.740000 22.480620 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)

0.410000
0.250000
0.250000
0.190000
0.190000
0.120000
0.100000
0.100000
0.090000
0.080000
0.080000

5.297158 mca_btl vader _check_fboxes (libmpi.s0.12.0.2: btl_vader fbox.h,184)
3.229974 opal_progress (libopen-pal.so0.13.0.2: opal_progress.c,151)

3.229974 hypre_Semilnterp (smg2000: semi_interp.c,126)

2.454780 pack_predefined_data (libopen-pal.s0.13.0.2: opal_datatype_pack.h,35)
2.454780 unpack_predefined_data (libopen-pal.s0.13.0.2: opal_datatype unpack.h,34)
1.550388 _int_malloc (libc-2.17.s0)

1.291990 hypre_SemiRestrict (smg2000: semi_restrict.c,125)

1.291990 opal_generic_simple_pack (libopen-pal.so.13.0.2: opal_datatype_pack.c,274)
1.162791 _ _memcpy_ssse3_back (libc-2.17.s0)

1.033592 _int_free (libc-2.17.s0)

1.033592 opal_generic_simple_unpack (libopen-pal.s0.13.0.2:

opal_datatype_unpack.c,263)

** View with GUI: openss —f smg2000-pcsamp-0.openss

Open | SpeedShop”

11/11/2018

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

Z \

ASsC
Performance Data
: Default view: by Function
Toolbar to switch (Data is sum from all processes
I Views PR and threads)
__' Select “Functions”, click D-icon
] pc Sampling [1] B 0OO=
Process Control
’7 =) Rin M| Terminate
Status IProcess Loa
[#] Source RO 0 =

T w oL [(8 (6 LB ©6A l6e Sowing Functions Reporr

Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4
% of CPU Time

/Display Choice
’7Q Functions (' Statements () Linked Objects (3 Loops

Exclusive CPU time in seconds. |% of CPU Time Function (defining location) =
- 7.870000 43.265531 hypre_SMGResidual (smg2000: smg_residual.c,152)
- 4, 390000 24.134140 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
- 1.090000 5.902303 mea_btl_vader_check_fboxes (libmpi.so.1.4.0: btl_vader_fbox.h,108)
5.992303 - 0.510000 2.803738 unpack_predefined_data (libopen-pal.so.6.1.1: opal_datatype_unpack.h,41)
5 303738 - 0.380000 2.089060 hypre_Semilnterp (smg2000: semi_interp.c,126)
(0. 360000 1.979109 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
2.089060 0000 1.924134 __memcpy_ssse3_back (libe-2.17.50)
0.31 1.704233 pack_predefined data (libopen-pal.s0.6.1.1: opal_datatype_pack.h,38) -
other 1154480 hymre QMO Avr fem o000 cmo_ oy e 7Y

Command Panel OO =

openss>> Graphical Representation

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC' 11/11/2018

Statement Report Output View

Performance Data

i ol s View Choice: Statements
o g g
1 pc Sampling (1] Select “statements, click D-icon B 0O X
Process Control
’7 = Fin [Gont | Panse M| Terminate
Stams:lprocess Loaded: Click on the "Run" by 0 begin the experiment.
(¥ Source Panel [1] | ¥ S OO =
. : View, Choice
v el [(s s BA @@ Showing Statements Report... ’70 Funciion® @ Statements (3 Linked Objects (3 Loops
Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4
% of CPU Time Exclusive CPU time in seconds. | % of CPU Time Statement Location (Line Number) =
- (3.350000 38.438257 smg_residual.c(291)
8.353511 - 1.380000 8.353511 cyclic_reduction. p 130)

- 0.920000 5.369007 smg_residual.c:
2.569007 . 0.800000 5.387400 cyclic_reduction.c(9Rg)
5.387400 - 0.550000 3.329298 cyclic_reduction.c(99

- (0.450000 2.723971 btl_vader_fbox.h(121)
3.329298 -0, 270000 1.634383 cyclic_reduction.c(1061)

- (0, 270000 1.634383 semi_restrict.c(262) -
other .01 9A0000 1 C73850 rurlic rednetinn (85 hd

[T | [«Iv]
Command Panel R [0 EH =

openss =

Statement in Program that
took the most time

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Associate Source & Performance Data

Open|SpeedShop

File Tc
«. Doubleclicktoopen — Use window controls to O
= source window — split/arrange windows

’7 =)) M| Terminate

Starus:lprocess Loaded: Click on the "Run" lZfon to begin the experiment.

[Stats Panel [1] | B [0 O = || = Source Panel (1] | B OO =

vtan ke Exclusive CPU t‘ /home/jeg/DEMO5/test_workshop_demos/mpi/smg2000/struct_ls/smg_residual.c

U oL [S 5V LB ca Be v smmsnem-(o Funcior >

283 A _data_box, start, base_stride, Ai,
Executables: smg2000 Host: localhost Pids: 4 Ranks:\§ Threads: 4 284 x_data_box, start, base_stride, xi,
— 285 r_data_box, start, base_stride, ri);
Exclusive CPU time in seconds. | % of CPU Time tement Location (Line Numbg= 286 #define HYPRE BOX_SMP_PRIVATE loopk, loopi, loopj, Al xi,ri
287 #include "hypre_box_smp_forloop.h"
- 1.380000 8.353511 cyclic_reduction.c(1130) 288
- (1.920000 5.560007 smg_residual.c(239) 0.230000
- (,890000 5.387409 cyclic_reduction.c(910)
. 0,550000 3.320208 cyelic_reduction.c(999) >> 6.350000
- 0.450000 2.723971 btl_vader_fbox.h(121)
- (0,.270000 1.634383 cyclic_reduction.c(1061) 0:220000
- (,270000 1.634383 semi_restrict.c{262) Z
.. 0V DENNON 1 573850 cuplic reducrion c(857) Il

[T] [«]»]

Command Panel |] ManageProcessesPanel [1] B [0 H =
Processes: ' | Rank | Thread Status | _| | Process Sets | Rank | Thread | =
: 0 139906999825280 Disconnected = Dynamic I |:

1 139901680468864 Disconnected ~|f © Al Selected performanee B
2 140051826938752 Disconnected 2 +- Discon hd

data point

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Library (LinkedObject) View

Open|SpeedShop

File Tools Help

[¥] pc Sampling [1]

Select LinkedOb{'ect
View type and Click —

Process Control "
’7 - : ¥ Gor =) Paiise 3 Update on D-lCOIl W Terminate
Status:IPmces.s Loaded: Click on the "Run” button to begin the experiment.
[Source Panel [1] | [¥] Stats Panel [1] B OO x
. _ — View/Display Choice
o el i BA |8 Showing Linked Objects Report... (O Functions () Statements @ Linked Objects () Loops ‘
Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4
% of CPU Time Exclusive CPU time in seconds. | % of CPU Time LinkedObject
; 78.143877 smg2000
10.763317 libmpi.so.1.4.0
10.763317 7.138935 libopen-pal.s0.6.1.1
3.844042 libe-2.17.50
7.138935 0.054915 pesamp-ri-offline.so
0.054915 libmonitor.s0.0.0.0
3.844042
I [[Tl
Command Panel | Gz [0 O x
_— . .
openss Shows time spent in
libraries. Can indicate

imbalance.

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

Libraries in the application ———

11/11/2018

Loop View a2 \

ASC
Open|SpeedShop
File Tools Help
Select Loops
¥ pc Sampling [1] 5 g Bk [0 O =
peSampling View type and Click
Process Coni .
’7 = Rin | Gont | Pause ¥ Update on D-lcon M Terminate
Status:lecess Loaded: Click on the "Run” button to begin the experiment.
[Source Panel [1] | (¥ Stats Panel [1] m OO x
. : View/Display Choice
ot el &R [Showing Loops Report... {O Functions () Statements () Linked Objects @ Loops ‘I
Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4
% of CPU Time Exclusive CPU time in seconds. | % of CPU Time Loop Start Location (Line Number| =|
! 28.754110 smg_residual.c(205)
7 672634 7.672634 cyclic_reduction.c(882)
7.234198 cyclic_reduction.c(1022)
7.234198 3.836317 smg_residual.c(237)
3836317 3.830317 smg_residual.c(220)
3.836317 smg_residual.c(237)
3.8306317 3.799781 smg_residual.c(237)
3.690172 btl_vader_fbox.h(117) ||
i 1.607600 opal_datatype_unpack.h(65) =
Command Panel | OO =x
openss> >
Shows time spent in loops.
P P Statement number of start

of loop.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC' 11/11/2018

Open |SpeedShop Basics = A

< Place the way you run your application normally in quotes
and pass it as an argument to osspcsamp, or any of the

other experiment convenience scripts: ossio, ossmpi, etc.
» osspcsamp “srun —N 8 —n 64 ./mpi_application app_args”

<+ Open|SpeedShop sends a summary profile to stdout
<+ Open|SpeedShop creates a database file

< Display alternative views of the data with the GUI via:
> openss —f <database file>

< Display alternative views of the data with the CLI via:
> openss —cli —f <database file>

< Start with pcsamp for overview of performance

< Then, focus on performance issues with other
experiments

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hands-on Section 2: Basic Sampling Experiments [FSray

<+ How to log into the tutorial computer system
> Login information will be distributed at this time.
> The “exercises” directory will be in your SHOME directory.

> Also can find these exercises at:
 www.openspeedshop.org/downloads

> Top-level directory has file: EXERCISES that lists all the tutorial
exercises and README file has general information.

> A “docs” directory in your SHOME has OpenSpeedShop
documentation and the updated tutorial slides.

< Exercise is in the exercise directory:
> SHOME/exercises/loop check

< Consult README file in each of the directories for the
instructions/guidance

<+ IBM Power system from CreativeC (Greg Scantlen)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

http://www.openspeedshop.org/downloads

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Section 4

Basic timing experiments and their Pros/Cons

Open | SpeedShop”

/A
> I;)sAlamos

NATIONAL LARDRATORY
5

b .. i i
s

11/11/2018

Identifying Critical Regions -l A

Flat Profile Overview

<+ Profiles show computationally intensive code regions
> First views: Time spent per functions or per statements

< Questions:
> Are those functions/statements expected?
> Do they match the computational kernels?
> Any runtime functions taking a lot of time?

<+ ldentify bottleneck components
> View the profile aggregated by shared objects
» Correct/expected modules?
> Impact of support and runtime libraries

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Adding Context through Stack Traces [PFaaSlay

Function
A
Function
C

< Missing information in flat

profiles
> Distinguish routines called from
multiple callers
> Understand the call invocation
history
> Context for performance data

< Critical technique: Stack traces
> Gather stack trace for each
performance sample
> Aggregate only samples with
equal trace

< User perspective:
> Butterfly views
(caller/callee relationships)
> Hot call paths
* Paths through application that
take most time

S
\
S

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Inclusive vs. Exclusive Timing

% Stack traces enable
calculation of

inclusive/exclusive times
» Time spent inside a function

only (exclusive)
* See: Function B

> Time spent inside a function and

its children (inclusive)
e See Function C and children

< Implementation similar to flat

profiles
> Sample PCinformation
> Additionally collect call stack
information at every sample

< Tradeoffs

> Pro: Obtain additional context
information

» Con: Higher overhead/lower
sampling rate

Function
A
Function
C

Inclusive Time for C

Exclusive Time for B

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Call path profiling & Comparisons FeFay

< Call Path Profiling

» Take a sample: address inside a function

» Call stack: series of program counter addresses (PCs)

» Unwinding the stack is walking through those address and
recording that information for symbol resolution later.

» Leaf function is at the end of the call stack list

<+ Open|SpeedShop: experiment called usertime
» Time spent inside a routine vs. its children
» Key view: butterfly

<+ Comparisons
» Between experiments to study improvements/changes
» Between ranks/threads to understand differences/outliers

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Interpreting Call Context Data = A

% Inclusive versus exclusive times

> If similar: child executions are insignificant
* May not be useful to profile below this layer

> If inclusive time significantly greater than exclusive time:
* Focus attention to the execution times of the children

< Hotpath analysis
> Which paths takes the most time?
» Path time might be ok/expected, but could point to a problem

< Butterfly analysis (similar to gprof)

> Should be done on “suspicious” functions
* Functions with large execution time
* Functions with large difference between inclusive and exclusive time
* Functions of interest
* Functions that “take unexpectedly long”

> Shows split of time in callees and callers

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Inclusive and Exclusive Time Profiles: Usertime

Basic syntax:
ossusertime “how you run your executable normally”

Examples:
ossusertime “smg2000 —n 50 50 50”
ossusertime “smg2000 —n 50 50 50” low

< Parameters
Sampling frequency (samples per second)
Alternative parameter: high (70) | low (18) | default (35)

Recommendation: compile code with —g to get statements!

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Reading Inclusive/Exclusive Timings

% Default View
> Similar to pcsamp view from first example
> Calculates inclusive versus exclusive times

File Tools Help

[#] Custom Experiment [1] | W User " EXClUSiV@ N InClUSiVG B OOHX
’7Prucess Control Tlme — Tlme
- > N n

[W] Stats Panel [2] I [ManageProcessesE BR[O H =

s . View/Display Choice
ETW E.E‘ @ Er e : ’75‘ Functions ¢~ Statements (" Linked Objects ‘

Exclusive CPU time in 58 g g Function (defining location)
B 282.228566 282.228566 72.862728 do_work (hydra: hydra.c,12)

- 51.771428 89.199998 13.365789 opal_progress (libopen-pal.s0.0.0.0)

- 40.257142 40.285713 10.393155 mca_btl_sm_compeonent_progress (mca_btl_sm.so: btl_sm_frag.c.0)

- 10.285714 10.285714 2.655455 mca_pml_obl_progress (mca_pml_obl.so: pml_obl_start.c,0)

- 2.714286 84.514284 0.700745 mca_pml_obl_recv (mca_pml_obl.so: pml_obl_start.c,0)

- 0.028571 0.028571 0.007376 poll {libc-2.10.1.s0)

- 0.028571 2.457143 0.007376 ompi_request_default_wait_all (libmpi.s0.0.0.1)

- 0.028571 0.028571 0.007376 mca_pml_obl_recv_frag_callback_match {(mca_pml_obl.so: pml_obl_stal
| RS | |

Command Panel B [H =

openss>>

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Stack Trace Views: Hot Call Path

ASC
Open|SpeedShop
File Tools Help
¥ User Time [1] | 00 x
Process Control Hot Call Path
= Run |% Gont: ®| Pause & Update Erminate
StatuSZIProcess Loaded: Click on the "Run" to begin the experiment.
[¥ Stats Panel [1] I #Mana sesPanel [1] | R OO=x
2 r el Ei@'l 3 78 1oV [LB /oA lge Showing Hot Callpath Report:
Executables: sm ost: localhost Pids: 2 Ranks: 2 Threads: 2

econds. | Inclusive CPU time in seconds.| % of Total Exclusive CPU | Call Stack Function (d g location)
_start (smg2000)
@ 556in __libe_startgain (libmonitor.s0.0.0.0)
__libe_start_main (ljfc-2.14.90.50)

ain (libmonitor.s0.0.0.0)

g2000: smg2000.c,21)

Exclusive CPU ti

@ 510 in main
@ 65 in HYP
@ 168 in hypfe SMGSolve (smg2000: smg solve.c,57)

k _start (smg2000)

= T 1:1 fe 101 2 oonoon

Il 1

Access to call paths:

e All call paths (C+)

* All call paths for
selected function (CW) y

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Stack Trace Views: Butterfly View

< Similar to well known “gprof” tool

Open|SpeedShop
File Tools Help Callers of
= User Time (1] | “hypre. SMGSolve” o«

"Process Control —

= Bun % Gont | Pause &3 Update M| Terminate

Status:IProcess Loaded: Click on the "Run" button to begin the experiment.

¥ Stats Panel [1] I #ManageProcessesPanel [1] | OO =

2w oL (s " &P e [TS o (s LB e ige Showing Butterfly Report:

Executables: smg2000 Host: localhost Pids: 2 Ranks: 2 Threads: 2

Inclusive CPU time in sec1| % of Total Inclusive CPU | Call Stack Function (defining 1 on)
: 98.336202 HYPRE StructSMGSolve (smg2000: HYPRE struct smg.c,64)
1.663798 hypre_SMGRelax (smg2000: smg_relax.c,228)

48.657142 97.705106
0.771429 1.549053

hypre SMGRelax (smg2000: smg_relax.c,228)
hypre SMGResidual (smg2000: smg_residual.c,152)

0.114286 0.229489 hypre_Semilnterp (smg2000: semi_interp.c,126)

0.171429 0.344234 hypre_StructInnerProd (sm . struct_innerprod.c,32)
~0.057143 0.114745 hypre_SemiRestrict (smg2000: semi ict.c,125)
-0.028571 0.057372 hypre_StructAxpy (smg2000: struct_axpy.c,

Callees of
“hypre SMGSolve”

Pivot routine
“hypre SMGSolve”

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

. . \
Comparing Performance Data 4 ay
KRELL ‘HSC

<+ Key functionality for any performance analysis
> Absolute numbers often don’t help
» Need some kind of baseline / number to compare against

< Typical examples
> Before/after optimization
> Different configurations or inputs
> Different ranks, processes or threads

< Very limited support in most tools
> Manual operation after multiple runs
> Requires lining up profile data
> Even harder for traces

<+ Open|SpeedShop has support to line up profiles
> Perform multiple experiments and create multiple databases
> Script to load all experiments and create multiple columns

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Comparing Performance Data in O|SS %\ é\é

< Convenience Script: osscompare

» Compares Open|SpeedShop up to 8 databases to each other
* Syntax: osscompare “dbl.openss,db2.openss,...” [options]
e osscompare man page has more details

> Produces side-by-side comparison listing

> Data metric option parameter:
 Compare based on: time, percent, a hwc counter, etc.

> Limit the number of lines by “rows=nn" option

> Specify the: viewtype=[functions|statements|linkedobjects]

* Control the view granularity.

— Compare based on the function, statement, or library level.

— By default the compare will be done comparing the performance of functions
in each of the databases.

— If statements option is specified then all the comparisons will be made by
looking at the performance of each statement in all the databases that are
specified.

— Similar for libraries, if linkedobject is selected as the viewtype parameter.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Comparison Reportin O|SS e

osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss”

openss]: Legend: -c 2 represents smg2000-pcsamp.openss
[openss]: Legend: -c 4 represents smg2000-pcsamp-1.openss
-c 2, Exclusive CPU -c 4, Exclusive CPU Function (defining location)
time in seconds. time in seconds.
3.870000000 3.630000000 hypre_SMGResidual (smg2000: smg_residual.c,152)
2.610000000 2.860000000 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
2.030000000 0.150000000 opal_progress (libopen-pal.s0.0.0.0)

1.330000000 0.100000000 mca_btl_sm_component_progress (libmpi.s0.0.0.2:
topo_unity_component.c,0)

0.280000000 0.210000000 hypre_Semilnterp (smg2000: semi_interp.c,126)

0.280000000 0.040000000 mca_pml_ob1 progress (libompi.s0.0.0.2:
topo_unity_component.c,0)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

. . . \L/ \
Summary / Timing analysis = AL

< Typical starting point:
> Flat profile
> Aggregated information on where time is spent in a code
> Low and uniform overhead when implemented as sampling

< Adding context

» From where was a routine called, which routine did it call
> Enables the calculation of exclusive and inclusive timing
> Technique: stack traces combined with sampling

< Key analysis options
> Hot call paths that contains most execution time
> Butterfly view to show relations to parents/children

< Comparative analysis
> Absolute numbers often carry little meaning
> Need the correct baseline, then compare against that

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

\

Hands-on Section 3: Basic Sampling Experiments %/\ i \

< Basic sampling application exercise
> Also comparing runs to each other

< Exercises are in the exercise directory:
> SHOME/exercises/seq_lulesh/test

< Consult README file in each of the directories for the
instructions/guidance

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Section 5
Analysis of parallel codes:
MPI, OpenMP, POSIX threads

P
J . yaX
N\ . Los Alamos

Open | SpeedShop” 11/11/2018

Parallel Application Performance Challenges [EE<eN

KRELL AaAsc

< Architectures are Complex and Evolving Rapidly
> Changing multicore processor designs
> Emergence of accelerators (GPGPU, MIC, etc.)
> Multi-level memory hierarchy
» 1/0O storage sub-systems
> Increasing scale: number of processors, accelerators

< Parallel processing adds more performance factors
> MPI communication time versus computation time
> Threading synchronization time versus computation time
> CPU time versus accelerator transfer and startup time tradeoffs
» 1/O device multi-process contention issues
» Efficient memory referencing across processes/threads
> Changes in application performance due to adapting to new
architectures

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Parallel Execution Goals .

Execution Time
e]
~r]
72 |

s
PS5 ||

P7]

Bl Essential/Excess Computation = Interprocessor Communication

|:][“5"3 * Diagram from Performance Metrics for Parallel Programs: http://web.info.uvt.ro/~petcu/calcul/

% ldeal scenario

> Efficient threading when using pthreads or OpenMP
* All threads are assigned work that can execute concurrently
e Synchronization times are low.

> Load balance for parallel jobs using MPI
e All MPI ranks doing same amount of work, so no MPI rank waits

> Hybrid application with both MPI and threads

* Limited amount of serial work per MPI process

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Parallel Execution Goals A
KR»ELL HEC"‘

< What causes the ideal goal to fail?
> For MPI:

e Equal work was not given to each rank
* There is an out of balance communication pattern occurring
* The application can’t scale with the number of ranks being used

> For threaded applications:
* One or more threads doing more work than others and subsequently
causing other threads to wait.

> For hybrid applications:
* Too much time spent between parallel/threaded regions

> For multicore processors:
* Remote memory references from the non-uniform access shared
memory can cause sub-par performance

> For accelerators:

* Data transfers to the accelerator kernel might take more time than the
speed-up for the accelerator operations on that data - also - is the CPU
fully utilized?

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Parallel Application Analysis Techniques R

KRELL AaAsc

< What steps can we take to analyze parallel jobs?

> Get an overview of where the time is being spent.

* Use sampling to get a low overhead overview of time spent
— Program counter, call stack, hardware counter

» Examine overview information for all ranks, threads, ...

* Analyze load balance information:
— Min, max, and average values across the ranks and/or threads
— Look at this information per library as well
o Too much time in MPI could indicate load balance issue.

* Use above info to determine if the program is well balanced
— Are the minimum, maximum values widely different? If so:
o Probably have load imbalance and need to look for the cause of
performance lost because of the imbalance.
o Not all ranks or threads doing the same amount of work
o Too much waiting at barriers or synchronous global operations
like MP1_Allreduce

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Z \
AsSC

pcsamp Default View: NPB: LU

< Default Aggregated pcsamp Experiment View

Information Displays
Experiment
Metadata -

|
W lerminate ‘l

File Tools Help

] pc Sampling [1]
’—Pmcess Control

= Hin
Statusrocess Tomded T Aggregated Results

Gz [0 O =

ctions () Statements () Linked Objects () Loops

Executables: 1u.C.256 Hosts:(16) heralO.llnl.gov ... Pids: 256 Ranks: 256 Threads: 3

% of CPU Time Exclusive CPU time in seconds. | % of CPU Time Function (defining location) i
- 1029.310000 31.266821 rhs_ (Iu.C.256: rhs.f,5) i
- 725.390000 22.034799 smpi_net_lookup (libmpich.so.1.0: mpid_smpi.c,1370)

‘ - 312.020000 0.478071 blts_ (Tu.C.256: blts.f,4)

- 308.440000 9.369323 buts_ (Iu.C.256: buts.f,4)

9.478071 - 271.210000 8.238407 jacld_ (lu.C.256: jacld.f,5)
- 235.250000 7.146068 jacu_ (lu.C.256: jacu.f,5)

9.369323 - 121.930000 3.703805 ssor_ (lu.C.256: ssor.f,4)
-+ 75.380000 2.289780 exchange_3_ (lu.C.256: exchange_3.f,5)

8.238407 - 63.120000 1.917364 __GI_memepy (libe-2.5.50)
- 33.640000 1.021865 pthread_spin_lock (libpthread-2.5.50)

other - 22.250000 0.675877 MPID_DeviceCheck (libmpich.so.1.0: viacheck.c,254)
- 21410000 0.650361 odu_test_new_connection (libmpich.so.1.0: cm_user.c,29) -
- 14,100000 0,428308 exchanee | (lu.C.256: exchanee 1.£5) T

l
Command Panel 0z [H =
OPENss > >

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC' 11/11/2018

Load Balance View: NPB: LU = Ah

ASC
» Load Bal View based on functi
% LOd diance view pased on rtunctions (pcsamp
Open|SpeedShop
File Tools Help
e] MPI library showingup o6«
Process Control . . o
’7 = iy [Gont | Pause o Update hlgh lrl. the IISt Merminate
Max time in rank 255
Status:IProcess Loaded: Click on the "Run" button to begin the experiment.
=] Stats Panel [1] | (% ManageProcessesPanel [1] | B OO x
. View/Displa@Choice
o el [[$5 5V LB 1A e Showing Load Balance (min,max,ave) Report: (Q Functions§¢2) Statements ¢ Linked Objects ¢ Loops ‘
Executables: 1u.C.256 Hosts:(16) heral0.llnl.gov ... Pids: 256 Ranks: 256)
Max CPU Time Across Ranks(s) | Rank of Max Min CPU Time Across Ranks(s) Rank of Min | Average CPU Time Across Ra (sl Function (defining location) =
- 4.980000 18 3.330000 15 4.020742 rhs_ (lu.C.256: rhs.f,5)
- 1600000 17 0.850000 254 1.204844 buts_ (lu.C.256: buts.f,4)
- 1.530000 0.920000 43 1.218828 blts_ (lu.C.256: blts.f,4)
- 1.390000 14 0.740000 1.059414 jacld_ (lu.C.256: jacld.f,5)
- 1.190000 25 0.670000 243 0.918945 jacu_ (lu.C.256: jacu.f,5)
- 0.750000 64 . 160000 255 0.476289 ssor_ (lu.C.256: ssor.f,4)
- 0.530000 04 . 1] > __GI_memepy (libe-2.5.50)
- 0.480000 189 0.090000 255 0.294453 exchange 3_ (lu.C.256: exchange 3.f,[«
- 0.300000 111 0.050000 59 0.131406 thread spin lock (libpthread-2.5.50) | ¥
Il 1]r
Command Panc With load balance view we are
Openss > :
looking for performance number
out of norm of what is expected,

such as relatively
large differences between min, max
and/or average values.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Default Linked Object View: NPB: LU

<+ Default Aggregated View based on Linked Objects (libraries)

File Tools Help

Open|SpeedShop

1 pe Sampling [1] |

Linked Object View

Process Control
’7 = iy

[Cont

(library view)

e 2 Udes Select “Linked Objects”

Starus:lProcess Loaded: Click on the "Run” button to begin the experiment.

[#] Stats Panel [1] I] ManageProcessesPanel

2 el

Click D-icon

0=

rminate

Bz [0 O =

View/Display Choice
£ Showing Linked Objects Report... (

(C» Functions () Statements (@ Linked Objects () Loops ‘I

Executables: 1u.C.256 Hosts:(16) heralO.llnl.gov ... Pids: 256 Ranks: 256 Threads: 3

% of CPU Time Exclusive CPU time in seconds. [% of CPU Time | LinkedObject
£.-2382.790000 71.339523 1u.C.256
- 812.490000 24.325538 libmpich.s0.1.0
= - 64.290000 1.924810 libc-2.5.50
' .- 45700000 1.368235 lx4-rdmav2.so
£.-34.800000 1.041894 iMhread-2.5.50
1.924810
i NOTE: Look at the MPI
— library time to get an i1dea of
_ the MPI overhead.
o
Command Panel R [OO =
Openss= >

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Parallel Execution Analysis Technigues PEEEFE

KRELL AaAsc

< If imbalance detected, then what? How do you find

the cause?

> Look at library time distribution across all the ranks,
threads

* |Is the MPI library taking a disproportionate amount of time?
> If threaded (e.g. OpenMP), then look at the balance of time

across worker threads.
* For OpenMP look at idleness, barrier time, in addition to task times

> |f MPI application, use a tool that provides per MPI

function call timings

* Can look at MPI function time distributions
— In particular, MPI_Waitall
— Then look at the call path to MPI_Waitall

* Also, can look source code relative to
— MPI rank or particular pthread that is involved.
— |Is there any special processing for the particular rank or thread
— Examine the call paths and check code along path

> Use Cluster Analysis type feature, if tool has this capability

e Cluster analysis can categorize threads or ranks that have similar
performance into groups identifying the outlier rank or thread

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hot Call Paths View (CLI): NPB: LU

< Hot Call Paths for MPI_Wait for rank 255 only

openss —cli =f lu-mpi-256.openss Show all call paths

openss>>expview -r 255 -vcalltrees,fullstack -f MP]_Wait -— involvin MPI_Wait
for rank 255 only

Exclusive MPI Call % of Total Number of Calls Call Stack Function (defining locat
Time(ms)

>>>>main (lu.C.256)

>>>>> @ 140 in MAIN__ (lu.C.256: lu.f,46)

>>>>>> @ 180 in ssor_ (lu.C.256: ssor.f,4)

>>>>>>> @ 213 in rhs_ (lu.C.256: rhs.f,5)

>>>>>>>> @ 224 in exchange_3_ (lu.C.256: exchange_3.f,5)

>>>>>>>>> @ 893 in mpi_wait_ (mpi-mvapich-rt-offline.so: wrappers-fortran.c,893)

>>>>>>>>>> @ 889 in mpi_wait (mpi-mvapich-rt-offline.so: wrappers-fortran.c,885)
6010.978000 3.878405, 250 >>>>>>>>>>> @ 51 in MPI_Wait (libmpich.so.1.0: wait.c,51)

>>>>main (lu.C.256)
>>>>> @ 140 in MAIN__ (lu.C.256: lu.f,46)

Most expensive call >>>>>> @ 180 in ssor_ (lu.C.256: ssor.f,4)
path to MPI_Walt >>>>>>> @ 64 in rhs_ (lu.C.256: rhs.f,5)
>>>>>>>> @ 88 in exchange_3_ (lu.C.256: exchange_3.f,5)
>>>>>>>>> @ 893 in mpi_wait_ (mpi-mvapich-rt-offline.so: wrappers-fortran.c,893)

>>>>>>>>>> @ 889 in mpi_wait (mpi-mvapich-rt-offline.so: wrappers-fortran.c,885)
2798.770000 1.805823 250 >>>>>>>>>>> @ 51 in MPI_Wait (libmpich.so.1.0: wait.c,51)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Identifying Load Imbalance With O|SS PRESEEEN

KRELL AaAsc

<+ Get overview of application

> Run a lightweight experiment to verify performance expectations
e pcsamp, usertime, hwc

<+ Use load balance view on pcsamp, usertime, hwc

> Look for performance values outside of norm
 Somewhat large difference for the min, max, average values
 If the MPI libraries are showing up in the load balance for pcsamp, then do
an MPI specific experiment

< Use load balance view on MPI experiment

> Look for performance values outside of norm
 Somewhat large difference for the min, max, average values

> Focus on the MPI_Functions to find potential problems

<+ Use load balance view on OpenMP experiment (omptp)
> Can also use expcompare across OpenMP threads

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Link. Obj. Load Balance: Using NPB: LU PRESEEEN

KRELL . ASC

<+ Load Balance View based on Linked Objects (libraries)

File Tools Help
¥ pc Sampling [1] R k255 h 1 = OO =
R — an as maximum

ocess Contro . . —
o MPI library time value .
un % Cont * Pause 3 Update & . e LU t, [erminate
minimum 1me
Status:IProcess Loaded: Click on the "Run" button to begin the experiment.
= Stats Panel [1] |E|ManagePr0cessesPanel [1] | b [0 O =

View/Display Choice
w? ' 'L [[$: 5V 1B e lee Showing Load Balance (min, {

+ Functions ~ Statements © Linked Objects

Executables: 1u.C.256 Hosts:(16) heralO

V ... Processes/Ranks 5:(256) O...

]

Max Exclusive ‘Rank of Max verage Exclus| LinkedObject

10.8800 17 9.3078 lu.C.256

4.9400 255 1.7600 17 3.1738 libmpich.so.1.0

0.5400 94 0.1100 0 0.2511 libe-2.5.50

0.3500 255 0.0500 219 0.1785 libmlx4-rdmav2.so

0.3000 190 0.0500 55 0.1359 libpthread-2.5.so

L3

Command Panel B OO =x

openss>>

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Using Cluster Analysis in O|SS

< Can use with pcsamp, usertime, hwc
> Will group like performing ranks/threads into groups
» Groups may identify outlier groups of ranks/threads
> Can examine the performance of a member of the outlier group
» Can compare that member with member of acceptable
performing group

< Can use with mpi, mpit, mpip
> Same functionality as above
> But, now focuses on the performance of individual
MPI_Functions.
> Key functions are MPI_Wait, MPI_WaitAll
> Can look at call paths to the key functions to analyze why they
are being called to find performance issues

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Link. Obj. Cluster Analysis: NPB: LU

< Cluster Analysis View based on Linked Objects (libraries)

Open|SpeedShop

File Tools Help

1 pe Samplin 11 In Cluster Analysis results
proces Conl Rank 255 showi
an snowing up as an
= Hin % Gont | Pause B Update Outlier
Starus:lProcess Loaded: Click on the "Run" button to begin the experiment.
(¥ Stats Panel [1] | [¥]ManageProcessesPanel [1] | BOO=x
: View,/Displa#”Choice
o U oL [$h 5 LB ieA @@ Showing Comparayealysis Report: © FygfMons ¢ Statements @ Linked Objects () Loops ‘
Executables: 1u.C.256
View consists of comparison columns click gg#e metadata icon 'T" for details.
o e —=p g T T S oo PO T U PSS OO I IO T TOTITT SO TCr T T g, TICTa T I B O TSI TSI O TICT T T § O, TIr T TOTTIN R
for performance data type: pcsa A linkedobjects using display option: ThreadAverage -v linkedobjects .
Column(s) labeled -c 4: Experiment 1 Database Name: lu.C. pcsamp.openss : Showing Host: heral9.1lnl.gov -p 169 b %
for performance data type: pcsamp -v linkedobjects using display option: ThreadAverage -v linkedobjects
Column(s) labeled -c 5: Experiment 1 Database Name: lu.C.250-pcsamp.openss : Showing Host: heraS.lInl. g 29797, 29798, 29799, 29800, 295801, 29802, 295803, 29804, 29805, 29800, 298
for performance data type: pcsamp -v linkedobjects using display option: ThreadAverage -v linkedobjects |«
-]
TR [«I»]
-c 2, Average CPU Time Across Ra| -c 3, Average CPU Time Acrass Ral ¢ 4, Average CPU TiggAcross Ra| -c 5. Average CPU Time Across Ra| LinkedObject /
~0,344375 8.247368 7.370000 10.465000 lu.C.256
0.132054 0.184737 0.230000 0.123333 libpthread-2.5.50
3.138482 4.185789 4.940000 2.083333 libmpich.so.1.0
0.176429 0.224211 0.350000 0.130833 libmlx4-rdmav2.so
- (,.255714 0.204737 0.160000 0.246667 libc-2.5.50
Il i
Command Panel | BOQ =
OpEnss> >
i

Open | SpeedShop” mance of Parallel Codes

MPI/OpenMP Specific Experiments [SFeN

<+ MPI specific experiments
» Record all MPI call invocations
> MPI functions are profiled (ossmpip)
* Show call paths for each MPI unique call path, but individual call

information is not recorded.
* Less overhead than mpi, mpit.

> MPI functions are traced (ossmpi)
* Record call times and call paths for each event

> MPI functions are traced with details (ossmpit)
* Record call times, call paths and argument info for each event

<+ OpenMP specific experiment (ossomptp)
» Uses OMPT API to record task time, idleness, barrier, and wait

barrier per OpenMP parallel region
* Shows load balance for time
e expcompare time across all threads

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

B update

Information Icon
Displays Experiment
Metadata

e [0 O =

B Terminate ‘

T L L (& (€3 He [T3 iV LB ieA € showing Functions Repor:

Aggregated Results = 0 O =

lay Chaoice
[T

Executables: smg2000 Hosts:(64) hyperion583.1nl.gov ... Processes/Ranks,/Threads:(512) 0...

Metadata for Experiment 1:
Application command:
Executables: smg2000
Experiment type: mpi
Host(s): hyperion583.[nl.gov hyperion584.lnl.gov hyperion5851nl.gov hyperion586.
Processes, Ranks or Threads: 0-511

gov hyperion587.lInl.gov hyperion588.lnl.gov hyperion589.lnl.gov h

I ks
Minimum MPI Call Time(ms) | Maximum MPI Call Time(ms) | Average Time(I Number of Calls Function (defining location)

— 555.306000 1276.275000 755.280027 512 PMPI_Init (libmonitor.50.0.0.0: pmpi.c,84)
— 151.147000 167.504000 163.231004 512 PMPI_Finalize (libmonitor.so.0.0.0: pmpi.c,223)
—0.152000 0.474000 0.334205 512 MPI1_allgatherv (libmpich.so.1.0: allgatherv.c,73)
— 0.043000 0.212000 0.133008 512 MPI_Allgather (libmpich.so.1.0: allgather.c, 70}
—0.03 1000 2034000 1.312102 512 MPI_Barrier (libmpich.so.1.0: barrier.c,56)
—0.013000 10.32Z2000 0.717578 6144 MPI_Allreduce (libmpich.so.1.0: allreduce.c,59)
— 0.000001 611.617000 0.977852 4667648 MPI_Waitall (libmpich.so.1.0: waitall.c,57)
— 0.000001 0.600000 0.001156 5403036 MPI_Isend (libmpich.so.1.0: isend.c,58)
L 0.000001 0.062000 0.000665 5403936 MPI_Irecv (libmpich.s0.1.0: irecv.c,48)

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Using OMPTP experiment in O|SS -l é\é

< The following three CLI examples show the most important ways
to view OMPTP experiment data.

< Default view shows the timing of the parallel regions, idle, barrier,
and wait barrier as an aggregate across all threads

openss -cli -f ./matmult-omptp-0.openss
openss>>expview

Exclusive Inclusive % of Function (defining location)
timesin timesin Total
seconds. seconds. Exclusive
CPU Time
44.638794 45.255843 93.499987 compute._omp_fn.1 (matmult: matmult.c,68)
1.744841 1.775104 3.654726 compute_interchange._omp_fn.3 (matmult: matmult.c,118)

0.701720
0.652438
0.004206
0.000032
0.000000

Open | SpeedShop”

0.701726
0.652438
0.009359
0.000032
0.000000

1.469817 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
1.366591 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)

0.008810 initialize._omp_fn.0 (matmult: matmult.c,32)
0.000068 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)

0.000001 WAIT_BARRIER (omptp-collector-monitor-mrnet.so: collector.c,602)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Using OMPTP experiment in O|SS -l é\é

< This example shows the comparison of exclusive time across all
threads for the parallel regions, idle, barrier, and wait barrier

openss>>expcompare -mtime -t0:4

-t0, -t2, -t3, -t4, Function (defininglocation)
Exclusive Exclusive Exclusive Exclusive
timesin timesin timesin timesin
seconds. seconds. seconds. seconds.
11.313892 11.081346 11.313889 10.929668 compute._ omp_fn.1 (matmult: matmult.c,68)

0.443713 0.430553 0.429635 0.440940 compute_interchange. omp_fn.3 (matmult: matmult.c,118)
0.253632 0.213238 0.164875 0.069975 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
0.001047 0.001100 0.001095 0.000964 initialize._omp_fn.0 (matmult: matmult.c,32)

0.000008 0.000008 0.000006 0.000010 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)
0.000000 0.000000 0.000000 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so. iector.s02)
0.000000 0.247592 0.015956 0.388890 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Using OMPTP experiment in O|SS -l é\é

<+ This example shows the load balance of time across all threads for
the parallel regions, idle, barrier, and wait barrier

openss>>expview -mloadbalance

Max OpenMp Min OpenMp Average Function (defining location)
Exclusive Threadld Exclusive Threadld Exclusive
Time Across of Max Time Across of Min Time Across
OpenMp OpenMp
ThreadIds(s) ThreadIds(s) Threadlds(s)

11.313892 0 10.929668 4 11.159699 compute._ omp_fn.1 (matmult: matmult.c,68)
0.443713 0 0.429635 3 0.436210 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
0.388890 4 0.015956 3 0.217479 IDLE (omptp-collector-monitor-mrnet.so:

collector.c,573)

0.253632 0 0.069975 4 0.175430 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
0.001100 2 0.000964 4 0.001052 initialize._omp_fn.0 (matmult: matmult.c,32)
0.000010 4 0.000006 3 0.000008 BARRIER (omptp-collector-monitor-mrnet.so:

collector.c,587)
0.000000 0 0.000000 0 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so:

collector.c,602)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Summary / Parallel Bottlenecks -l

<+ Open|SpeedShop supports MPI, OpenMP, and
threaded applications (including hybrid)

> Works with multiple MPIl implementations

< Parallel experiments
> Apply the sequential O|SS collectors to all nodes
> Specialized MPI profiling and tracing experiments
> Specialized OpenMP profiling experiment

< Result Viewing
> Results are aggregated across ranks/processes/threads
» Optionally: select individual ranks/threads or groups

> Specialized views:
* Load balance view
e Cluster analysis

<+ Use features to isolate sections of problem code

AsC

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hands-on Section 4: Going Parallel - MPI %/\ é

< Parallel related application exercise (MPI)
> More information at the tutorial

< Exercises are in the exercise directory:
»> SHOME/exercises/mpi_nbody

> Supplemental:
* SHOME/exercises/smg2000/test

< Consult README file in each of the directories for the
instructions/guidance

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hands-on Section 4: Going Parallel - threading

< Parallel related parallel application exercise (threading)

< Exercises are in the exercise directory:
> SHOME/exercises/matmul

> Supplemental:
« SHOME/exercises/lulesh2.0.3

< Parallel related application exercise (MPI)

< Exercises are in the exercise directory:
»> SHOME/exercises/mpi_nbody

< Consult README file in each of the directories for the
instructions/guidance

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Section 6

Advanced analysis: Hardware Counter Experiments

Open | SpeedShop”

B -

—)
» Los Alamos

NATIONAL LARDRATORY
5

11/11/2018

F. J
F

ldentify architectural impact on code inefficiencies

< Timing information shows where you spend your time
> Hot functions / statements / libraries
> Hot call paths

< BUT: It doesn’t show you why
> Are the computationally intensive parts efficient?
> Are the processor architectural components working optimally?

< Answer can be very platform dependent
> Bottlenecks may differ
> Cause of missing performance portability
> Need to tune to architectural parameters

< Next: Investigate hardware/application interaction
> Efficient use of hardware resources or Micro-architectural
tuning
» Architectural units (on/off chip) that are stressed

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Good Primary Focus: Efficient movement of data

<+ Modern memory systems are complex
> Deep hier‘a rchies Access Latency, ns (Sandy Bridge, 2.6GHZ)

> Explicitly managed memory u 12
> NUMA behavior L2 =
> Streaming/Prefetching — —

<+ Key to performance: Data locality and Concurrency
> Accessing the same data repeatedly(Temporal)
> Accessing neighboring data(Spatial)
> Effective/parallel use of cores

Memory

< Information to look for e
> Load/Store Latencies “ I
> Prefetch efficiency Al
> Cache miss rate at all levels -
> TLB miss rates 188
> NUMA overheads ey

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Another important focus: Efficient Vectorization [FeaEraN

<+ Newer processors have wide vector registers
> Intel Xeon 2670,Sandy Bridge: 256 bits floating point registers, AVX (8 Real
/ 4 Double)
» Intel Xeon Phi,Knights Corner: 512 bits(16 Real / 8 Double)
» Intel Haswell - 256 bits Integer Registers, AVX2 : FMA (2X the peak flops)

<+ Key to performance: Vectorization
> Compiler Vectorization
> Use of ‘intrinsics’
> Use of Pragmas to help the compiler
> Assembly code

< Analysis Options
» Compiler vectorization report
> Look at assembly code
> Measure performance with PAPI counters

A[II] A[‘i A[ll Al1]

=

IIH‘H
= f=—i

Cis) C[0]

C

(" 8times faster!)

Going from Scalar to Intel® AVX can provide up to 8x faster performance
Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hardware Performance Counters = A

< Architectural Features
» Typically/Mostly packaged inside the CPU
> Count hardware events transparently without overhead

<+ Newer platforms also provide system counters
» Network cards and switches
» Environmental sensors

< Drawbacks
> Availability differs between platform & processors
> Slight semantic differences between platforms
> In some cases : requires privileged access & kernel patches

<+ Recommended: Access through PAPI
> API for tools + simple runtime tools
> Abstractions for system specific layers
» More information: http://icl.cs.utk.edu/papi/

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

The O|SS Experiments = A

< Provides access to hardware counters
> Implemented on top of PAPI
» Access to PAPI and native counters
> Examples: cache misses, TLB misses, bus accesses

< Basic model 1: Timer Based Sampling: HWCsamp
> Samples at set sampling rate for the chosen event
> Supports multiple counters
> Lower statistical accuracy
» Can be used to estimate good threshold for hwc/hwctime

< Basic model 2: Thresholding: HWC and HWCtime

> User selects one counter
> Run until a fixed number of events have been reached

> Take PC sample at that location
* HWCtime also records stacktrace

> Reset number of events
> ldeal number of events (threshold) depends on application

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Examples of Typical Counters xeon es-2670)

PAPI_L1_DCM
PAPI_L2_DCM
PAPI_L3_TCM
PAPI_TOT_INS
PAPI_STL_ICY
PAPI_BR_MSP
PAPI_DP_OPS
PAPI_LD_INS
PAPI_VEC_DP
PAPI_BR_INS
PAPI_TLB_TL

L1 data cache misses high
L2 data cache misses high/medium
L3 cache misses high
Instructions completed high
Cycles with no instruction issue high/medium
Miss-predicted branches medium/low
Number of 64-Bit floating point Vector OPS high
Number of load instructions high
Number of vector/SIMD instructions — 64Bit high
Number of branch instructions low
Number of TLB misses low

Note: Threshold indications are just rough guidance and depend on the application.

Note: counters platform dependent (use papi avail& papi native avail)

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Suggestions to Manage Complexity = A\

<+ The number of PAPI counters and their use can be
overwhelming; Some guidance here with a few “Metric-

Ratios”.
> Ratios derived from a combination of hardware events can
sometimes provide more useful information than raw metrics

< Develop the ability to interpret Metric-Ratios with a

focus on understanding:
> Instructions per cycle or cycles per instruction
> Floating point / Vectorization efficiency
> Cache behaviors; Long latency instruction impact
> Branch mispredictions
> Memory and resource access patterns
> Pipeline stalls

< This presentation will illustrate with some examples of
the use of Metric-Ratios

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

. o \
How to use OSS experiment %\ a

< osshwcsamp “<command>< args>” [default

| <PAPI_event_list>|<sampling_rate>]
> Sequential job example:
e osshwcsamp “smg2000”

> Parallel job example:

e osshwcsamp “mpirun —np 128 smg2000 —n 50 50 50”
PAPI_L1_DCM,PAPI_L1_TCAS50

< default events: PAPI_TOT_CYC and PAPI_TOT INS
< default sampling_rate: 100

< <PAPI_event_list>: Comma separated PAPI event list
(Maximum of 6 events that can be combined)

<+ <sampling_rate>:Integer value sampling rate

< Use event count values to guide selection of thresholds
for HWC, HWCtime experiments for deeper analysis

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Selecting the Counters & Sampling Rate PEcallF=y

KRELL . ASC

<+ For osshwcsamp, Open|SpeedShop supports ...

> Derived and Non derived PAPI presets
* All derived and non derived events reported by “papi avail”
* Also reported by running “osshwcsamp” with no arguments

* Ability to sample up to six (6) counters at one time; before use test with
— papi_event_chooser PRESET <list of events>

* If a counter does not appear in the output, there may be a conflict in the
hardware counters

> All native events

* Architecture specific (incl. naming)
 Names listed in the PAPI documentation
* Native events reported by “papi native avail”

<+ Sampling rate depends on application

> Overhead vs. Accuracy
* Lower sampling rate causes less samples

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Useful Metric-Ratio 1: IPC A

Ii(nRsEtLi tLu t e HSCW

< Instructions Per Cycle(IPC) also referred to as B Examp|e matrix muItipIy;
Computational Intensity . .

> IPC= PAPI_TOT INS/PAPI_TOT CYCLES Triple do loop;

& Data from single-core Xeon E5-2670, Sandy Bridge (n1=n2=n3=1000)

% Inthetable below compiler optimization -O1 used to < code for loop order ‘1ik’: All
bring out differences in IPC based on stride used with * ‘ P , K
different loop order; vectors ‘double

< If you use —02 for this simple case compiler does the doi=1,nl
right transformations, permuting loop order and doi=1 n3
vectorizing to yield IPC = 3.594 (jki order); This)=
improves access to memory through cache. dok=1,n2

a(i,j) = a(i,j) + b(i,k) * c(k,j)

®
%

Importance of stride through the data is illustrated

with this simple example; Compiler may not always end do
do the needed optimization. Use IPC values from end do
functions and loops to understand efficiency of data end do

access through your data structures.

m““““““ = m

PAPI_TOT_INS ~ 8.012E+09 9.011E+09 8.011E+09 9.01E+09 9.01E+09 9.011E+09 9.016E+09 7.405E+08
PAPI_TOT_CYC ~ 2.42E+10 5.615E+10 2.423E+10 2507E+09 5.612E+10 2.61E+09 2.601E+09 2.859E+08
LS 0.331 0.160 0.331 3.594 0.161 3.452 3.466 2.590
MFLOPS 272 117 271 2625 117 2525 2532 19233 (93% peak)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

BLAS Operations lllustrate impact of moving data
A, B, C = nxn Matrices; X,y = nx1 Vectors; k= Scaler

Operation # Memory Flops/Ops | Comments
Refs or Ops on

Flops/Ops

1 y=kx+y 3n n 2/3 Achieved in
Benchmarks

2 y=Ax+y n2 2n? 2 Achieved in
Benchmarks

3 C=AB+C 4n? 2n3 n/2 Exceeds HW
MAX

Use these Flops/Ops to understand how sections of your code relate to
simple memory access patterns as typified by these BLAS operations

Open | SpeedShop‘“ How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

*,

L X4

Tradltlonally PAPI_FP_INS/PAPI_TOT_CYC used to evaluate relative floating point density

For a number of reasons measuring and analyzmg floating point performance on Intel Sandy Bridge and Ivy bridge must be
done with care. See PAPI web site for full discussion. The reasons are: instruction mix - scalar instructions + vector (AVX, SSE)
packed instructions, hyperthreading, turbo-mode and speculative execution.

> The floating point counters have been disabled in the newer Intel Haswell cpu architecture

> On Sandy Bridge and lvy Bridge PAPI_FP_INS is no longer an appropriate counter if loops are vectorized

> No single PAPI metric captures all floating point operations

)

< We provide some guidance with useful PAPI Preset counters. Data from single-core Xeon E5-2670,
Sandy Bridge. Double precision array operations for Blas1(daxpy), Blas2(dgemv) and
Blas3(dgemm) are benchmarked. Matrix size=nxn; vector size=nx1 . Data array sizes are picked to
force operations from DRAM memory

< Table below shows measured PAPI counter data for a few counters and compares the measured
FLOP/Ops against theoretical expectations.

» PAPI_DP_OPS and PAPI_VEC_DP give similar values and these counter values correlate well with
expected floating point operation counts for double precision.

Thererical
mem refs or Theoretical Theoretical wall time, PAPI PAPI
Blas Operation n Ops FLOP FLOP/Ops secs TOT_CYC TOT_INS FP_INS LD_INS SR_INS DP_OPS GFLOPS FLOP/Ops
daxpy 2.50E+07 7.5E+07 5.0E+07 0.67 0.03 1.04E+08 5.20E+07 11.52 2.50E+07 1.25E+07 5.01E+07 1.56 0.668
dgemv 1.00E+04 1.0E+08 2.0E+08 2 0.06073 2.16E+08 1.69E+08 29.12 6.25E+07 1.25E+07 2.36E+08 3.89 1.57557985
dgemm 1.00E+04 4.00E+08 2E+12 5000.00 80.937 2.67E+11 7.33E+11 7.2 1.12E+11 1.38E+09 2.01E+12 24.80 8.83518225

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

For Intel Haswell FloatOps not available: Use IPC or CPI %\E/M é

< We again provide some guidance with data from a single-core of a Haswell
Processor (Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz)

< Blasl, Blas2 and Blas3 kernels as in the previous slide are benchmarked.
Matrix size=nxn; vector size=nx1 . Data array sizes are picked to force
operations from DRAM memory

<% Table below shows measured PAPI counter data for a few counters and
metric ratio IPC

< When operating at peak performance, Haswell can retire 4 micro-ops/cycle

Thererical wall

mem refs Theoretica Theoretical time,
n or Ops | FLOP FLOP/Ops secs TOT_CYC TOT_INS IPC CPI LD_INS SR_INS GFLOPS FLOP/mem-Ops
2.50E+07 7.50E+07 5.00E+07 0.67 3.24E-02 1.17E+08 6.25E+07 0.54 1.87 3.13E+07 1.25E+07 1.53932 0.57
1.00E+04 1.00E+08 2.00E+08 2 6.11E-02 2.2E+08 2.06E+08 0.94 1.06 7.81E+07 1.25E+07 3.272 1.10
1.00E+04 4.00E+08 2.00E+12 5000 41.8546 1.38E+11 4.65E+11 3.36 0.30 1.9E+11 1.23E+09 47.7655 5.23

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

*,
°

o0

osshwcsamp “mpiexec —n 72 miniFE.X —nx 614 —ny 614 —nz 614” PAPI_DP_OPS,PAPI_L1_DCM,PAPI_TOT_CYC,PAPI_TOT_INS
openss —f miniFE.x-hwcsamp.openss
= AnanlenagdShop (on uno-login1t [—I[o][x]
File Tools Help
< HWCSamp P Also have pcsamp Up to six event can be T
Process Control - ” f 1 e — d d h 4 =
information isplayed. Here we have 4.
= Run I C B Terminate
Slalus:IProcess [IGELE R EORGERR UN" butt n to be, ‘n the experiment)
] Stats Panel [1] ||z|ManageProoessesPan 11 | Gz [00O =
View/Display Ch
" U el [(s 6V [$3 LB 'ea e Showjlhg Functions RepQg: ’7" Functions --@Btatements - Linked Objects -~ Loops
Executables: /gpfs1/mrajan/oss_sc14_min| iniFE-2.0_mkl/src/n @l E.x Hosts:(9) uno159 ... Pids: 72 Ranks: 72 ds: 1 I
% of CPU Time ! Exclusive CPU time in seccl%of CPU Time |papi7dpfops papi_I1_dem papi_tot_cyc |papiJaLins |Functian (defining location)
-2253.430000 47.873611 2824672149050 291551937219 6989975219262 8952967031967 mkl_spblas_Ip64 desrOng_ ¢ mv
-447.660000 9.510435 87267523822 7738661859 903705759149 1039254165063 __Gl_epoll_wait (/1ib64/libc-2.12.50
8.510435 -421.040000 8.9443900 831606939512 3626363789 1341678035775 2311136732678 void miniFE:perform_element_loop
-374.450000 7.955106 472834291021 30726897002 1094184657537 mkl_blas_daxpby (fopt/intel-12.1/mk
8.944900 241.230000 5.124877 4361118141 : 708 itOp=<miniFE::CSRMa
: -230.740000 4.902019 456917366559 1985851369 735787515693 126712340136 void miniFE::Hex8:diffusionMatrix_
-202.540000 4.302916 1647949388 588250201 645977293841 875225391031 void miniFE:impose_dirichlet<minil
7.955106 —127.260000 2.703610 184233405196 15545928811 400531304861 310351177239 mkl_blas_xddot (foptintel-12.1/mKkI/
-78.900000 1.676213 155934713579 713587396 251575572613 432357079682 void miniFE:get_elem_nodes_and_
5.124877 -46.800000 0.994255 8479608341 748205444 94333323140 109592763431 opal_progress (/optiopenmpi-1.6-int
-42.960000 0.912675 8832226710 776687330 87613448245 100107292998 opal_event_base_loop (/opt/openm
. -37.680000 0.800503 17557210051 477783784 120071360670 194746931361 std::_Rb_tree_decrement(std::_Rb_
other -32.640000 0.693429 6349358453 564732359 66230897286 76323494900 epoll_dispatch (foptiopenmpi-1.6-ini
L24 a3nnnn n R20R32 24AnNing 21R/A21QRAQ7 201N731 701 et vartnrdniihla ctd-allnratnr-de kil
=i
Command Panel RBOE =
openss>>

Open | SpeedShop” mance of Parallel Codes

\

FISC

openss -cli -f miniFE.x-hwcsamp.openss

mrajan@uno-loginl:/gpfsl/mrajan/oss_sc1l4_miniFE/miniFE-2.0_mkl/run_oss_hwcsamp E][E]E]
File Edit View Search Terminal Help

[mrajan@uno-loginl run_oss hwcsamp]$ openss -cli -f miniFE.x-hwcsamp.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview -v statements hwcsamp3@

[>]

Exclusive % of CPU papi dp ops papi 11 dcm papi_tot cyc papi_tot ins Statement Location (Line Number)
CPU time in Time
seconds.
447.7706000 23.604112 87303886608 7741340402 903892322030 1039416470601 Susr/src/debug////////alibc-2.12-2-gcdccffl/misc/. . /sysdeps/unix/syscall-template.S(82)
327.880000 17.284133 648522730762 2827873377 1045436496144 1800050381304 /gpfsl/mrajan/oss scl4 miniFE/miniFE-2.0_mkl/src/./perform element loop.hpp(180)

199.820000 10.533474 3806513944 636447396509 965712401233 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0_mkl/src/./MatrixInitOp.hpp(1480)
1808.490800 9.514497 946345017 513583995 575701437696 761402159152 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 mkl/src/./SparseMatrix_functions.hpp(475)
72.920000 3.843964 144552896087 622540931 232540036283 400626778119 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0_mkl/src/./perform_element loop.hpp(93)
67.220008 3.543490 133137191569 576640758 214346202757 369021735348 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 mkl/src/../fem/Hex8.hpp(302)
57.890008 3.051661 114320520328 536923044 184576819581 316915984454 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 mkl/src/./Hex8 box utils.hpp(136)
35.630000 1.878229 12642935 27982648181 11492892526 /Jusr/include/c++/4.4.7/bits/vector.tcc(397)
25.740000 1.356879 50961487331 222435633 82098246515 141360199733 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 mkl/src/../fem/Hex8.hpp(335)
23.720000 1.250395 46993941986 201176970 75638030490 130325024838 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 _mkl/src/../fem/Hex8.hpp(330)
20.090008 1.0859041 39815708667 172829164 64060100337 110338757571 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 mkl/src/../fem/Hex8.hpp(260)
15.840000 1.045862 3395917479 296952208 39763200164 46443969250 /builddir/build/BUILD/openmpi-1.6.4/opal/runtime/opal_progress.c(185)
18.520000 0.976278 36633304484 159683865 59047484493 101653749874 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 mkl/src/./perform element loop.hpp(82)
18.1560000 0.956774 35947896420 158886460 57884207500 99655374262 /gpfsl/mrajan/oss scl4 miniFE/miniFE-2.0 mkl/src/../fTem/Hex8.hpp(338)
16.1160080 0.849236 31863068315 148255815 51366606737 88465155762 fgpfslfmrajan!oss_sc14_m1n1FEHm1n1FE 2. B_mklfsrcj ./fem/Hex8.hpp(339)
12.126000 0.638904 2140016350 192110608 24394027282 28522826298 /builddir/build/BUILD/openmpi-1.6.4/opal/event/epoll.c(279)
11.820000 0.623089 162934927 37648219524 58301814345 /gpfsl/mrajan/oss scl4 miniFE/miniFE-2.0 mkl/src/./MatrixInitOp.hpp(137)
11.2860000 0.594623 22319927660 97114952 35960407509 61927707941 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.@ mkl/src/../fem/Hex8.hpp(336)
11.170000 ©.588824 197905093 34646748 35630595444 546724114086 /gpfsl/mrajan/oss scl4 minlFE/miniFE-2.0 mkl/src/./SparseMatrix functions.hpp(466)
10.560000 0.556668 14511257762 964669997 32659133238 12804049091 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0_mkl/src/./cg_solve.hpp(179)
9.390008 0.494992 1960742963 175257744 19206353960 21857221066 /builddir/build/BUILD/openmpi-1.6.4/opal/event/epoll.c(215)
9.290008 0.489721 255848742 27797129336 63963403261 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.8 mkl/src/../utils/box_utils.hpp(297)
9.270000 0.488666 2017033172 175771745 19021518723 21468715322 /builddir/build/BUILD/openmpi-1.6.4/opal/event/event.c(811
8.260000 0.435424 98650908 26261612341 41367788684 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.0 mkl/src/./MatrixInitOp.hpp(142)
7.930000 0.418028 1598756218 145174180 16149831865 18544602466 /builddir/build/BUILD/openmpi-1.6.4/opal/runtime/opal_progress.c(206)
7.870000 0.414866 61254855 24937401328 59552268291 /gpfsl/mrajan/oss scl4 miniFE/miniFE-2.8 mkl/src/./generate matrix_structure.hpp(105)
7.780000 0.410121 36998244 24551069808 59333194907 /gpfsl/mrajan/oss scl4 miniFE/miniFE-2.8 mkl/src/./generate matrix_structure.hpp(115)
7.210000 0.380074 14227594738 65160484 22988528053 39617523842 /gpfsl/mrajan/oss 5c14 miniFE/miniFE-2.@ mkl/src/../fTem/Hex8.hpp(300)
6.430000 0.338956 12745141419 53417855 20499184114 35356808162 /gpfsl/mrajan/oss_scl4 miniFE/miniFE-2.8 mkl/src/./Hex8 box_utils.hpp(147)
6.210088 0.327359 1319841811 117512799 12639734182 14411185863 /builddir/build/BUILD/openmpi-1.6.4/opal/event/event.c(838)
1668.3836?9 87.948339 1447432312151 20626804289 4631125982124 6974582554912 Report Summary
OpENSS5=;

Open | SpeedShop”

Viewing Data in CLI -l A

Selections of CLI commands used to view the data:

<+ expview -v linkedobjects
<+ expview —m loadbalance
<+ expview —v statements hwcsamp<number>
»Example to show top 10 statements:
e expview —v statements hwcsamp10
<+ expview —v calltrees,fullstack usertime<number>
< expcompare—r 1—-r 2 —-mtime (compares rank 1 to
rank 2 for metric equal time)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Deeper Analysis with and =~ A

KRELL CASsC

<+ osshwc[time] “<command> < args>" [default |
<PAPI _event> | <PAPI threshold> | <PAPI event><PAPI

threshold>]

> Sequential job example:
* osshwc[time] “smg2000 —n 50 50 50” PAPI_FP_OPS 50000

> Parallel job example:
e osshwc[time] “mpirun—np 128 smg2000 —n 50 50 50”

<+ default: event (PAPI_TOT CYC), threshold (10000000)
< <PAPI_event>: PAPI event name
< <PAPI threshold>: PAPI integer threshold

< NOTE: If the outputis empty, try lowering the
<threshold> value. There may not have been enough PAPI
event occurrences to record and present

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Viewing hwc Data

<% hwc default view: Counter = Instruction Cache Misses

Open|SpeedShop
File Tools Help

S Flat hardware counter profile - .

Process Control f 1 1 h d —
Oof a SIinglic nardawarc counter
=) Rin | Gont | Pause 3 Update event fate
Starus:lProcess Loaded: Click on the "Run" button to begin the experiment. EXCIuSlve Counts Only
¥ Stats Panel [1] | (9 ManageProcessesPanel [1] | I
. : View,/Display Choice
24 6L [(85 i L 6 G soving ancions o ® s s O i O O Los
Executables: sweep3d.mpi Hosts:(16) ys1328 ... Pids: 64 Ranks: 64 Threads: 64
% of Total PAPL L1_ICM Counts Exclusive PAPL L1 _ICM Counts | % of Total PAPI L1_ICM Counts | Function (defining location) =
- 97200000 15.819540 sweep (sweep3d.mpi: sweep.f,2)
9 - 85690000 13.946259 _lapi_dispatcher<false> (libpami.so)
- 38720000 6.301776 udp_read_callback (libpamiudp.so)
6.301776 - 24920000 4.055792 __memcpy_ssse3 (libe-2.12.50)
- 17930000 2.918152 __intel_ssse3_rep_memepy (libirc.so)
jigeE 16870000 2.745634 MPL_Recv (libmpich.s0.3.3)
2.018152 - 16170000 2.631707 PAMI::Interface::Context<PAMI::Context>>::advance (libpami.so: ContextInterface.h,158)
- 15040000 2.447797 Sam::SendContig (libpami.so)
other - 13150000 2.140195 PMPI_Send (libmpich.so.3.3) -
- 10410000 1.694253 MPID Recv (libmpich.so.3.3) bl
Al 4]
Command Panel R 0OO=x
OpEnss= =

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Viewing hwctime Data ~~ A\

hwctime default view: Counter = L1 Data Cache Misses

Open|SpeedShop

Calling context hardware

File Tools Help

- eme e counter profile of a single e
’7* Riin | Gont] Dausc % Update hardware Count.er event. M Terminate
_ S Exclusive/Inclusive counts

Status:l Process Loaded: Click on the "Run” button to begin the experiment.
() Stats Panel [1] | (w)ManageProcessesPanel [1] | B 0O x

= u oL [s (€7 &3 He [s oy LB ien ige Showing Funcrions Reporr:

Executables: smg2000 Host: localhost Pids: 4 Ranks: 4 Threads: 4

View,/Display Choice
’7Q Functions {_} Statements () Linked Objects () Loops

——

% of Total Exclusive PAPL L1_DCM Counts Exclusive PAP L1_DCM Cos Inclusive PAP L1_DCM % of Total Exclusive PAPI_L1_DC| Function (defining location) =
- 746250000 774000000 53.208556 hypre_SMGResidual (smg2000: smg_residual.c,152) [T
- 430500000 501750000 30.695187 hypre_CyclicReduction (smg2000: cyclic_reduction.c,
- 32250000 33000000 2.299465 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
2.299465 - 30000000 30000000 2.139037 hypre_Semilnterp (smg2000: semi_interp.c,126)
- 25500000 29250000 1.818182 unpack_predefined_data (libopen-pal.so0.56.2.0: opal_
— 24000000 30000000 1.711230 pack_predefined_data (libopen-pal.s0.6.2.0: opal_daf
1.818182 - 13500000 13500000 0.962567 hypre_StructAxpy (smg2000: struct_axpy.c,23)
- 9750000 9750000 0.695187 __memepy_ssse3_back (libe-2.17.50)
other - 8250000 8250000 0.588235 hypre_SMGAxpy (smg2000: smg_axpy.c,27) <
i - BFS0000 12750000 0.481283 hypre Cvc:{edSempGoarseOp (smg2000: cyclic lrec}uclT
Il A
Command Panel B [0 B =®
Openss> =

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC' 11/11/2018

Example 1 on use of PAPI: LLNL Sparse Solver Benchmark AMG =

< Major reasons on-node scaling limitations AMG Intra Node Scaling
> Memory Bandwidth 16
> Shared L3 Cache 14 - *AMG Weak
12 - =——AMG Strong
% L3 cache miss for 1,2,4 Pes matches § 10 - AMG Ideal
expectation for strong scaling g /./
> Reduced data per PE “ .
> L3 misses decreasing up to 4 PEs linearly. 2 r/—/
L3_CACHE_MISSES:ALL S . e s 1 b u
16 # of Cores
j % On the other hand L3 Evictions for 1,2,4 PEs
2 similarly decrease ‘near-perfect’ but
! dramatically increases to 100x at 8PEs and

0 O.I25 Oj5 O.I75 le 1.25 170x at 16 PES

Normalized to 1 PE count; Counts are Avg. of PE values

L3 EVICTIONS:ALL < L3 evictions are a good measure of memory
. — bandwidth limited performance bottleneck at
. 4 a node
4 < General Memory BW limitation Remedies
2 > Blocking
L > Remove false sharing for threaded codes

0 50 100 150 200

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

* \
Example 2 on use of PAPI: False Cache-line sharing in OpenMP :/Ré Qw

| Cache line UnAligned | Cache line Aligned
real*4, dimension(100,100)::c,d real*4, dimension(112,100)::c,d
ISOMP PARALLEL DO ISOMP DO SCHEDULE(STATIC, 16)
do i=1,100 do i=1,100

do j=2,100 do j=2,100

c(i,j) = c(i, j-1) + d(i,j) c(i,j) = c(i, j-1) + d(i,j)

enddo enddo
enddo enddo

ISOMP END PARALLEL DO ISOMP END DO

Same computation, but careful attention to alignment and independent OMP parallel
cache-line chunks can have big impact; L3_EVICTIONS a good measure;

- L3_EVICTIONS:ALL | L3_EVICTIONS:MODIFIED

Aligned 6.5e-03
UnAligned 2.4e-02 1583 1422
Perf. Penalty 3.7 175 474

Open | SpeedShop‘” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hands-on Section 5: Architectural Details o 2\

< Hardware counter experiments related exercises

< Exercises are in the exercise directory:
> SHOME/exercises/soa_aos
»> SHOME/exercises/matrix_multiply

> Supplemental exercises:
« SHOME/exercises/HPCCG-0.5
* SHOME/exercises/HPCCG-0.5_from_snl (no run just view)

< Consult README file in each of the directories for the
instructions/guidance

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

4 \

, Z\
KRELL . ASC
{ a
7o C18 I8

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Section 7
Analysis of I/O
o
N - Los Alamos B National
K R E L L NATIONA;:?;&?RATORV | ‘: A J

Open | SpeedShop” 11/11/2018

Need for Understanding |/O

< 1/0 could be significant percentage of execution time

dependent upon:

» Checkpoint, analysis output, visualization & 1/O frequencies

» 1/O pattern in the application:
N-to-1, N-to-N; simultaneous writes or requests

> Nature of application:
data intensive, traditional HPC, out-of-core

> File system and Striping: NFS, Lustre, Panasas, and # of Object
Storage Targets (OSTs)

> 1/0 libraries: MPI-1O, hdf5, PLFS,...

» Other jobs stressing the 1/0 sub-systems

< Obvious candidates to explore first while tuning:
> Use parallel file system
» Optimize for 1/O pattern
» Match checkpoint I/O frequency to MTBI of the system
> Use appropriate libraries

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

. \
/O Performance Example = A

. ASC
< Application: OOCORE benchmark from DOD HPCMO

> Out-of-core SCALAPACK benchmark from UTK

» Can be configured to be disk I/O intensive

> Characterizes a very important class of HPC application involving
the use of Method of Moments (MOM) formulation for
investigating electromagnetics (e.g. Radar Cross Section, Antenna
design)

> Solves dense matrix equations by LU, QR or Cholesky
factorization

> “Benchmarking OOCORE, an Out-of-Core Matrix Solver,” Cable,
S.B., D’Avezedo, E. SCALAPACK Team, University of Tennessee at
Knoxville/U.S. Army Engineering and Development Center

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Why use this example?

< Used by HPCMO to evaluate 1/0 system scalability

< Out-of-core dense solver benchmarks demonstrate the
importance of the following in performance analysis:
> |/O overhead minimization
> Matrix Multiply kernel — possible to achieve close to
peak performance of the machine if tuned well
> “Blocking” very important to tune for deep memory
hierarchies

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Use O|SS to measure and tune for I/O

INPUT: testdriver.in

ScalLAPACK out-of-core LU,QR,LL
factorization input file

testdriver.out

6
1
LU

1

31000
31000

1
9200000
1

16

16

device out

number of factorizations

factorization methods -- QR, LU,

or LT

number of problem sizes
values of M

values of N

values of nrhs

values of Asize

number of MB's and NB's
values of MB

values of NB

number of process grids
values of P

values of Q

Run on 16 cores on an SNL Quad-Core, Quad-Socket Opteron
IB Cluster

Investigate File system impact with OpenSpeedShop:
Compare Lustre I/O with striping to NFS 1/0

run cmd: ossio “srun -N 1-n 16 ./testzdriver-std”

Sample Output from Lustre run:
TIME M N MB NB NRHS P Q Fact/SolveTime Error Residual

WALL 31000 31000 16 16 144 1842.20 1611.59 4.51E+15
1.45E+11

DEPS =1.110223024625157E-016
sum(xsol_i) = (30999.9999999873,0.000000000000000E+000)

sum [xsol_i - x_i| = (3.332285336962339E-
006,0.000000000000000E+000)

sum [xsol i-x_il/M = (1.074930753858819E-
010,0.000000000000000E+000)

sum [xsol _i-x_il/(M*eps) =
(968211.548505533,0.000000000000000E+000)

From output of two separate runs using Lustre and NFS:
LU Fact time with Lustre= 1842 secs;
LU Fact time with NFS = 2655 secs
813 sec penalty (more than 30%) if you do not use parallel file
system like Lustre!

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

NFS and Lustre O|SS Analysis (screen shot from NFS)

|/0O to Lustre instead of NFS reduces runtime 25‘?)&360 +99) - (847 +7) = 605 secs

NFS

RUN

LUSTRE

RU

Min t (secs)

Max t (secs)

Avg t (secs)

all Function

Min t (secs)

Max t (secs)

call Function

="
1360.727283[1261.310157

__libc_read(/lib64/libpthread-

A)(g t (secs)
/

__libc_read(/lib64/libpthread-

1102.380076 2.5.50) 368.898283 | 847.919127 |508.658604 2.5.50)
__libc_write(/lib64/libpthread- __libc_write(/lib64/libpthread-
31.19218 99.444468 49.01867 2.5.50) 6.27036 7.896153 6.850897 2.5.50)

Eile Tools = Help
=110 [1] | Ba [0 O =
Process Control

= Run I Cont =»| Pause 3 Update = Terminate
Slatusf[F'rDcess Loaded: Click on the "Run” button to begin the experiment.
Stats Panel [1] I 1 ManageProcessesPanel [1] | Ba [0 3 =
View/Display Choice
7w e[& He | & s v LB 'oa ee Showing Load Balance (min,max,ave) Report: e Funotions ‘l

Executables: /projects/appperf/mrajan/oocore__mvapich/app/oocore/bin/ftestzdriver-std Host: taco10 Pids: 16 Ranks: 16 Threads: 1

Max Exclusive IO call time [Rank of Max IMin Exclusive VO call time II Rank of Min [Averaga Exclusive /O call l; Function (defining location)
1360727.283000 0 1102380.076000] 1261310.156875 __libc_read (lib64/libpthread-2.5
5 217995 565000 [libe write (/lib64/ibpthread-2.5
301.410000 15 162.285000 10 241.361625 liseek (/lib64/libpthread-2.5_s0)
29.835000 14 1.505000 o] 20.403312 __libc_open (lib64/libpthread-2.£
2.367000 2 0.393000 8 1.373875 __libc_close {(flibG64/libpthread-2.£
0.500000 o] 0.500000 Le] 0.500000 __libc_open&4 (/lib64libpthread-
= I =

Command Panel Ba [0 [0 =

openss>=>

i

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Lustre file system striping

Lustre File System (Ifs) commands:

Ifs setstripe —s (size bytes; k, M, G) —c (count; -1 all) —I (index; -1 round robin) <file | directory>
Typical defaults: -s 1M -c 4 —i -1 (usually good to try first)
File striping is set upon file creation

Ifs getstripe <file | directory>
Example: Ifs getstripe --verbose ./oss_Ifs_stripe_16 | grep stripe_count

stripe_count: 16 stripe_size: 1048576 stripe_offset: -1

1 PE writes; BW limited 1 file per process; BW enhanced Subset of PEs do I/O; Could be most optimal

10 nodes

&
|
[-
[-
| [—
| E——-—
|
B
.

2

aaiRaIn

@i

@il

OSTs

e

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

1200

OOCORE 1/0 performance

libc_read time from OpenSpeedShop

1000

= MAX
mMIN —
~AVG

800

600

Wall Time, secs

Open | SpeedShop”

Stripe count=1 Stripe count=4 Stripe count=8 Stripe count=16

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Additional I/0O analysis with O|SS =

<+ Extended 1/0 Tracing (iot experiment)
> Records each event in chronological order

> Collects Additional Information
 Function Parameters
 Function Return Value

» When to use extended I/O tracing?
 When you want to trace the exact order of events
* When you want to see the return values or bytes read or
written.
* When you want to see the parameters of the |0 call

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Open | SpeedShop”

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

#define VARS_PER_CELL 15

/ * Write a single restart file from many MPI processes */
int write_restart (

MPI_Comm comm
, int num_cells
, double *cellv)

/// MPI communicator
/// number of cells on this process
/// cell vector

{

int rank; // rank of this process within comm
int size; // size of comm

int tag; // for MPI_Send, MPI_Recv

int baton; // for serializing 1/0

FILE *f; // file handle for restart file

/ * Procedure: Get MPI parameters */
MPI_Comm_rank (comm, &rank);
MPI_Comm_size (comm, &size);

tag =4747;

if (rank == 0) {

/* Rank O create a fresh restart file,
* and start the serial 1/0;
* write cell data, then pass the baton to rank 1 */

f = fopen ("restart.dat", "wb");
fwrite (cellv, num_cells, VARS_PER_CELL * sizeof (double), f);
fclose (f);
MPI_Send (&baton, 1, MPL_INT, 1, tag, comm);
}else {

Beware of Serial I/0O in applications: Encountered in VOSS, code LeP: |
Simple code here illustrates (acknowledgment: Mike Davis, Cray, Inc.) ¥R i \

o/ \
RELl | ASC

/* Ranks 1 and higher wait for previous rank to complete 1/0,
* then append its cell data to the restart file,
* then pass the baton to the next rank */
MPI_Recv (&baton, 1, MPL_INT, rank - 1, tag, comm, MPI_STATUS_IGNORE);
f = fopen ("restart.dat", "ab");
fwrite (cellv, num_cells, VARS_PER_CELL * sizeof (double), f);
fclose (f);
if (rank < size - 1) {
MPI_Send (&baton, 1, MPL_INT, rank + 1, tag, comm);
}
}

/* All ranks have posted to the restart file; return to called */
return 0;

}

int main (int argc, char *argv[]) {
MPI_Comm comm;
int comm_rank;
int comm_size;
int num_cells;
double *cellv;
inti;
MPL_Init (&argc, &argv);
MPI_Comm_dup (MPI_COMM_WORLD, &comm);
MPI_Comm_rank (comm, &comm_rank);
MPI_Comm_size (comm, &comm_size);
/**
* Make the cells be distributed somewhat evenly across ranks
*
/
num_cells = 5000000 + 2000 * (comm_size / 2 - comm_rank);
cellv = (double *) malloc (num_cells * VARS_PER_CELL * sizeof (double));
for (i = 0; i < num_cells * VARS_PER_CELL; i++) {
cellv[i] = comm_rank;
}
write_restart (comm, num_cells, cellv);
MPI_Finalize ();

return 0;

}

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

>< Open | SpeedShop

File Tools Help

Executables: (none) Host: glory238 Processes/Ranks/Threads:(4) O ...

/////

™ Custom Experiment [1] [e [%
Process Control
=2un [#Cont $Pause || BUpdate ETerminate
Status:|F’rccess Loaded: Click on the "Run" button to begin the experimawt./ |
™ Stats Panel [1]|® ManageProcessesPanel [1] / (Ew[O]E]x
: / View/Display Choice
@' m E_ [‘ [a' H ﬁ Ei ﬁ E\‘ Ei ﬁ E:e Showing Per Event Report: ® Functions

Call Stack Function (defining location)

Start Time » IO Call Time(ms) % of Total Time
~2010/09/08 13:22:54 0.029000 6.682028
~2010/09/08 13:22:54 0.026000 5.990783
~2010/09/08 13:22:54 0.008000 1.843318
~2010/09/08 13:22:54 0.058000 13.364055
~2010/09/08 13:22:54 0.061000 14.055300
~2010/09/08 13:22:54 0.010000 2.304147
-2010/09/08 13:22:54 0.016000 3.686636
~2010/09/08 13:22:54 0.015000 3.456221
-2010/09/08 13:22:54 0.025000 5.760369
~2010/09/08 13:22:54 0.021000 4838710
~2010/09/08 13:22:54 0.015000 3.456221

> libc_read (/libB4/libpthread-2.5.s0)
> libc_write (/lib64/libpthread-2.5.s0)
> libc_read (/lib64/libpthread-2.5.s0)
> libc_write (/lib64/libpthread-2.5.s0)
> libc write (/lib64/libpthread-2.5.s0)
> _libc_read (/lib64/libpthread-2.5.s0)
>_libc_read (/lib64/libpthread-2.5.50)
> _libc_read (/libB4/libpthread-2.5.s0)
>_libc_read (/lib64/libpthread-2.5.50)
> libc_read (/libB4/libpthread-2.5.s0)

L

> libe write (/lih64/libothread-2.5.s0) |*
»

SHOWS EVENT BY
_r EVENT LIST:
Clicking on this
gives each call to a
|/O function being
traced as shown.

Below is a
graphical trace
view of the same
data showing
serialization of
fwrite() (THE RED
BARS for each PE)
with another tool.

pppppp

cxample 1 p

ik 3

X |~ Activity 3
s oaw

ccccccccc

Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

e

. . o \
Running I/O Experiments = A
KRELL ‘HSC

Offline io/iop/iot experiment on sweep3d application

Convenience script basic syntax:

ossio[p][t] “executable” [default | <list of I/O func>]

> Parameters
* |/O Function list to sample(default is all)

* creat, creat64, dup, dup?2, Iseek, |seek64, open, openb4,
pipe, pread, pread64, pwrite, pwrite64, read, ready,
write, writev

Examples:

0ssio “mpirun —np 256 sweep3d.mpi”
ossiop “mpirun —np 256 sweep3d.mpi” read,readv,write

ossiot “mpirun —np 256 sweep3d.mpi” read,readv,write

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

/0 output via GUI

< 1/0O Default View for IOR application “io” experiment

Open|SpeedShop

o Im][s]ﬂld" Shows the aggregated time
=10 [1 c . =
Process Conrl spent in the I/O functions
[" T T e traced during the application. =

StamS:IProcess Loaded: Click on the "Run” button to begin the experiment.
[0 Stars Panel [1] | [ManageProcessesPanel [1] | OO x
. Vlew/[hsp]ay Chmce
2w oL [(€3 He [7S lov LB ien igg Showing Funciions Report: gp.mm
Executables: I0R Host: localhost Pids: 4 Ranks: 4 Threads: 4

% of Toral Exclusive [/O Call Time(ms) / | % of Total Number of Calls Function (defining location)
- 186.219902 06.427264 8 open64 (libpthread-2.17.50)
+5.001180 2.636284 16 __write (libpthread-2.17.50)
-~ 1.733611 0.897688 16 read (libpthread-2.17.50)
- 0.047646 0.024672 32 _lseek64 (libpthread-2.17.s0)
L-0.027214 0.014092 8 close {libpthread-2.17.50)
[[I 1]
Command Panel B0OOH=x

Openss> >

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

/0 output via GUI

< 1/0 Call Path View for IOR application “io” experiment

Open|SpeedShop

File Tools Help

Shows the call paths to the

=10 [1] | . 200 =
e Gt I/O functions traced and the =~
(Zor PalSE Update 1 Ternminate
(R 5 e time spent along the paths.
Starus:lProcess Loaded: Click on the "Run” button to begin the experiment.
] Stats Panel [1] | [ManageProcessesPanel [1] | B OO =
 w oL [(6" (63 He L3 T 9V LB 'cA igg Showing Hor Callpath Report
Executables: IOR Host: localhost Pids: 4 Ranks: 4 Threads: 4
Exclusive I/0 Call Time(ms) | % of Total | Number of Call Stack Function (defining location) =
B _start (IOR)
& @ 562 in __libc_start_main (libmonitor.sg0.0.0: main.c,541)
= __libe_start_main (libe-2.17.50)
= @ 517 in monitor_main (libmonitor. .0.0: main.c,492)
£ @ 153 in main (IOR: IOR.c,108)
= @ 2004 in TestloSys (IOR: I0R.c,
= @ 104 in IOR._Create_POSIX (IQ#F: aiori-POSIX.c,74)
L. 186.180744 06.411648 4 opent4 (libpthread-2.17.s0) -
- start (IOR) &
[Il I [+]+]
Command Panel = [H =
Openss> >

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

Open | SpeedShop”

11/11/2018

/0 output via CLI (equivalent of HC in GUI) = A

KRELL — ASC

openss>>expview -vcalltrees,fullstack iotl

1/0 Call Time(ms)

17.902981000

Open | SpeedShop”

% of Total Time Number of Calls Call Stack Function (defining location)
_start (sweep3d.mpi)
> @ 470 in __libc_start_main (libmonitor.so0.0.0.0: main.c,450)
>> _libc_start_main (libc-2.10.2.s0)
>>> @ 428 in monitor_main (libmonitor.s0.0.0.0: main.c,412)
>>>>main (sweep3d.mpi)
>>>>> @ 58 in MAIN__ (sweep3d.mpi: driver.f,1)
>>>>>> @ 25 in task_init_ (sweep3d.mpi: mpi_stuff.f,1)
>>>>>>> gfortran_ftell_i2_sub (libgfortran.so.3.0.0)

>>>>>>>> gfortran_ftell_i2_sub (libgfortran.so.3.0.0)

>>>>>>>>>>>>> gfortran_st_read (libgfortran.so.3.0.0)

96.220812461 1 >>>>>>>>>>>>>> libc_read (libpthread-2.10.2.50)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

< Avoid writing to one file from all MPI tasks

> If you need to, be sure to distinguish offsets for each PE at a stripe boundary,
and use Buffered I/O

<+ If each process writes its own file, then the parallel file system
attempts to load balance the Object Storage Targets (OSTs), taking
advantage of the stripe characteristics

% Metadata server overhead can often create severe 1/O problems
> Minimize number of files accessed per PE and minimize each PE doing
operations like seek, open, close, stat that involve inode information

< 1/0 time is usually not measured, even in applications that keep

some function profile

» Open|SpeedShop can shed light on time spent in I/O using io, iot
experiments

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hands-on Section 6: 1/0 Performance i
. ASC

<+ 1/0 experiments related application exercise

< Exercises are in the exercise directory:
> SHOME/exercises/IOR
> SHOME/exercises/ser_par_io

< Consult README file in each of the directories for the
instructions/guidance

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Open | SpeedShop”

Section 8
Analysis of Memory Usage

A

)
» Los Alamos

NATIONAL LARDRATORY
5

b .. i i
s

11/11/2018

: . \
Memory Hierarchy %\ £\

<+ Memory Hierarchy
> CPU registers and cache
> System RAM
> Online memory, such as disks, etc.
> Offline memory not physically connected to system
» https://en.wikipedia.org/wiki/Memory hierarchy

<+ What do we mean by memory?
> Memory an application requires from the system RAM
> Memory allocated on the heap by system calls, such as
malloc and friends

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

https://en.wikipedia.org/wiki/Memory_hierarchy

Need for Understanding Memory Usage =~ A\

<+ Memory Leaks
> |Is the application releasing memory back to the
system?

< Memory Footprint
> How much memory is the application using?
> Finding the High Water Mark (HWM) of memory
allocated
> Out Of Memory (OOM) potential
> Swap and paging issues

< Memory allocation patterns
> Memory allocations longer than expected
> Allocations that consume large amounts of heap space
> Short lived allocations

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Example Memory Heap Analysis Tools =~ A\

<+ MemP is a parallel heap profiling library
> Requires mpi
> http://sourceforge.net/projects/memp

< ValGrind provides two heap profilers.

> Massif is a heap profiler
* http://valgrind.org/docs/manual/ms-manual.html

> DHAT is a dynamic heap analysis tool
* http://valgrind.org/docs/manual/dh-manual.html

< Dmalloc - Debug Malloc Library
» http://dmalloc.com/

<+ Google PerfTools heap analysis and leak

detection.
> https://github.com/gperftools/gperftools

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

http://sourceforge.net/projects/memp
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/dh-manual.html
http://dmalloc.com/
https://github.com/gperftools/gperftools

O|SS Memory Experiment -l A

< Supports sequential, mpi and threaded applications.

> No instrumentation needed in application.

> Traces system calls via wrappers
* malloc
e calloc
* realloc
* free

* memalign and posix_memalign

< Provides metrics for
> Timeline of events that set an new high-water mark.
> List of event allocations (with calling context) to leaks.
> Overview of all unique callpaths to traced memory calls that provides
max and min allocation and count of calls on this path.

<+ Example Usage
> ossmem "./lulesh2.0”
» ossmem "srun -N4 -n 64 ./sweep3d.mpi"

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

< expview -vunique
> Show times, call counts per path, min,max bytes allocation, total
allocation to all unique paths to memory calls that the mem collector
saw

< expview -vleaked
» Show function view of allocations that were not released while the
mem collector was active

» expview -vtrace,leaked
> Will show a timeline of any allocation calls that were not released

<+ expview -vfullstack,leaked
> Display a full callpath to each unique leaked allocation

< expview -v trace,highwater
> |s a timeline of mem calls that set a new high-water
> The last entry is the allocation call that the set the high-water for the
complete run
> Investigate the last calls in the timeline and look at allocations that
have the largest allocation size (sizel,size2,etc) if your application is
consuming lots of system ram

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

0|SS Memory Experiment = A

< Shows the last 8 allocation events that set the high
water mark

openss>>expview -vtrace,highwater

Start Time(d:h:m:s) Event Size Size Ptr ReturnValue New Call Stack Function (defining location)

Ids Argl Arg2 Arg Highwater
*** trimmed all but the last 8 events of 61 ****
2016/11/10 09:56:50.824 11877:0 2080 O 0x7760e0 19758988 >>>>>>> Gl___ libc_malloc (libc-
56118672)1/10 09:56:50.826 11877:0 1728000 0 0x11783d0 21484908 >>>>_Gl__libc_malloc (libc-
561186'72)1/10 09:56:50.827 11877:0 1728000 0 0x131ele0 23212908 >>>> Gl libc_malloc (libc-
5611867(1))1/10 09:56:50.827 11877:0 1728000 0 0x14c3ff0 24940908 >>>> GI__libc_malloc (libc-
5611867(1))1/10 09:56:50.827 11877:0 2080 O 0x776a90 24942988 >>>>>>> Gl__libc_malloc (libc-
561186'72)1/10 09:56:50.919 11877:0 1728000 0 0x1654030 25286604 >>>>_ Gl__libc_malloc (libc-
561186'72)1/10 09:56:50.919 11877:0 1728000 0 0x17f9e40 27014604 >>>> Gl__libc_malloc (libc-
26112672:1/10 09:56:50.919 11877:0 2080 0 Oxabc6a0 27016684 >>>>>>> Gl libc_malloc (libc-
.10.S0

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

O|SS Memory Experiment -l é

< The next slide shows the default view of all unique memory calls
seen while the mem collector was active. This is an overview of
the memory activity. The default is display is aggregated across all
processes and threads. Can view specific processes or threads.

< For all memory calls the following are displayed:
> The exclusive time and percent of exclusive time
> The number of times this memory function was called.
> The traced memory function name.

< For allocation calls (e.g. malloc) the follow:
> The max and min allocation size seen.
> The number of times the that max or min was seen are
displayed.
> The total allocation size of all allocations.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

O|SS Memory Experiment (Unique Calls)

openss>>expview -vunique

Exclusive % of Number Min Min Max Max Total Function (defining location)
(ms) Total of Request Requested Request Requested Bytes
Time Calls Count Bytes Count Bytes Requested
0.024847 89.028629 1546 1 192 6 4096 6316416 __GIl___libc_malloc (libc-2.18.s0)
0.002371 8.495467 5 __Gl__libc_free (libc-2.18.s0)
0.000369 1.322154 1 1 40 1 40 40 __realloc (libc-2.18.50)
0.000322 1.153750 3 1 368 1 368 1104 __calloc (libc-2.18.s0)

NOTE: Number of Calls means the number of unique paths to the memory function call.
To see the paths use the CLI command: expview —vunique,fullstack

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

O|SS Memory Experiment (Leaked Calls) ~ A

KRELL . ASC

In this example the sequential OpenMP version of lulesh was run under ossmem.

The initial run detected 69 potential leaks of memory.

Examining the calltrees using the cli command "expview -vfullstack,leaked -mtot_bytes"
revealed that allocations from the Domain::Domain constructor where not later released in the
Domain::*Domain destructor. After adding appropriate delete's in the

destructor and rerunning ossmem, we observed a resolution of the leaks detected

in the Domain class. The remaining leaks where minor and from system libraries.

Using the exprestore command to load in the initial database and the database

from the second run, we can use the expcompare cli command to see the improvements.
Below, database -x1 shows the initial run and -x2 shows the results

from the run with the changes to address the leaks detected in the Domain class.

openss>>exprestore -f lulesh-meme-initial.openss
openss>>exprestore -f lulesh-mem-improved.openss
openss>>expcompare -vleaked -mtot_bytes -mcalls -x1 -x2

x1, x1, -x2, -x 2, Function (defining location)
Total Number Total Number
Bytes of Bytes of
Requested Calls Requested Calls
10599396 69 3332 8 _ Gl___ libc_malloc (libc-2.17.s0)
72 1 72 1 _ realloc (libc-2.17.s0)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

. C \
Summary and Conclusions %\ £\

<+ Benefits of Memory Heap Analysis
> Detect leaks
> Inefficient use of system memory
> Find potential OOM, paging, swapping conditions
> Determine memory footprint over lifetime of
application run

<+ Observations of Memory Analysis Tools
> Less concerned with the time spent in memory calls
> Emphasis is placed on the relationship of allocation
calls to free calls.
» Can slow down and impact application while running

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hands-on Section 7: Memory Analysis o 2

<+ Memory experiment related application exercise
> More information provided at the tutorial

< Exercises are in the exercise directory in
> SHOME/exercises/matmul
> SHOME/exercises/lulesh2.0.3
> SHOME/exercises/lulesh2.0.3-fixed

% Look for the README file for instructions.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Open | SpeedShop”

Section 9

Analysis of heterogeneous codes

B -

)
» Los Alamos

NATIONAL LARDRATORY
5

11/11/2018

b .. i i
s

Emergence of HPC Heterogeneous Processing [\

<+ Heterogeneous computing refers to systems that use
more than one kind of processor.

<+ What led to increased heterogeneous processing in HPC?
> Limits on ability to continue to scale processor frequencies
> Power consumption hitting realistic upper bound
> Programmability advances lead to more wide-spread, general
usage of graphics processing unit (GPU).

> Advances in manycore, multi-core hardware technology (MIC)

<+ Heterogeneous accelerator processing: (GPU, MIC)
» Data level parallelism (GPU)
* Vector units, SIMD execution
 Single instruction operates on multiple data items
> Thread level parallelism (MIC)
* Multithreading, multi-core, manycore

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Overview: Most Notable Hardware Accelerators =~ A\

<+ GPU (Graphics Processing Unit)

> General-purpose computing on graphics processing units
(GPGPU)

> Solve problems of type: Single-instruction, multiple thread
(SIMT) model

> Vectors of data where each element of the vector can be
treated independently

> Offload model — where data is transferred into/out-of the GPU

» Program using CUDA/OpenCL language or use directive based
OpenACC

< Intel MIC (Many Integrated Cores)

> Has a less specialized architecture than a GPU

> Can execute parallel code written for:
* Traditional programming models including POSIX threads, OpenMP

> Initially offload based (transfer data to and from co-processor)
> Now/future: programs to run natively

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

GPGPU Accelerator -l A

GPU versus CPU comparison

< Different goals produce different designs
> GPU assumes work load is highly parallel
> CPU must be good at everything, parallel or not

< CPU: minimize latency experienced by 1 thread
> Big on-chip caches
> Sophisticated control logic

<+ GPU: maximize throughput of all threads
> # threads in flight limited by resources => lots of resources
(registers, bandwidth, etc.)
> Multi-threading can hide latency => skip the big caches
> Shared control logic across many threads

*based on NVIDIA presentation

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

GPGPU Accelerator

Mixing GPU and CPU usage in applications

Multicore CPU

-

l

Manycore GPU

ENEEEEEE
ENEEEEEE
ENEEEEEE
ENEEEEEE
ENEEEEEE
EEEEEEEN
EEEEEEEN
EEEEEEEN
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEENE
EENEEEEE

ENEEEEEE
EEEEEEEE
ENEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE
EEEEEEEE

EEENEEEE g

i n st it

Data must be transferred to/from the CPU to the GPU in order

for the GPU to operate on it and return the new values.

*NVIDIA image
Open | SpeedShop”

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Heterogeneous Programming

< There are four main ways to use an accelerator
> Explicit programming:

* The programmer writes explicit instructions for the accelerator device to
execute as well as instructions for transferring data to and from the
device (e.g. CUDA-C for GPUs or OpenMP+Cilk Plus for Phis). This method
requires to most effort and knowledge from programmers because
algorithms must be ported and optimized on the accelerator device.

> Accelerator-specific pragmas/directives:

* Accelerator code is automatically generated from your serial code by a
compiler (e.g. OpenACC, OpenMP 4.0). For many applications, adding a
few lines of code (pragmas/directives) can result in good performance
gains on the accelerator.

> Accelerator-enabled libraries:

* Only requires the use of the library, no explicit accelerator programming
is necessary once the library has been written. The programmer effort is
similar to using a non-accelerator enabled scientific library.

> Accelerator-aware applications:

* These software packages have been programed by other
scientists/engineers/software developers to use accelerators and may
require little or no programming for the end-user.

Credit: http://www.hpc.mcgill.ca/index.php/starthere/81-doc-pages/255-accelerator-overview

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Programming for GPGPU -l é\é

Prominent models for programming the GPGPU

Augment current languages to access GPU strengths
< NVIDIA CUDA

> Scalable parallel programming model

> Extensions to familiar C/C++ environment
> Heterogeneous serial-parallel computing
> Supports NVIDIA only

< OpenCL (Open Computing Language)
> Open source, royalty-free
> Portable, can run on different types of devices
» Runs on AMD, Intel, and NVIDIA

< OpenACC
> Provides directives (hint commands inserted into source)

> Directives tell the compiler where to create acceleration (GPU) code
without the user modifying or adapting the code.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Z \
. AsC

GPGPU considerations for best performance?

< How is the parallel scaling for the application overall?

< Can you balance the GPU and CPU workload?
> Keep both the GPU and CPU busy for best performance

*

» Is it profitable to send a piece of work to the GPU?
» What is the cost of the transfer of data to and from the GPU?

< How much work is there to be done inside the GPU?

> Will the work to be done fully populate and keep the GPU processors busy

> Are there opportunities to chain together operations so the data can stay in the
GPU for multiple operations?

*

Is there a vectorization opportunity?

*

Intel MIC considerations for best performance?

< Program should be heavily threaded

< Parallel scaling should be high with an OpenMP version

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Accelerator Performance Monitoring

Z \
AsSC

How can performance tools help optimize code?

< |s profitable to send a piece of work to the GPU?

> Can tell you this by measuring the costs:
Transferring data to and from the GPU
e How much time is spent in the GPU versus the CPU

< Is there a vectorization opportunity?
> Could measure the mathematical operations versus the vector
operations occurring in the application
> Experiment with compiler optimization levels, re-measure operations
and compare

< How is the parallel scaling for the application overall?

> Use performance tool to get idea of real performance versus expected
parallel speed-up

< Provide OpenMP programming model to source code insights
> Use OpenMP performance analysis to map performance issues to
source code

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Open|SpeedShop accelerator support %\/ é\é

What performance info does Open|SpeedShop provide?

o
*%

*

For GPGPU it reports information to help understand:

> Time spent in the GPU device

> Cost and size of data transferred to/from the GPU

> Balance of CPU versus GPU utilization

> Transfer of data between the host and device memory versus the execution
of computational kernels

> Performance of the internal computational kernel code running on the GPU
device

<&

L)

*

Open|SpeedShop is able to monitor CUDA scientific libraries
because it operates on application binaries.

*

< Support for CUDA based applications is provided by tracing actual
CUDA events

OpenACC support is conditional on the CUDA RT.

<&

L)

*

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Open |SpeedShop accelerator support %\ é\é

What performance info does Open|SpeedShop provide?

< For Intel MIC (non-offload model):

> Reports the same range of performance information that it
does for CPU based applications

> Open|SpeedShop will operate on MIC (co-processor KNC)
similar to targeted platforms where the compute node
processer is different than the front-end node processor

> Only non-offload support is in our current plans

> A specific OpenMP profiling experiment (omptp) has been

developed. Initial version is available now.
* Will help to better support analysis of MIC based applications
* OpenMP performance analysis key to understanding performance

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

CUDA GUI View: Default CUDA view [EEEEN

KRELL Aasc

Note: The left pane shows the executable and the nodes it ran on. In future, will effect views.
Internal GPU activity is shown in thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions
Source panel displays source for metrics clicked on in the Metric pane.

Open|SpeedShop Experimentation Control and Analysis GUI (on pfe25)

File Help
. . - Kemnel Execution
Currently Loaded Experiment Information — = Data Transfer I
¥ GEMMi1-cuda-1 § Sample Counts
¥ GPU Compute / Data Transfer Ratio >
¥ ¥ maial6-p62413-t1 E
GPU 32-Bit Float E
¥ (% maial 5-p6241 3-r0-t2 0 500 1000 1500 2000 2500 3000 3500 4000 4500
PAPL_FP_OPS
¥ X maial7-p64196-13 o
GPU 32-Bit Float 2
¥ % maial7-p64196-r1-12 L g
PAPLFP_OPS 3
¥ % maial8-p42126-t4 :
GPU 32-Bit Float E @
v @ maial a-p42‘| 26-r2-t5 o 500 1000 1500 2000, _ 2500 3000 3500 4000 4500
PAPLFP_OPS
v X st p12622 Mode: Detais < Metic ez ime |2 View: [AlEvents |+
PAPLFP_OPS
¥ (% maia19-p1531-t6 | Type Time (ms) / |Time Begin (ms) |Tin1e End (ms) |Duration (ms) |Ca|| Site |Device =
GPU 32-Bit Float il Data Transfer 630.740118 630.761810 630.763250 0.001440 0 15 L]
¥ % maia19-p1531-r312 " | Data Transfer 637.022429 637.037224 637.065864 0.028640 1 15
PAPLFP_OPS Data Transfer 637.098354 637.107016 637.133992 0.026976 2 15
¥ % maia20-p62103-17 Kernel Execution 637.259305 653.748398 663.433439 9.685041 8 15
GPU 32-Bit Float Data Transfer 656.237784 656.259055 656.260495 0.001440 0 0
¥ % maia20-p62103-r4-12 Data Transfer 661.953286 661.967788 661.995948 0.028160 1 0
PAPLFP_OPS Data Transfer 662.028384 662.0375 662.064556 0.026976 2 0
v % maia21-p50579-18 Kernel Execution 662.191974 678.777699 688.445213 9.667514 8 0
GPU 32-Bit Float Kernel Execution 667.382879 681.605346 691.277939 9.672593 9 15
¥ % maia21-p50579-r5-12 Kernel Execution 692.368214 706.710515 716.426798 9716283 9 0
PAPLFP_OPS Kernel Execution 695.790001 709.974613 719.637510 9.662897 9 15 E
¥ (% maia22-p98913-19 Karnal Everitinn 790 422A14 724 A27A7R 744 118258 q A77929 Q n
GPU 32-Bit Float S
¥ X maia22-p98913-r6-t2 1
PAPLFP_OPS
¥ (% maia23-p47556-110
GPU 32-Bit Float
¥ (% maia23-p47556-17-12
PAPI_FP_OPS E]
— o :na arece .

£

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

CUDA GUI View: All Events Trace A

krRELL ASC

Note: The chronological list of data transfers and kernel executions in bottom pane.
Duration of kernel execution and data transfer available.
Internal GPU activity is shown thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions

Open|SpeedShop Experimentation Control and Analysis GUI (on pfe25)

File Help
Currently Loaded Experiment Informa ™ z S:{:e';rif;cf::' " B
¥ GEMM1-cuda-1 H Sample Counts
¥ GPU Compute / Data Transfer &
¥ X/ maial6-p62413-11 E
GPU 32-Bit Float E
¥ [%| maial6-p62413-r0-12 0 500 1000 1500 2000 2500 3000 3500 4000 4500
PAPLLFP_OPS
v [% maial7-p64196-13 L o
GPU 32-Bit Float 2
v % maial7-p64196-r1-12 S
PAPLLFP_OPS E
¥ % maia18-p42126-14 'g
GPU 32-Bit Float E
¥ % maial18-p42126-r2-t5 T
PAPLFP_0PS R et e ime)
¥ (%X maia18-p42126-r2-12 "
v ® :_I}::::izl_:gf SPSS‘I 16 i |Type |Time (ms) |Tin1e Begin (ms) |Tin1e End (ms) |Duration (ms) |Ca|| Site |Device =
GPU 32-Bit Float Kernel Execution 4,618.488737 4,620.831602 4,620.876242 0.044640 15 21 L
v % maial9-p1531-1342 Kernel Execution 4,615.989434 4,618.354390 4,618.398966 0.044576 15 21
PAPLFP_OPS Kernel Execution 4,613.508949 4,615.855482 4,615.900250 0.044768 15 21
v % maia20-p62103-t7 Kernel Execution 4,611.018370 4,613.372511 4,613.417055 0.044544 15 21
GPU 32-Bit Float Kernel Execution 4,607.947732 4,610.295940 4,610.340548 0.044608 14 21
v % maia20-p62103-14-2 Data Transfer 4,607.860647 4,607.875273 4,607.883497 0.0082247 R 21
PAPLFP_OPS Kernel Execution 4,605.392261 4,607.735465 4,607.781449 0.045984 13 21
v % maia21-p50579-8 Kernel Execution 4,602.907955 4,605.253677 4,605.299693 0.046016 13 21
GPU 32-Bit Float Kernel Execution 4,600.416752 4,602.770450 4,602.816498 0.046048 13 21
v % maia21-p50579-15-12 Kernel Execution 4,597.397094 4,599.738807 4,599.784855 0.046048 13 21 E]
PAPLFP_OPS Kernel Execution _4,504.922837 4,597.265532 4,597.311611 0.046079 12 21
¥ [% maia22-p98913-19 e s
GPU 32-Bit Float 4
¥ % maia22-p98913-r6-12
PAPI_FP_OPS @
(]

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

CUDA GUI View: Kernel Trace A

KRELL Aasc

Note: The chronological list of kernel executions with details is in bottom pane.
Internal GPU activity is shown in thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions

0pen|5peed5hop Experimentation Control and Analysis GUI (on pfe25)

File Help
Currently Loaded Experiment Informa=- z g:t’:e‘;ri:::? " H
¥ GEMM1-cuda-1 H Sample Counts
¥ GPU Compute / Data Transfer &
¥ % maial6-p62413-11 k.
GPU 32-Bit Float £
v (% maial6-p62413-r0-12 0 500 1000 1500 2000 2500 3000 3500 4000 4500
PAPI_FP_OPS
¥ [% maial7-p64196-13 = 9
GPU 32-Bit Float 2
¥ % maial7-p64196-r1-12 g
PAPI_FP_OPS E
¥ % maia18-p42126-t4 _g
GPU 32-Bit Float E
¥ % maial8-p42126-r2-15 T
PAPLFP-OPS Mode: N e view |
¥ % maial8-p42126-12-12 |
PAPI_FP_OPS H X . " N . " - - . -
v % maial9-p153116 i |T|n1e (ms) |T|n1e Begin (ms) |T|me End (ms) / |Durat|nn (ms) |Ca|| Site |Dev|ce |Funct|nn Grid X Grid Y Grid Z Block X |Blnck Y —
GPU 32-Bit Float 637.259305 653.748398 663.433439 9.685041 8 15 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16 L
v % maial9-p1531-1342 662.191974 678.777699 688.445213 9.667514 8 0 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
PAPI_FP_OPS 667.382879 681.605346 691.277939 9.672593 9 15 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
v % maia20-p62103-17 692.368214 706.710515 716.426798 9.716283 9 0 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
GPU 32-Bit Float 695.790001 709.974613 719.637510 9.662897 9 15 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
v % maia20-p62103-14-12 720.422616 734.437476 744115358 9.677882 9 0 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
PAPLFP_OPS 723.596380 737.841481 747.550425 9.708944 9 15 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
v ® maia21-p50579-18 737.070868 753.732273 763.499768 9.767495 8 16 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
GPU 32-Bit Float 748.655576 762.655348 772.369294 9.713946 9 0 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16
v (% maia21-p50579-r5-12 752.090290 766.000380 775.686445 9.686065 9 15 sgemm_sm35_ldg_nn_64x16x64x16x16 4 4 1 16 16 @
PAPI_FP_OPS (<1 | 1D
¥ (% maia22-p98913-19 = s
GPU 32-Bit Float |
¥ (% maia22-p98913-r6-12
PAPI_FP_OPS @
£ \

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutori 11/11/2018

CUDA GUI View: Transfers Trace A

KRELL Aasc

Note: The chronological list of data transfers with details is in bottom pane.
Internal GPU activity is shown in thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions

Open|SpeedShop Experimentation Control and Analysis GUI (on pfe25)

File Help
Currently Loaded Experiment Informa=- 5 Deta Tranater B
~ GEMM1-cuda-1 5 Sample Gounts
¥ GPU Compute / Data Transfer Iy
¥ % maial6-p62413-t1 E
GPU 32-Bit Float £
¥ % maia16-p62413-r0-t2 0 500 1000 1500 2000 2500 3000 3500 4000 4500
PAPI_FP_OPS
¥ [% maial7-p64196-13 L o
GPU 32-Bit Float 2
v | maial7-p64196-r1-t2 g
PAPI_FP_OPS E
¥ % maial8-p42126-t4 -‘E-i
GPU 32-Bit Float E @
v [%| maia18-p42126-r2-15 T
PAPLFP.0PS Mode: Detals -] Metie: ez e 1] View: Data Tranter |
v [%| maial8-p42126-r2-12 N
PAPI_FP_OPS E . - T " - Y
v % maial9-p1531-16 i ‘Tlme (ms) |T|me Begin (ms) |T|me End (ms) / |Durat|un (ms) |Ca|| Site |Dewce |5|ze |Rate{Gst) |K.|nd Source Kind D ion Kind y ous - —
GPU 32-Bit Float 630.740118 630.761810 630.763250 0.001440 0 15 112 Bytes 0.077778 HostToDevice Pageable Device false L
¥ (X maial9-p15313-2 637.022429 637.037224 637.065864 0.028640 1 15 256 KB 9.153073 HostToDevice Pinned Device false
PAPI_FP_OPS 637.098354 637.107016 637.133992 0.026976 2 15 256 KB 9.717675 HostToDevice Pinned Device false
v (X mala20-p62103-17 656.237784 656.259055 656.260495 0.001440 0 0 112 Bytes 0.077778 HostToDevice Pageable Device false
GPU 32-Bit Float 661.053286 661.067788 661.995948 0.028160 1 0 256 KB 9.309091 HostToDevice Pinned Device false
v % maia20-p62103-rd-t2 662.028384 662.037580 662.064556 0.026976 2 0 256 KB 9.717675 HostToDevice Pinned Device false
PAPI_FP_OPS 731.110226 731.132835 731.134275 0.001440 0 16 112 Bytes 0.077778 HostToDevice Pageable Device false
v % maia21-p50579-8 736.836009 736.849127 736.877319 0.028192 1 16 256 KB 9.298524 HostToDevice Pinned Device false
GPU 32-Bit Float 736.909564 736917415 736.94435 0.026944 2 16 256 KB 9.729216 HostToDevice Pinned Device false
¥ (% maia21-p50579-r5-12 780.270584 780.287526 780.31478 0.027263 3 15 256 KB 9.615376 DeviceToHost Device Pinned false @
PAPI_FP_OPS 804.621213 804.637308 804.664508 0.027200 3 0 256 KB 9.637647 DeviceToHost Device Pinned false
¥ [X| maia22-p98913-19 = e
GPU 32-Bit Float 1
¥ % maia22-p98913-r6-t2
PAPI_FP_OPS =]
E | i

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutori 11/11/2018

CUDA GUI View: Timeline Zoom e

KRELL

i nstitute

Note: Here is a zoomed in view of the data transfer and kernel execution timeline
Red lines indicate data transfers, Green lines indication GPU kernel executions
The metric view is dependent on what is active in the timeline view.

Open|SpeedShop Experimentation Control and Analysis GUI (on pfe25)
File Help

Currently Loaded Experiment Information —

¥ GEMM1-cuda-1
¥ GPU Compute / Data Transfer Ratio

v % maial6-p62413-1 2000 2050 2100 2150 2200 2250 2300 2350 2400
GPU 32-Bit Float

¥ [% maial6-p62413-r0-t2
PAPI_FP_OPS

¥ [%| maial7-p64196-13
GPU 32-Bit Float

¥ (% maial7-p64196-r1-12 L
PAPI_FP_OPS

¥ (% maia18-p42126-t4
:GPU 32-Bit Float

¥ (% maia18-p42126-r2-15
PAPI_FP_OPS

¥ [maial8-p42126-r2-12
PAPI_FP_OPS

¥ [% maia19-p1531-t6 '
GPU 32-Bit Float

v [% maia19-p1531-r3-t2 '
PAPI_FP_OPS 1

¥ (% maia20-p62103-t7
GPU 32-Bit Float Mode: Metric: View:

¥ [X| maia20-p62103-r4-12

PAPI_FP_OPS T Time (ms) / |Time Begin (ms Time End (ms Duration (ms; Call Site Device 4]
v % maia21-p50579-18 Type [Time (ms) /| gin(ms) | ms) | ms) | |

GPU 32-Bit Float Kernel Execution 1,963.472133 1,977.362621 1,987.113703 9.751082 9 7 i
v ® main2] pSUS79-5-12 Kernel Execution 1,964.117138 1,977.980209 1,987.658944 9.678735 9 21
PAPIFP. OPS Kerel Execution ~1966.643336 1,981.146486 1,990.774986 9.628500 9 3
v 8 main22.09891349 Kernel Execution 1966.954124 1,980.719412 1,990.563941 9.844529 11 27
GPU 32-Bit Float Kernel Execution 1967.472492 1,981.888175 1,991.717111 9.828936 9 24
v ¥ main22.pI891 21612 Kemel Execution 1,967.535556 1,981.372133 1,991.087697 9.715564 9 26 E
PAPIFP. OPS Kernel Execution _1.969.877038 1.983.868249 1.993.516333 9.648084 9 8

v % maia23-p47556-110 0
GPU 32-Bit Float
¥ % maia23-p47556-r7-12
PAPL_FP_OPS E

PR R T R Y T P

maia30-pd26:

maia3{-p43277-t14

2000 2050 2100 2150 2200 2250 2300 2350 2400

maia31-p43277-ri5-12

2000 2050 2100 2150 2200 2250 2300 2350 2400

GI]

\
A

-

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutori 11/11/2018

Open|SpeedShop CUDA CLI Views

openss>>expview [-vExec]

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count

Exclusive
Time
14.810702 52.042113
13.648369 47.957887

openss>>expview -vXfer

300 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
300 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

Exclusive % of Exclusive Function (defining location)
Time(ms) Total Count

Exclusive
Time
1.774178 75.232917
0.584069 24.767083

69 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
69 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

openss>>expview -v trace, Xfer

Start Time (d:h:m:s)

2016/08/24 10:01:03.845
2016/08/24 10:01:03.850
2016/08/24 10:01:03.850
2016/08/24 10:01:03.851
2016/08/24 10:01:03.851
2016/08/24 10:01:03.852
2016/08/24 10:01:03.852

Open | SpeedShop”

Exclusive
Time (ms)

0.001217
0.027392
0.027553
0.001217
0.027425
0.026721
0.026753

% of
Total

Size Kind Call Stack Function (defining location)

Exclusive

Time
0.051606
1.161541
1.168368
0.051606
1.162940
1.133087
1.134444

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

112 HostToDevice >>void RunTest<float>(std::
262144 HostToDevice >>void RunTest<float>(std:
262144 HostToDevice >>void RunTest<float>(std:

112 HostToDevice >>void RunTest<float>(std::
262144 DeviceToHost >>void RunTest<float>(std:
262144 DeviceToHost >>void RunTest<float>(std:
262144 DeviceToHost >>void RunTest<float>(std:

string, ResultDatabase&, OptionParser&) (GEMM:
:string, ResultDatabase&, OptionParser&) (GEMM:
:string, ResultDatabase&, OptionParser&) (GEMM:
string, ResultDatabase&, OptionParser&) (GEMM:
:string, ResultDatabase&, OptionParser&) (GEMM:
:string, ResultDatabase&, OptionParser&) (GEMM:
:string, ResultDatabase&, OptionParser&) (GEMM:

GEMM.cpp,19)
GEMM.cpp,19)
GEMM.cpp,19)
GEMM.cpp,19)
GEMM.cpp,19)
GEMM.cpp,19)
GEMM.cpp,19)

11/11/2018

Open|SpeedShop CUDA CLI Views

openss>>expview -v trace,Exec

Start Time (d:h:m:s) Exclusive %of Grid Block Call Stack Function (defining location)
Time (ms) Total Dims

Exclusive

Time
2016/08/24 10:01:03.851 0.055585 0.195316 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.048705 0.171141 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.049761 0.174851 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.051617 0.181373 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.051648 0.181482 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.050817 0.178562 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.046496 0.163378 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.048193 0.169341 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.852 0.049633 0.174401 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

openss>>expview -vcalltrees,fullstack

Exclusive % of Exclusive Call Stack Function (defining location)
Time(ms) Total Count
Exclusive
Time
main (GEMM: main.cpp,135)
> @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
11.818358 41.527561 240 >> @ 240 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
main (GEMM: main.cpp,135)
> @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
10.894840 38.282486 240 >> @ 240 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
main (GEMM: main.cpp,135)
> @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
2.992344 10.514553 60 >> @ 231 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
main (GEMM: main.cpp,135)
> @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
2.753529 9.675400 60 >> @ 231 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

pfe27-433>openss -cli -f GEMM-cuda-4.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count
Exclusive
Time
14.810702 52.042113 300 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
13.648369 47.957887 300 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

openss>>eXpview -vhwpc 242 203576
Time CPUAIl GPUAIl |< CPU- |~-GPU >| 253 730303
(%5)15868757 — 264 4937670
32 5208442 4 275 24977312
24 3780335 286 53366059
8 :031483 A 297 75579534
2 220370 308 79920340
110 670313 319 76604975
5 330 77356196
341 78801255
352 68318322 |
363 66937166 |
374 69401858 |
385 73239976 |
- 396 71365211 544298 I *****************I I
I
|
I
I

*|

******I
************I

******************I

I
I
I
I
*******************I I
I
******************I I
I

*******************I
154 143953

165 146363
176 155874
187 182306
198 194074
209 176671
220 196696
231 196431
242 203576
253 730303
264 4937670
275 24977312

****************I
****************I

****************I

N -N-E-N-E-E-E-E-N-E-E-N=

I
I
I
I
I
I
I
I ******************I
I
I
I
I
I
I

*****************I

132 125052
FhARRR 407 70238071 3554730 I ****************I*****

143 134162
ok ok ok oo ok o

sk ok ok ok o Ko KKk K 418 70172897 10504920 I ****************I*****************

sk ok ok ok ok ok ok sk sk ok sk sk sk ok ok ok sk ok

s ko ok o o ok ok ok ok ok 429 82853194 11857290 I********************I********************

ok ok ok ok ok sk sk sk ok sk ok sk ok ok sk ok

FAHF AR F AR KK KA KA A E KK 440 68740879 5299162 I ****************I********

koo ook ook ook ok ko
B | 451 20665073 0 I kK kk I I
374 69401858 Fk kKKK KR KK

385 73239976 Fk ko Kok

396 71365211 544298]

407 70238071 3554730 e R

418 70172897 10504920 LI tholi i
429 82853104 11857290 | *rHrsstbbbk kbt kok [k dkhobok ok ok dokohok |
440 68740879 5299162 [|
451 20665073 0 L]

286 53366059
297 75579534
308 79920340
319 76604975
330 77356196
341 78801255
352 68318322
363 66937166

0000000000000 000O0000O00O0O0O0O000O0OO00O00OO000OO

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Hands-on Section 8: GPU Performance ~~ A\

<+ GPU related application exercises

< Exercises are in the exercise directory in
> SHOME/exercises/cuda/matrixMul
> SHOME/exercises/cuda/shoc/bindir/bin/EP/CUDA

< Consult README for exercise instructions/guidance

» Run matrixMul exercise
» Run shoc benchmarks: GEMM and FFT

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

4 \

, Z\
KRELL . ASC
{ a
7o C18 I8

SC2018 Tutorial

How to Analyze the Performance of Parallel Codes 101
A case study with Open|[SpeedShop

Section 10
DIY & Conclusions

=/ .

A .

A |
N - Los Alamos K1) National
K R E L L NATlONAl.STL.;ﬁf‘?RATORY | ;: A J

Open | SpeedShop” 11/11/2018

O|SS Booth and Tutorial Survey Reminder FasNEraN

< OpenSpeedShop booth: 2840

» On-demand Demos, discussion, new GUI feedback, etc.

< Reminder: Tutorial surveys are entirely electronic this
year

<+ QR code:
https://submissions.supercomputing.org/eval.png

< Evaluation site URL: http://bit.ly/SC18-eval

< Thanks for attending our tutorial!

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

https://submissions.supercomputing.org/eval.png
http://bit.ly/sc17-eval

How to Take This Experience Home? [SSlFeN

< General questions should apply to ...
> ... all systems
> ... all applications

< Prerequisite
> Know what to expect from your application
> Know the basic architecture of your system

< Ask the right questions
> Start with simple overview questions
> Dig deeper after that

< Pick the right tool for the task
> May need more than one tool
> Will depend on the question you are asking
> May depend on what is supported on your system

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

If You Want to Give O|SS a Try? = A

< Available on the these system architectures
> AMD x86-64
> Intel x86, x86-64, MIC/Phi
> IBM PowerPC, PowerPC64. Power8
> ARM: AArch64/A64 and AArch32/A32

< Work with these operating system

> Tested on Many Popular Linux Distributions
e SLES, SUSE
 RHEL, Fedora, CentOS
* Debian, Ubuntu

<+ Tested on some large scale platforms
> |IBM Blue Gene and Cray
> GPU and Intel Phi support available
> Available on many DOE/DOD systems in shared locations
> Ask your system administrator

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

How to Install Open|SpeedShop? %\ é\é

<+ Most tools are complex pieces of software
> Low-level, platform specific pieces
> Complex dependencies
> Need for multiple versions, e.g., based on MPIs and compilers

» Open|SpeedShop is no exception
* In many cases even harder because of its transparency

< Installation support

> Traditional installation mechanism

* Three parts of the installation
— Krell Root — base packages
— CBTF — Component based tool framework
— O]SS client itself

* Install script

> Support for “spack” now available
* https://github.com/spack/spack

<+ When in doubt, don’t hesitate, ask us:
» 0SSs-contact@openspeedshop.org

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

https://github.com/spack/spack
mailto:oss-questions@openspeedshop.org

Availability and Contact = A

< Current version: 2.4.0 has been released

<+ Open|SpeedShop Website
» https://www.openspeedshop.org/

<+ Open|SpeedShop help and bug reporting
> Direct email: oss-contact@openspeedshop.org
» Forum/Group: oss-questions@openspeedshop.org

<+ Feedback

> Bug tracking available from website
> Feel free to contact presenters directly

< Support contracts and onsite training available
> We are working with users to develop a support
contract process through the Trenza Synergy Center.
> Stop at booth 2840 to discuss options, if interested.

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

http://www.openspeedshop.org/
mailto:oss-contact@openspeedshop.org
mailto:oss-questions@openspeedshop.org

Getting Open |SpeedShop %é

< Download options:
> Package with install script (install-tool)
> Source for tool and base libraries

< Project Wiki:
> https://github.com/OpenSpeedShop/openspeedshop/wiki

< Repositories access
> https://github.com/OpenSpeedShop

< Release Information
> Release Tarball and Packages are accessible from
www.openspeedshop.org

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

https://github.com/OpenSpeedShop/openspeedshop/wiki
https://github.com/OpenSpeedShop
http://www.openspeedshop.org/

Open|SpeedShop Documentation %\ é\é

< Build and Installation Instructions
> https://www.openspeedshop.org/documentation

* Look for: Open|SpeedShop Version 2.4 Build/Install Guide

<+ Open|SpeedShop User Guide Documentation

> https://www.openspeedshop.org/documentation
* Look for Open|SpeedShop Version 2.4 Users Guide

< Man pages: OpenSpeedShop, osspcsamp, ossmpi,

< Quick start guide downloadable from web site
» https://www.openspeedshop.org
> Click on “Download Quick Start Guide” button

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

http://www.openspeedshop.org/documentation
https://www.openspeedshop.org/documentation
http://www.openspeedshop.org

Tutorial Summary %/\

< Performance analysis critical on modern systems
> Complex architectures vs. complex applications
> Need to break black box behavior at multiple levels
> Lots of performance left on the table by default

< Performance tools can help
> Open|SpeedShop as one comprehensive option

> Scalability of tools is important
* Performance problems often appear only at scale
* We will see more and more online aggregation approaches
* CBTF as one generic framework to implement such tools

< Critical:
> Asking the right questions
» Comparing answers with good baselines or intuition
> Starting at a high level and iteratively digging deeper

Z \
. AsC

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

Questions vs. Experiments

<+ Where do | spend my time?
> Flat profiles (pcsamp)
> Getting inclusive/exclusive timings with callstacks (usertime)
> ldentifying hot callpaths (usertime + HP analysis)

< How do | analyze cache performance?
> Measure memory performance using hardware counters (hwc)
» Compare to flat profiles (custom comparison)
» Compare multiple hardware counters (N x hwc, hwcsamp)

< How to identify 1/O problems?
» Study time spent in I/O routines (io)
» Compare runs under different scenarios (custom comparisons)

<+ How do | find parallel inefficiencies?
> Study time spent in MPI routines (mpi)
» Look for load imbalance (LB view) and outliers (CA view)

Open | SpeedShop” How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11/11/2018

	Slide Number 1
	Why This Tutorial?
	Tutorial Goals
	Open|SpeedShop Tool Set
	“Plan”/“Rules”
	Presenters
	Outline
	Tutorial Survey
	Section 1�Concepts in Performance Analysis
	Typical Development Cycle
	A Case for Performance Tools
	Performance Tools Overview
	How to Select a Tool?
	Next Step: Interpret Data
	Issue 1: Tool Types
	Issue 2: Asking the Right Questions
	What to Look For: Sequential Runs
	What to Look For: Shared Memory
	What to Look For: Message Passing
	What’s Next
	Section 2�Emerging Performance Analysis models
	Emerging Performance Monitoring
	Slide Number 23
	 High-level versus In-depth perf. tools
	Lightweight and Monitoring Tool efforts
	Value of High-level Performance Analysis
	Value of High-level Performance Analysis
	High-level Performance Analysis: O|SS
	High level Performance Analysis: O|SS
	High-level Performance Analysis: O|SS
	Section 3�Introduction into Tools and Open|SpeedShop
	Open|SpeedShop Tool Set
	Classifying Open|SpeedShop
	
	
	Alternative Interfaces
	Central Concept: Experiments
	Sampling Experiments in O|SS
	Tracing Experiments in O|SS
	Tracing Experiments in O|SS
	Additional Experiments in OSS/CBTF
	Performance Analysis in Parallel
	How to Run a First Experiment in O|SS?
	Example Run with Output
	Example Run with Output
	Default Output Report View
	Statement Report Output View
	Associate Source & Performance Data
	Library (LinkedObject) View
	Loop View
	Open|SpeedShop Basics
	Hands-on Section 2: Basic Sampling Experiments
	Section 4�Basic timing experiments and their Pros/Cons
	Identifying Critical Regions
	Adding Context through Stack Traces
	Inclusive vs. Exclusive Timing
	Call path profiling & Comparisons
	Interpreting Call Context Data
	Inclusive and Exclusive Time Profiles: Usertime
	Reading Inclusive/Exclusive Timings
	Stack Trace Views: Hot Call Path
	Stack Trace Views: Butterfly View
	Comparing Performance Data
	Comparing Performance Data in O|SS
	Comparison Report in O|SS
	Summary / Timing analysis
	Hands-on Section 3: Basic Sampling Experiments
	Section 5�Analysis of parallel codes:�MPI, OpenMP, POSIX threads
	 Parallel Application Performance Challenges
	 Parallel Execution Goals
	Parallel Execution Goals
	Parallel Application Analysis Techniques
	pcsamp Default View: NPB: LU
	Load Balance View: NPB: LU
	Default Linked Object View: NPB: LU
	Parallel Execution Analysis Techniques
	Hot Call Paths View (CLI): NPB: LU
	Identifying Load Imbalance With O|SS
	Link. Obj. Load Balance: Using NPB: LU
	Using Cluster Analysis in O|SS
	Link. Obj. Cluster Analysis: NPB: LU
	MPI/OpenMP Specific Experiments
	MPI Tracing Results: Default View
	Using OMPTP experiment in O|SS
	Using OMPTP experiment in O|SS
	Using OMPTP experiment in O|SS
	Summary / Parallel Bottlenecks
	Hands-on Section 4: Going Parallel - MPI
	Hands-on Section 4: Going Parallel - threading
	Section 6�Advanced analysis: Hardware Counter Experiments
	Identify architectural impact on code inefficiencies
	Good Primary Focus: Efficient movement of data
	Another important focus: Efficient Vectorization
	Hardware Performance Counters
	The O|SS HWC Experiments
	Examples of Typical Counters (Xeon E5-2670)
	Suggestions to Manage Complexity
	How to use OSS HWCsamp experiment
	Selecting the Counters & Sampling Rate
	Useful Metric-Ratio 1: IPC
	BLAS Operations Illustrate impact of moving data �A, B, C = nxn Matrices; x,y = nx1 Vectors; k = Scaler�
	Useful Metric-Ratio 2: FloatOps/Cycle
	For Intel Haswell FloatOps not available: Use IPC or CPI
	hwcsamp with miniFE (see mantevo.org)
	Viewing hwcsamp Data in CLI
	Viewing Data in CLI
	Deeper Analysis with HWC and HWCtime
	Viewing hwc Data
	Viewing hwctime Data
	Example 1 on use of PAPI: LLNL Sparse Solver Benchmark AMG
	Example 2 on use of PAPI: False Cache-line sharing in OpenMP
	Hands-on Section 5: Architectural Details
	Section 7�Analysis of I/O
	Need for Understanding I/O
	I/O Performance Example
	Why use this example?
	Use O|SS to measure and tune for I/O
	NFS and Lustre O|SS Analysis (screen shot from NFS)
	Lustre file system striping
	OpenSpeedShop IO-experiment used to identify optimal lfs striping �(from load balance view (max, min & avg) for 16 way parallel run)
	Additional I/O analysis with O|SS
	Beware of Serial I/O in applications: Encountered in VOSS, code LeP: �Simple code here illustrates (acknowledgment: Mike Davis, Cray, Inc.)
	IOT O|SS Experiment of Serial I/O Example
	Running I/O Experiments
	I/O output via GUI
	I/O output via GUI
	I/O output via CLI (equivalent of HC in GUI)
	Section Summary - I/O Tradeoffs
	Hands-on Section 6: I/O Performance
	Section 8�Analysis of Memory Usage
	 Memory Hierarchy
	 Need for Understanding Memory Usage
	 Example Memory Heap Analysis Tools
	O|SS Memory Experiment
	O|SS Memory Experiment CLI commands
	O|SS Memory Experiment
	O|SS Memory Experiment
	O|SS Memory Experiment (Unique Calls)
	O|SS Memory Experiment (Leaked Calls)
	 Summary and Conclusions
	Hands-on Section 7: Memory Analysis
	Section 9�Analysis of heterogeneous codes
	 Emergence of HPC Heterogeneous Processing
	Overview: Most Notable Hardware Accelerators
	GPGPU Accelerator
	GPGPU Accelerator
	 Heterogeneous Programming
	Programming for GPGPU
	Optimal Heterogeneous Execution
	Accelerator Performance Monitoring
	Open|SpeedShop accelerator support
	Open|SpeedShop accelerator support
	CUDA GUI View: Default CUDA view
	CUDA GUI View: All Events Trace
	CUDA GUI View: Kernel Trace
	CUDA GUI View: Transfers Trace
	CUDA GUI View: Timeline Zoom
	Open|SpeedShop CUDA CLI Views
	Open|SpeedShop CUDA CLI Views
	Open|SpeedShop CUDA CLI Views
	Hands-on Section 8: GPU Performance
	Section 10�DIY & Conclusions
	O|SS Booth and Tutorial Survey Reminder
	How to Take This Experience Home?
	If You Want to Give O|SS a Try?
	How to Install Open|SpeedShop?
	Availability and Contact
	Getting Open|SpeedShop
	Open|SpeedShop Documentation
	Tutorial Summary
	Questions vs. Experiments

