

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Martin Schulz: TU-München
Jennifer Green: LANL
Dave Montoya: LANL

Don Maghrak: Krell Institute
Jim Galarowicz: Krell Institute

LLNL-PRES-503451

11/11/2018

Why This Tutorial?
 Performance Analysis is becoming more important

 Complex architectures and complex applications
 Mapping applications onto architectures is hard
 Today’s applications only use a fraction of the machine

 Performance analysis is more than just measuring time
 What are the critical sections in a code?
 Is a part of the code running efficiently or not?
 Is the code using the resources well (memory, TLB, I/O, …)?
 Where is the greatest payoff for optimization?

 Often hard to know where to start
 Which experiments to run first?
 How to plan follow-on experiments?
 What kind of problems can be explored?
 How to interpret the data?

2How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Tutorial Goals
 Basic introduction into performance analysis

 Typical pitfalls wrt. performance
 Wide range of types of performance tools and techniques

 Provide basic guidance on …
 How to understand the performance of a code?
 How to answer basic performance questions?
 How to plan performance experiments?

 Provide you with the ability to …
 Run these experiments on your own code
 Provide starting point for performance optimizations

 Practical Experience: Demos and hands-on Experience
 Introduction into Open|SpeedShop as one possible tool solution
 Basic usage instructions and pointers to documentation
 Lessons and strategies apply to any tool

3How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Open|SpeedShop Tool Set
 Open Source Performance Analysis Tool Framework

 Most common performance analysis steps all in one tool
 Combines tracing and sampling techniques
 Extensible by plugins for data collection and representation
 Gathers and displays several types of performance information

 Flexible and Easy to use
 User access through:

GUI, Command Line, Python Scripting, convenience scripts

 Scalable Data Collection
 Instrumentation of unmodified application binaries
 New option for hierarchical online data aggregation

 Supports a wide range of systems
 Extensively used and tested on a variety of Linux clusters
 Cray and Blue Gene support

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 4

11/11/2018

“Plan”/“Rules”
 Staggered approach/agenda

 First session: performance analysis basics and getting ready
 Second session: Digging deeper and going parallel
 Third session: more specialized topics (HWC and I/O)
 Fourth session: new architectural challenges (memory and GPU)
 Hands-on experiments in each session

 Let’s keep this interactive
 Feel free to ask questions as we go along
 Ask if you would like to see anything specific in the demos

 We are interested in feedback!
 What was clear / what didn’t make sense?
 What scenarios are missing?

 Updated slides available before SC
 https://www.openspeedshop.org/wp/category/tutorials
 Then choose SC2018 Sunday Nov 11 tutorial

5How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

https://www.openspeedshop.org/wp/category/tutorials

11/11/2018

 Martin Schulz: TU-München
 Jim Galarowicz: Krell Institute
 Donald Maghrak: Krell Institute
 Jennifer Green: LANL
 David Montoya: LANL
 Greg Scantlen: CreativeC
 Hannes Schweiger: CreativeC
 Larger team:

 William Hachfeld, David Whitney: Krell Institute
 Gregory Schultz: Argo Navis Technologies, LLC.
 Mike Mason, David Shrader: LANL
 Douglas Pase, Anthony Angelastos, Joel Stevenson: SNL
 Matt Legendre and Chris Chambreau: LLNL
 Dyninst group (Bart Miller: UW & Jeff Hollingsworth: UMD)
 Phil Roth: ORNL
 Koushik Ghosh: Engility
 Mahesh Rajan: New Mexico Consortium

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 6

Presenters

11/11/2018

Outline
 Welcome
 Concepts in performance analysis
 Introduction into Tools and Open|SpeedShop
 How to run basic timing experiments and what they can do?
 How to deal with parallelism (MPI and threads)?
 <LUNCH>
 How to properly use hardware counters?
 Slightly more advanced targets for analysis

 How to understand and optimize I/O activity?
 How to evaluate memory efficiency?
 How to analyze codes running on GPUs?

 DIY and Conclusions: DIY and Future trends
 Hands-on Exercises (after each section)

 On site cluster available
 We will provide exercises and test codes

7How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Tutorial Survey
 Tutorial surveys are entirely electronic this year

 No paper forms
 Tutorial attendees will receive an email reminder with the

evaluation information.

 QR code:
https://submissions.supercomputing.org/eval.png

 Evaluation site URL: http://bit.ly/SC18-eval

 Thanks for attending our tutorial!

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 8

https://submissions.supercomputing.org/eval.png
http://bit.ly/sc17-eval

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 1
Concepts in Performance Analysis

11/11/2018

Typical Development Cycle
 Performance tuning is an essential

part of the development cycle
 Potential impact at every stage

• Message patterns
• Data structure layout
• Algorithms

 Should be done from early on in the life
of a new HPC code

 Ideally continuously and automatically

 Typical use
 Measure performance and store data
 Analyze data
 Modify code and/or algorithm
 Repeat measurements
 Analyze differences

Coding

Debugging

Tuning

Algorithm

Code/Binary

Correct Code

Efficient (?) Code

10How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

A Case for Performance Tools
 First line of defense

 Full execution timings (UNIX: “time” command)
 Comparisons between input parameters
 Keep and track historical trends

 Disadvantages
 Measurements are coarse grain
 Can’t pin performance bottlenecks

 Alternative: code integration of performance probes
 Hard to maintain
 Requirements significant a priori knowledge

 Performance tools
 Enable fine grain instrumentation
 Show relation to source code
 Work universally across applications

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 11

11/11/2018

Performance Tools Overview
 Basic OS tools

 time, gprof, strace

 Hardware counters
 PAPI API & tool set
 hwctime (AIX)

 Sampling tools
 Typically unmodified binaries
 Callstack analysis
 HPCToolkit (Rice U.)

 Profiling/direct measurements
 MPI or OpenMP profiles
 mpiP (LLNL&ORNL)
 ompP (LMU Munich)

 Tracing tool kits
 Capture all MPI events
 Present as timeline
 Vampir (TU-Dresden)
 Jumpshot (ANL)

 Trace Analysis
 Profile and trace capture
 Automatic (parallel) trace analysis
 Kojak/Scalasca (JSC)
 Paraver (BSC)

 Integrated tool kits
 Typically profiling and tracing
 Combined workflow
 Typically GUI/some vis. support
 Binary: Open|SpeedShop (Krell/TriLab)
 Source: TAU (U. of Oregon)

 Specialized tools/techniques
 Libra (LLNL)

Load balance analysis
 Boxfish (LLNL/Utah/Davis)

3D visualization of torus networks
 Rubik (LLNL)

Node mapping on torus architectures

 Vendor Tools

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 12

11/11/2018

How to Select a Tool?
 A tool with the right features

 Must be easy to use
 Provides performance analysis of the code at different levels: libraries,

functions, loops, statements

 A tool must match the application’s workflow
 Requirements from instrumentation technique

• Access to and knowledge about source code? Recompilation time?
• Machine environments? Supported platforms?

 Interactive and batch mode analysis options
 Support iterative tuning with ability to compare key metrics across runs

 Why We Picked/Developed Open|SpeedShop?
 Sampling and tracing in a single framework
 Easy to use GUI & command line options for remote execution

• Low learning curve for end users
 Transparent instrumentation (preloading & binary)

• No need to recompile application

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 13

11/11/2018

Next Step: Interpret Data
 Tools can collect lots of data

 At varying granularity
 At varying cost
 At varying accuracy

 Issue 1: Understand your
tool and its limitations
 No tool can do everything

(at least not well)
 Choose the right tool for

the right task

 Issue 2: Ask the right question
 Need to know basic issues to

look for to get started
 Need to understand expected behavior

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 14

11/11/2018

Issue 1: Tool Types
 Data acquisition

 Event based data: triggered by explicit events
• Direct correlation possible, but may come in bursts

 Sampling based data: triggered by external events like timers
• Even distribution, but requires statistical analysis

 Instrumentation
 Source code instrumentation: exact, but invasive
 Compiler instrumentation: requires source, but transparent
 Binary instrumentation: can be transparent, but still costly
 Link-level: transparent, less costly, but limited to APIs
 Tradeoff: invasiveness vs. overhead vs. ability to correlate
 Big question: granularity

 Aggregation
 No aggregation: trace
 Aggregation over time and space: simplified profile
 Many shades of gray in between

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 15

11/11/2018

Issue 2: Asking the Right Questions
 Step 1: Find where the problem actually is

 Where is the code spending time?
• Which code sections are even worth looking at?

 Where should it spend time?
• Have a (mental) model of your application

 Use overview experiments
 Identify bottlenecks for your application

• Which resource in the system is holding you back?
 Decide where to dig deeper

• Important resource AND worth optimizing AND unexpected behavior

 Pick the right tool or experiment in a tool
 Target the specific bottleneck
 Decide on instrumentation approach
 Decide on useful aggregation
 Understand impact on code perturbation

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 16

11/11/2018

 Step 1: Identify computational intensive parts
 Where am I spending my time?

• Modules/Libraries
• Loops
• Statements
• Functions

 Is the time spent in the computational kernels?
 Does this match my intuition?

 Impact of memory hierarchy
 Do I have excessive cache misses?
 How is my data locality?
 Impact of TLB misses?

 External resources
 Is my I/O efficient?
 Time spent in system libraries?

17

What to Look For: Sequential Runs

CPU

L1 Cache

L2 Cache

Main Memory

Shared L3 Cache

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

What to Look For: Shared Memory
 Shared memory model

 Single shared storage
 Accessible from any CPU

 Common programming models
 Explicit threads (e.g., POSIX threads)
 OpenMP

 Typical performance issues
 False cache sharing
 Excessive Synchronization
 Limited work per thread
 Threading overhead

 Complications: NUMA
 Memory locality critical
 Thread:Memory assignments

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 18

CPU

L1

L2 Cache

Main Memory

CPU

L1

CPUCPU

CPU CPU

Mem.

Mem.

Mem.

Mem.

11/11/2018

 Distributed Memory Model
 Sequential/shared memory nodes coupled by a network
 Only local memory access
 Data exchange using message passing (e.g., MPI)

 Typical performance issues
 Load imbalance; Processes waiting for data
 Large fraction of time on collective operations
 Network and I/O contention
 Non-optimal process placement & binding

19

What to Look For: Message Passing

Memory

Node

Memory

Node

Memory

Application

MPI Library

NIC

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

What’s Next
 Overview of Open|SpeedShop

 Help to understand demos and hands-on exercises

 Basic questions
 Where am I spending my time?
 How to understand the context of this information?

 Hardware/Resource utilization
 How to use hardware counters efficiently?
 How to turn this information into actionable insight?

 Next step beyond the computational core
 How well is my I/O doing?
 How well am I utilizing memory?
 How can I understand the performance on accelerators?

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 20

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 2
Emerging Performance Analysis models

11/11/2018

Emerging Performance Monitoring
 New approach to performance tracking

 Light weight but with broad collection abilities
 Broad but not Deep

 Why?
 Discovery – looking for a place to start
 Easy – less difficult to run and understand
 Comparison – High level across architectures

• Or compilers
• Or System environments, File systems, etc.

 Always on – Option to add to monitoring infrastructures

 Monitoring and Analysis
 Add to broader monitoring infrastructures that are collecting

other data from multiple sources and aggregated for analysis

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 22

11/11/2018How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 23

11/11/2018

High-level versus In-depth perf. tools
 High level performance analysis versus traditional in-

depth tools
 In depth tools give per function, per statement, per loop type

information
 High level tools give an overview, per execution view

 Use high level tools to get an understanding of
application performance – forensic approach

 Use In-depth tools to “home-in” on solving the issues
found by using the high level tools.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 24

11/11/2018

Lightweight and Monitoring Tool efforts
 TAU execution command– tau_exec

 MPI example - % mpirun -np 256 tau_exec ./a.out

 ARM Performance Reports - (originally Allinea)
 Lightweight Distributed Metric Service - LDMS (SNL)

 Provides capabilities for lightweight run-time collection of high-
fidelity data. Node level, system data.

 OSS – CBTF Summary – details later
 Caliper /SPOT (LLNL- in-development)

 Instrumented calipers, included library, on-going collection and
analysis via web page

 Monitoring
 LLNL – Sonar monitoring infrastructure
 LANL – Insight monitoring infrastructure

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 25

11/11/2018

Value of High-level Performance Analysis
 High-level view valuable to:

 Analysts (End Users)
 System Administrators
 System Architects
 Code Developers

 Analysts/Users
 Show load balance (min,max,average) across processes (mpi)

and/or threads (openMP)
 Hardware counters metrics can give insight into processor

instruction and cache usage
 Memory metrics can show highwater memory mark (see the

maximum memory resident in your program), total allocation
calls and size, and total free calls. Comparing total allocations to
total frees can give an indication of memory leaks.

 I/O metrics give insight to frequency of read/write calls and
total size of read/write calls.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 26

11/11/2018

Value of High-level Performance Analysis

 System Administrators
 Use continuous integration performance analysis to monitor

applications to see which ones are performing badly
 Monitor set of applications before and after system changes

 System Architects
 Use the information to extrapolate how new architecture

features would impact performance of hypothetical new
machine

• How to improve scalar performance?
• What happens if more vectorization could be done?
• Run the survey tool on multiple architectures and make projections

 Code Developers
 Analyze an application before and after source changes to it
 Decide what areas of the code need to have further

improvements
How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 27

11/11/2018

High-level Performance Analysis: O|SS
Open|SpeedShop’s cbtfsummary tool
 The summary experiment currently gathers high-level

performance metrics, such as:
 Time spent in MPI routines
 Time spent in OpenMP (idle time, barrier time, task time)
 Hardware counters (multiplexes HW counters)
 Time spent in I/O (breaks down read and write times and byte

totals)
 Memory information

• Allocation calls, bytes, and time
• Free calls and time
• PAPI dmem and statistics including high water mark
• rusage max rss

 rusage utime and stime

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 28

11/11/2018

High level Performance Analysis: O|SS
Open|SpeedShop’s cbtfsummary tool
 Usage: cbtfsummary “normal app run script”
 Outputs:
 Human readable report to stdout
 Human readable report to text file
 Composite csv file
 Directory structure containing per-thread of execution

csv files

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 29

11/11/2018

High-level Performance Analysis: O|SS
 cbtfsummary tool example:
setenv CBTF_MPI_IMPLEMENTATION mvapich2

setenv CBTF_CSVDATA_DIR ./rzgenie_lulesh2_n64_omp2_csvdata

cbtfsummary "srun -n 64 ./lulesh2.0 -p -i 90"

Processing csv files in ./rzgenie_lulesh2_n64_omp2_csvdata/lulesh2-overview-csvdata-1
Metrics for thread 0 in 64 ranks
metric name max min avg
implicit_task_time_seconds 2.290756 1.707665 1.970446
serial_time_seconds 3.323400 2.740352 3.070070
PAPI_TOT_INS 32141739510 26835045450 29373460884
PAPI_DP_OPS 6851778300 5937733304 6162486573
PAPI_LD_INS 10179972804 8494295326 9310108000
PAPI_VEC_DP 6064913156 5325306542 5511166403
PAPI_TOT_CYC 17585366336 16103836394 16816938221
allocation_calls 20208 19435 19795
allocation_bytes 2393954217 2281932664 2308348507
allocation_time_seconds 0.025247 0.009769 0.011933
total_time_seconds 5.372663 5.214180 5.265309
free_calls 20044 19288 19642
free_time_seconds 0.510833 0.271222 0.399044
io_total_time_seconds 0.005593 0.002904 0.004288
write_time_seconds 0.005573 0.002877 0.004256
write_bytes 450 180 337
dmem_size_kB 405080 345592 366302
dmem_heap_kB 159272 158968 161593
dmem_high_water_mark_kB 74532 72180 73242
dmem_shared_kB 10520 8428 9122
dmem_resident_kB 34132 31816 32665
stime_seconds 1.782871 1.247015 1.476539
utime_seconds 3.603105 3.281256 3.457614
maxrss_kB 74532 72180 73242
total_mpi_time_seconds 2.928412 2.251567 2.596778
…

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 30

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 3
Introduction into Tools and Open|SpeedShop

11/11/2018

Open|SpeedShop Tool Set
 Open Source Performance Analysis Tool Framework

 Most common performance analysis steps all in one tool
 Combines tracing and sampling techniques
 Extensible by plugins for data collection and representation
 Gathers and displays several types of performance information

 Flexible and Easy to use
 User access through:

GUI, Command Line, Python Scripting, convenience scripts

 Scalable Data Collection
 Instrumentation of unmodified application binaries
 New option for hierarchical online data aggregation

 Supports a wide range of systems
 Extensively used and tested on a variety of Linux clusters
 Cray, Blue Gene, ARM, Power 8, Intel Phi, GPU support

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 32

11/11/2018

Classifying Open|SpeedShop
 Offers both sampling and direct instrumentation

 Sampling for overview and hardware counter experiments
• Even and low overhead, overview information

 Direct instrumentation for more detailed experiments
• More in-depth information, but potentially bursty

 All instrumentation at link-time of runtime

 Multiple direct instrumentation options
 API level instrumentation (e.g., I/O or memory)
 Loop analysis based on binary instrumentation techniques
 Programming model specific instrumentation (e.g., MPI or OpenMP)

 Aggregation
 By default: aggregate profile data over time

• Example: intervals, functions, …
• Full traces possible for some experiments (e.g.. MPI), but costly

 For parallel experiments: by default aggregation over threads,
processes, …

• However, users can query per process/thread data

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 33

11/11/2018

srun –n4 –N1 smg2000 –n 65 65 65 osspcsamp “srun –n4 –N1 smg2000 –n 65 65 65”

http://www.openspeedshop.org/

Open|SpeedShop Workflow
srun –n4 –N1 smg2000 –n 65 65 65

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 34

11/11/2018

srun –n4 –N1 smg2000 –n 65 65 65 osspcsamp --offline “srun –n4 –N1 smg2000 –n 65 65 65” MPI Application

Post-mortemO|SS

http://www.openspeedshop.org/

Open|SpeedShop Workflow
srun –n4 –N1 smg2000 –n 65 65 65

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 35

11/11/2018

Alternative Interfaces
 Scripting language

 Immediate command interface
 O|SS interactive command line (CLI)

• openss -cli

 Python module

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 36

Experiment Commands
expView
expCompare
expStatus

List Commands
list –v exp
list –v hosts
list –v src

Session Commands
setBreak
openGui

import openss

my_filename=openss.FileList("myprog.a.out")
my_exptype=openss.ExpTypeList("pcsamp")
my_id=openss.expCreate(my_filename,my_exptype)

openss.expGo()

My_metric_list = openss.MetricList("exclusive")
my_viewtype = openss.ViewTypeList("pcsamp”)
result = openss.expView(my_id,my_viewtype,my_metric_list)

11/11/2018

Central Concept: Experiments
 Users pick experiments:

 What to measure and from which sources?
 How to select, view, and analyze the resulting data?

 Two main classes of performance data collection:
 Statistical Sampling

• Periodically interrupt execution and record location
• Useful to get an overview
• Low and uniform overhead

 Event Tracing
• Gather and store individual application events
• Provides detailed per event information
• Can lead to huge data volumes

 O|SS can be extended with additional experiments

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 37

11/11/2018

Sampling Experiments in O|SS
 PC Sampling (pcsamp)

 Record PC repeatedly at user defined time interval
 Low overhead overview of time distribution
 Good first step, lightweight overview

 Call Path Profiling (usertime)
 PC Sampling and Call stacks for each sample
 Provides inclusive and exclusive timing data
 Use to find hot call paths, caller and callee relationships

 Hardware Counters (hwc, hwctime, hwcsamp)
 Provides profile of hardware counter events like cache & TLB misses
 hwcsamp:

• Periodically sample to capture profile of the code against the chosen counter
• Default events are PAPI_TOT_INS and PAPI_TOT_CYC

 hwc, hwctime:
• Sample a hardware counter till a certain number of events (called threshold)

is recorded and get Call Stack
• Default event is PAPI_TOT_CYC

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 38

11/11/2018

Tracing Experiments in O|SS
 Input/Output Tracing (io, iot, iop)

 Record invocation of all POSIX I/O events
 Provides aggregate and individual timings
 Store function arguments and return code for each call (iot)
 Lightweight I/O profiling because not tracking individual call

details (iop)

 MPI Tracing (mpi, mpit, mpip)
 Record invocation of all MPI routines
 Provides aggregate and individual timings
 Store function arguments and return code for each call (mpit)
 Lightweight MPI profiling because not tracking individual call

details (mpip)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 39

11/11/2018

Tracing Experiments in O|SS
 Memory Tracing (mem)

 Tracks potential memory allocation call that is not later
destroyed (leak).

 Records any memory allocation event that set a new high-water
of allocated memory current thread or process.

 Creates an event for each unique call path to a traced memory
call and records:

• The total number of times this call path was followed
• The max allocation size
• The min allocation size
• The total allocation
• The total time spent in the call path
• The start time for the first call

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 40

11/11/2018

Additional Experiments in OSS/CBTF
 CUDA NVIDIA GPU Event Tracing (cuda)

 Record CUDA events, provides timeline and event timings
 Traces all NVIDIA CUDA kernel executions and the data transfers

between main memory and the GPU.
 Records the call sites, time spent, and data transfer sizes.

 POSIX thread tracing (pthreads)
 Record invocation of all POSIX thread events
 Provides aggregate and individual rank, thread, or process

timings

 OpenMP specific profiling/tracing (omptp)
 Report task idle, barrier, and barrier wait times per OpenMP

thread and attribute those times to the OpenMP parallel
regions.

41How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Performance Analysis in Parallel
 How to deal with concurrency?

 Any experiment can be applied to parallel application
• Important step: aggregation or selection of data

 Special experiments targeting parallelism/synchronization

 O|SS supports MPI and threaded codes
 Automatically applied to all tasks/threads
 Default views aggregate across all tasks/threads
 Data from individual tasks/threads available
 Thread support (incl. OpenMP) based on POSIX threads

 Specific parallel experiments (e.g., MPI)
 Wraps MPI calls and reports

• MPI routine time
• MPI routine parameter information

 The mpit experiment also stores function arguments and return
codes for each call

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 42

11/11/2018

How to Run a First Experiment in O|SS?
1. Picking the experiment
 What do I want to measure?
 We will start with pcsamp to get a first overview

2. Launching the application
 How do I control my application under O|SS?
 Enclose how you normally run your application in quotes
 osspcsamp “mpirun –np 4 smg2000 –n 50 50 50”

3. Storing the results
 O|SS will create a database
 Name: smg2000-pcsamp-0.openss

4. Exploring the gathered data
 How do I interpret the data?
 O|SS will print a default report
 Open the GUI to analyze data in detail (run: “openss”)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 43

11/11/2018

Example Run with Output
 osspcsamp “mpirun –np 4 smg2000 –n 50 50 50” (1/2)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 44

Bash>osspcsamp "mpirun -np 4 ./smg2000 -n 50 50 50"
[openss]: pcsamp experiment using the default sampling rate: "100".
Creating topology file for frontend host localhost
Generated topology file: ./cbtfAutoTopology
Running pcsamp collector.
Program: mpirun -np 4 ./smg2000 -n 50 50 50
Number of mrnet backends: 4
Topology file used: ./cbtfAutoTopology
executing mpi program: mpirun -np 4 cbtfrun --mpi --mrnet -c pcsamp ./smg2000 -n 50 50 50
Running with these driver parameters:
(nx, ny, nz) = (65, 65, 65)
…

<SMG native output>
…
Final Relative Residual Norm = 1.774415e-07
All Threads are finished.
default view for ./smg2000-pcsamp-0.openss
[openss]: The restored experiment identifier is: -x 1
Performance data spans 2.257689 seconds from 2016/11/09 13:33:33 to 2016/11/09 13:33:35

11/11/2018

Example Run with Output
 osspcsamp “mpirun –np 4 smg2000 –n 50 50 50” (2/2)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 45

Exclusive % of CPU Function (defining location)
CPU time

in
seconds.
2.850000 36.821705 hypre_SMGResidual (smg2000: smg_residual.c,152)
1.740000 22.480620 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
0.410000 5.297158 mca_btl_vader_check_fboxes (libmpi.so.12.0.2: btl_vader_fbox.h,184)
0.250000 3.229974 opal_progress (libopen-pal.so.13.0.2: opal_progress.c,151)
0.250000 3.229974 hypre_SemiInterp (smg2000: semi_interp.c,126)
0.190000 2.454780 pack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_pack.h,35)
0.190000 2.454780 unpack_predefined_data (libopen-pal.so.13.0.2: opal_datatype_unpack.h,34)
0.120000 1.550388 _int_malloc (libc-2.17.so)
0.100000 1.291990 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
0.100000 1.291990 opal_generic_simple_pack (libopen-pal.so.13.0.2: opal_datatype_pack.c,274)
0.090000 1.162791 __memcpy_ssse3_back (libc-2.17.so)
0.080000 1.033592 _int_free (libc-2.17.so)
0.080000 1.033592 opal_generic_simple_unpack (libopen-pal.so.13.0.2:

opal_datatype_unpack.c,263)

 View with GUI: openss –f smg2000-pcsamp-0.openss

11/11/2018

Default Output Report View

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 46

Toolbar to switch
Views

Graphical Representation

Performance Data
Default view: by Function

(Data is sum from all processes
and threads)

Select “Functions”, click D-icon

11/11/2018

Statement Report Output View

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 47

Performance Data
View Choice: Statements
Select “statements, click D-icon

Statement in Program that
took the most time

11/11/2018

Associate Source & Performance Data

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 48

Double click to open
source window

Use window controls to
split/arrange windows

Selected performance
data point

11/11/2018

Library (LinkedObject) View

49

Libraries in the application

Select LinkedObject
View type and Click

on D-icon

Shows time spent in
libraries. Can indicate

imbalance.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Loop View

50

Statement number of start
of loop.

Select Loops
View type and Click

on D-icon

Shows time spent in loops.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Open|SpeedShop Basics

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 51

 Place the way you run your application normally in quotes
and pass it as an argument to osspcsamp, or any of the
other experiment convenience scripts: ossio, ossmpi, etc.
 osspcsamp “srun –N 8 –n 64 ./mpi_application app_args”

 Open|SpeedShop sends a summary profile to stdout
 Open|SpeedShop creates a database file
 Display alternative views of the data with the GUI via:

 openss –f <database file>

 Display alternative views of the data with the CLI via:
 openss –cli –f <database file>

 Start with pcsamp for overview of performance
 Then, focus on performance issues with other

experiments

11/11/2018

Hands-on Section 2: Basic Sampling Experiments

 How to log into the tutorial computer system
 Login information will be distributed at this time.
 The “exercises” directory will be in your $HOME directory.
 Also can find these exercises at:

• www.openspeedshop.org/downloads
 Top-level directory has file: EXERCISES that lists all the tutorial

exercises and README file has general information.
 A “docs” directory in your $HOME has OpenSpeedShop

documentation and the updated tutorial slides.

 Exercise is in the exercise directory:
 $HOME/exercises/loop_check

 Consult README file in each of the directories for the
instructions/guidance

 IBM Power system from CreativeC (Greg Scantlen)
How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 52

http://www.openspeedshop.org/downloads

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 4
Basic timing experiments and their Pros/Cons

11/11/2018

Identifying Critical Regions
Flat Profile Overview
 Profiles show computationally intensive code regions

 First views: Time spent per functions or per statements

 Questions:
 Are those functions/statements expected?
 Do they match the computational kernels?
 Any runtime functions taking a lot of time?

 Identify bottleneck components
 View the profile aggregated by shared objects
 Correct/expected modules?
 Impact of support and runtime libraries

54How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Adding Context through Stack Traces
Function

A

55How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

Function
B

Function
C

Function
D

Function
E

 Missing information in flat
profiles
 Distinguish routines called from

multiple callers
 Understand the call invocation

history
 Context for performance data

 Critical technique: Stack traces
 Gather stack trace for each

performance sample
 Aggregate only samples with

equal trace

 User perspective:
 Butterfly views

(caller/callee relationships)
 Hot call paths

• Paths through application that
take most time

11/11/2018

Inclusive vs. Exclusive Timing
Function

A

56How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

Function
B

Function
C

Function
D

Function
E

 Stack traces enable
calculation of
inclusive/exclusive times
 Time spent inside a function

only (exclusive)
• See: Function B

 Time spent inside a function and
its children (inclusive)

• See Function C and children

 Implementation similar to flat
profiles
 Sample PC information
 Additionally collect call stack

information at every sample

 Tradeoffs
 Pro: Obtain additional context

information
 Con: Higher overhead/lower

sampling rate

Inclusive Time for C

Exclusive Time for B

11/11/2018

Call path profiling & Comparisons
 Call Path Profiling

 Take a sample: address inside a function
 Call stack: series of program counter addresses (PCs)
 Unwinding the stack is walking through those address and

recording that information for symbol resolution later.
 Leaf function is at the end of the call stack list

 Open|SpeedShop: experiment called usertime
 Time spent inside a routine vs. its children
 Key view: butterfly

 Comparisons
 Between experiments to study improvements/changes
 Between ranks/threads to understand differences/outliers

57How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Interpreting Call Context Data
 Inclusive versus exclusive times

 If similar: child executions are insignificant
• May not be useful to profile below this layer

 If inclusive time significantly greater than exclusive time:
• Focus attention to the execution times of the children

 Hotpath analysis
 Which paths takes the most time?
 Path time might be ok/expected, but could point to a problem

 Butterfly analysis (similar to gprof)
 Should be done on “suspicious” functions

• Functions with large execution time
• Functions with large difference between inclusive and exclusive time
• Functions of interest
• Functions that “take unexpectedly long”
• …

 Shows split of time in callees and callers

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 58

11/11/2018

Inclusive and Exclusive Time Profiles: Usertime

Basic syntax:
ossusertime “how you run your executable normally”

Examples:
ossusertime “smg2000 –n 50 50 50”
ossusertime “smg2000 –n 50 50 50” low

 Parameters
Sampling frequency (samples per second)
Alternative parameter: high (70) | low (18) | default (35)

Recommendation: compile code with –g to get statements!

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 59

11/11/2018

Reading Inclusive/Exclusive Timings
 Default View

 Similar to pcsamp view from first example
 Calculates inclusive versus exclusive times

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 60

Exclusive
Time

Inclusive
Time

11/11/2018

Stack Trace Views: Hot Call Path

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 61

Access to call paths:
• All call paths (C+)
• All call paths for

selected function (C)

Hot Call Path

11/11/2018

Stack Trace Views: Butterfly View
 Similar to well known “gprof” tool

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 62

Pivot routine
“hypre_SMGSolve”

Callers of
“hypre_SMGSolve”

Callees of
“hypre_SMGSolve”

11/11/2018

Comparing Performance Data
 Key functionality for any performance analysis

 Absolute numbers often don’t help
 Need some kind of baseline / number to compare against

 Typical examples
 Before/after optimization
 Different configurations or inputs
 Different ranks, processes or threads

 Very limited support in most tools
 Manual operation after multiple runs
 Requires lining up profile data
 Even harder for traces

 Open|SpeedShop has support to line up profiles
 Perform multiple experiments and create multiple databases
 Script to load all experiments and create multiple columns

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 63

11/11/2018

Comparing Performance Data in O|SS
 Convenience Script: osscompare

 Compares Open|SpeedShop up to 8 databases to each other
• Syntax: osscompare “db1.openss,db2.openss,…” [options]
• osscompare man page has more details

 Produces side-by-side comparison listing
 Data metric option parameter:

• Compare based on: time, percent, a hwc counter, etc.
 Limit the number of lines by “rows=nn” option
 Specify the: viewtype=[functions|statements|linkedobjects]

• Control the view granularity.
– Compare based on the function, statement, or library level.
– By default the compare will be done comparing the performance of functions

in each of the databases.
– If statements option is specified then all the comparisons will be made by

looking at the performance of each statement in all the databases that are
specified.

– Similar for libraries, if linkedobject is selected as the viewtype parameter.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 64

11/11/2018

Comparison Report in O|SS
osscompare "smg2000-pcsamp.openss,smg2000-pcsamp-1.openss”

openss]: Legend: -c 2 represents smg2000-pcsamp.openss

[openss]: Legend: -c 4 represents smg2000-pcsamp-1.openss

-c 2, Exclusive CPU -c 4, Exclusive CPU Function (defining location)

time in seconds. time in seconds.

3.870000000 3.630000000 hypre_SMGResidual (smg2000: smg_residual.c,152)

2.610000000 2.860000000 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)

2.030000000 0.150000000 opal_progress (libopen-pal.so.0.0.0)

1.330000000 0.100000000 mca_btl_sm_component_progress (libmpi.so.0.0.2:
topo_unity_component.c,0)

0.280000000 0.210000000 hypre_SemiInterp (smg2000: semi_interp.c,126)

0.280000000 0.040000000 mca_pml_ob1_progress (libmpi.so.0.0.2:
topo_unity_component.c,0)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 65

11/11/2018

Summary / Timing analysis
 Typical starting point:

 Flat profile
 Aggregated information on where time is spent in a code
 Low and uniform overhead when implemented as sampling

 Adding context
 From where was a routine called, which routine did it call
 Enables the calculation of exclusive and inclusive timing
 Technique: stack traces combined with sampling

 Key analysis options
 Hot call paths that contains most execution time
 Butterfly view to show relations to parents/children

 Comparative analysis
 Absolute numbers often carry little meaning
 Need the correct baseline, then compare against that

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 66

11/11/2018

Hands-on Section 3: Basic Sampling Experiments

 Basic sampling application exercise
 Also comparing runs to each other

 Exercises are in the exercise directory:
 $HOME/exercises/seq_lulesh/test

 Consult README file in each of the directories for the
instructions/guidance

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 67

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 5
Analysis of parallel codes:

MPI, OpenMP, POSIX threads

11/11/2018

Parallel Application Performance Challenges

 Architectures are Complex and Evolving Rapidly
 Changing multicore processor designs
 Emergence of accelerators (GPGPU, MIC, etc.)
 Multi-level memory hierarchy
 I/O storage sub-systems
 Increasing scale: number of processors, accelerators

 Parallel processing adds more performance factors
 MPI communication time versus computation time
 Threading synchronization time versus computation time
 CPU time versus accelerator transfer and startup time tradeoffs
 I/O device multi-process contention issues
 Efficient memory referencing across processes/threads
 Changes in application performance due to adapting to new

architectures

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 69

11/11/2018

Parallel Execution Goals

 Ideal scenario
 Efficient threading when using pthreads or OpenMP

• All threads are assigned work that can execute concurrently
• Synchronization times are low.

 Load balance for parallel jobs using MPI
• All MPI ranks doing same amount of work, so no MPI rank waits

 Hybrid application with both MPI and threads
• Limited amount of serial work per MPI process

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 70

* Diagram from Performance Metrics for Parallel Programs: http://web.info.uvt.ro/~petcu/calcul/

11/11/2018

Parallel Execution Goals
 What causes the ideal goal to fail?

 For MPI:
• Equal work was not given to each rank
• There is an out of balance communication pattern occurring
• The application can’t scale with the number of ranks being used

 For threaded applications:
• One or more threads doing more work than others and subsequently

causing other threads to wait.

 For hybrid applications:
• Too much time spent between parallel/threaded regions

 For multicore processors:
• Remote memory references from the non-uniform access shared

memory can cause sub-par performance

 For accelerators:
• Data transfers to the accelerator kernel might take more time than the

speed-up for the accelerator operations on that data - also - is the CPU
fully utilized?

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 71

11/11/2018

Parallel Application Analysis Techniques
What steps can we take to analyze parallel jobs?
 Get an overview of where the time is being spent.

• Use sampling to get a low overhead overview of time spent
– Program counter, call stack, hardware counter

 Examine overview information for all ranks, threads, …
• Analyze load balance information:

– Min, max, and average values across the ranks and/or threads
– Look at this information per library as well

o Too much time in MPI could indicate load balance issue.
• Use above info to determine if the program is well balanced

– Are the minimum, maximum values widely different? If so:
o Probably have load imbalance and need to look for the cause of

performance lost because of the imbalance.
o Not all ranks or threads doing the same amount of work
o Too much waiting at barriers or synchronous global operations

like MPI_Allreduce

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 72

11/11/2018

pcsamp Default View: NPB: LU
 Default Aggregated pcsamp Experiment View

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 73

Aggregated Results

Information Displays
Experiment
Metadata

11/11/2018

Load Balance View: NPB: LU
 Load Balance View based on functions (pcsamp)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 74

MPI library showing up
high in the list

Max time in rank 255

With load balance view we are
looking for performance number
out of norm of what is expected,

such as relatively
large differences between min, max

and/or average values.

11/11/2018

Default Linked Object View: NPB: LU
 Default Aggregated View based on Linked Objects (libraries)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 75

NOTE: Look at the MPI
library time to get an idea of

the MPI overhead.

Linked Object View
(library view)

Select “Linked Objects”
Click D-icon

11/11/2018

Parallel Execution Analysis Techniques
 If imbalance detected, then what? How do you find

the cause?
 Look at library time distribution across all the ranks,

threads
• Is the MPI library taking a disproportionate amount of time?

 If threaded (e.g. OpenMP), then look at the balance of time
across worker threads.

• For OpenMP look at idleness, barrier time, in addition to task times
 If MPI application, use a tool that provides per MPI

function call timings
• Can look at MPI function time distributions

– In particular, MPI_Waitall
– Then look at the call path to MPI_Waitall

• Also, can look source code relative to
– MPI rank or particular pthread that is involved.
– Is there any special processing for the particular rank or thread
– Examine the call paths and check code along path

 Use Cluster Analysis type feature, if tool has this capability
• Cluster analysis can categorize threads or ranks that have similar

performance into groups identifying the outlier rank or thread

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 76

11/11/2018

Hot Call Paths View (CLI): NPB: LU
 Hot Call Paths for MPI_Wait for rank 255 only
openss –cli –f lu-mpi-256.openss

openss>>expview -r 255 -vcalltrees,fullstack -f MPI_Wait

Exclusive MPI Call % of Total Number of Calls Call Stack Function (defining location)
Time(ms)

>>>>main (lu.C.256)

>>>>> @ 140 in MAIN__ (lu.C.256: lu.f,46)

>>>>>> @ 180 in ssor_ (lu.C.256: ssor.f,4)

>>>>>>> @ 213 in rhs_ (lu.C.256: rhs.f,5)

>>>>>>>> @ 224 in exchange_3_ (lu.C.256: exchange_3.f,5)

>>>>>>>>> @ 893 in mpi_wait_ (mpi-mvapich-rt-offline.so: wrappers-fortran.c,893)

>>>>>>>>>> @ 889 in mpi_wait (mpi-mvapich-rt-offline.so: wrappers-fortran.c,885)
6010.978000 3.878405 250 >>>>>>>>>>> @ 51 in MPI_Wait (libmpich.so.1.0: wait.c,51)

>>>>main (lu.C.256)
>>>>> @ 140 in MAIN__ (lu.C.256: lu.f,46)

>>>>>> @ 180 in ssor_ (lu.C.256: ssor.f,4)

>>>>>>> @ 64 in rhs_ (lu.C.256: rhs.f,5)

>>>>>>>> @ 88 in exchange_3_ (lu.C.256: exchange_3.f,5)

>>>>>>>>> @ 893 in mpi_wait_ (mpi-mvapich-rt-offline.so: wrappers-fortran.c,893)

>>>>>>>>>> @ 889 in mpi_wait (mpi-mvapich-rt-offline.so: wrappers-fortran.c,885)
2798.770000 1.805823 250 >>>>>>>>>>> @ 51 in MPI_Wait (libmpich.so.1.0: wait.c,51)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 77

Most expensive call
path to MPI_Wait

Show all call paths
involving MPI_Wait

for rank 255 only

11/11/2018

Identifying Load Imbalance With O|SS
 Get overview of application

 Run a lightweight experiment to verify performance expectations
• pcsamp, usertime, hwc

 Use load balance view on pcsamp, usertime, hwc
 Look for performance values outside of norm

• Somewhat large difference for the min, max, average values
• If the MPI libraries are showing up in the load balance for pcsamp, then do

an MPI specific experiment

 Use load balance view on MPI experiment
 Look for performance values outside of norm

• Somewhat large difference for the min, max, average values
 Focus on the MPI_Functions to find potential problems

 Use load balance view on OpenMP experiment (omptp)
 Can also use expcompare across OpenMP threads

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 78

11/11/2018

Link. Obj. Load Balance: Using NPB: LU
 Load Balance View based on Linked Objects (libraries)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 79

Rank 255 has maximum
MPI library time value
& minimum LU time

11/11/2018

Using Cluster Analysis in O|SS
 Can use with pcsamp, usertime, hwc

 Will group like performing ranks/threads into groups
 Groups may identify outlier groups of ranks/threads
 Can examine the performance of a member of the outlier group
 Can compare that member with member of acceptable

performing group

 Can use with mpi, mpit, mpip
 Same functionality as above
 But, now focuses on the performance of individual

MPI_Functions.
 Key functions are MPI_Wait, MPI_WaitAll
 Can look at call paths to the key functions to analyze why they

are being called to find performance issues

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 80

11/11/2018

Link. Obj. Cluster Analysis: NPB: LU
 Cluster Analysis View based on Linked Objects (libraries)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 81

In Cluster Analysis results
Rank 255 showing up as an

outlier.

11/11/2018

MPI/OpenMP Specific Experiments
 MPI specific experiments

 Record all MPI call invocations
 MPI functions are profiled (ossmpip)

• Show call paths for each MPI unique call path, but individual call
information is not recorded.

• Less overhead than mpi, mpit.
 MPI functions are traced (ossmpi)

• Record call times and call paths for each event
 MPI functions are traced with details (ossmpit)

• Record call times, call paths and argument info for each event

 OpenMP specific experiment (ossomptp)
 Uses OMPT API to record task time, idleness, barrier, and wait

barrier per OpenMP parallel region
• Shows load balance for time
• expcompare time across all threads

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 82

11/11/2018

MPI Tracing Results: Default View
 Default Aggregated MPI Experiment View

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 83

Information Icon
Displays Experiment

Metadata

Aggregated Results

11/11/2018

Using OMPTP experiment in O|SS
 The following three CLI examples show the most important ways

to view OMPTP experiment data.
 Default view shows the timing of the parallel regions, idle, barrier,

and wait barrier as an aggregate across all threads
openss -cli -f ./matmult-omptp-0.openss
openss>>expview

Exclusive Inclusive % of Function (defining location)
times in times in Total
seconds. seconds. Exclusive

CPU Time
44.638794 45.255843 93.499987 compute._omp_fn.1 (matmult: matmult.c,68)
1.744841 1.775104 3.654726 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
0.701720 0.701726 1.469817 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
0.652438 0.652438 1.366591 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)
0.004206 0.009359 0.008810 initialize._omp_fn.0 (matmult: matmult.c,32)
0.000032 0.000032 0.000068 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)
0.000000 0.000000 0.000001 WAIT_BARRIER (omptp-collector-monitor-mrnet.so: collector.c,602)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 84

11/11/2018

Using OMPTP experiment in O|SS
 This example shows the comparison of exclusive time across all

threads for the parallel regions, idle, barrier, and wait barrier
openss>>expcompare -mtime -t0:4

-t 0, -t 2, -t 3, -t 4, Function (defining location)
Exclusive Exclusive Exclusive Exclusive
times in times in times in times in
seconds. seconds. seconds. seconds.
11.313892 11.081346 11.313889 10.929668 compute._omp_fn.1 (matmult: matmult.c,68)
0.443713 0.430553 0.429635 0.440940 compute_interchange._omp_fn.3 (matmult: matmult.c,118)
0.253632 0.213238 0.164875 0.069975 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
0.001047 0.001100 0.001095 0.000964 initialize._omp_fn.0 (matmult: matmult.c,32)
0.000008 0.000008 0.000006 0.000010 BARRIER (omptp-collector-monitor-mrnet.so: collector.c,587)
0.000000 0.000000 0.000000 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so: collector.c,602)
0.000000 0.247592 0.015956 0.388890 IDLE (omptp-collector-monitor-mrnet.so: collector.c,573)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 85

11/11/2018

Using OMPTP experiment in O|SS
 This example shows the load balance of time across all threads for

the parallel regions, idle, barrier, and wait barrier

openss>>expview -mloadbalance

Max OpenMp Min OpenMp Average Function (defining location)
Exclusive ThreadId Exclusive ThreadId Exclusive

Time Across of Max Time Across of Min Time Across
OpenMp OpenMp

ThreadIds(s) ThreadIds(s) ThreadIds(s)

11.313892 0 10.929668 4 11.159699 compute._omp_fn.1 (matmult: matmult.c,68)
0.443713 0 0.429635 3 0.436210 compute_interchange._omp_fn.3 (matmult: matmult.c,118)

0.388890 4 0.015956 3 0.217479 IDLE (omptp-collector-monitor-mrnet.so:
collector.c,573)

0.253632 0 0.069975 4 0.175430 compute_triangular._omp_fn.2 (matmult: matmult.c,95)
0.001100 2 0.000964 4 0.001052 initialize._omp_fn.0 (matmult: matmult.c,32)
0.000010 4 0.000006 3 0.000008 BARRIER (omptp-collector-monitor-mrnet.so:

collector.c,587)
0.000000 0 0.000000 0 0.000000 WAIT_BARRIER (omptp-collector-monitor-mrnet.so:

collector.c,602)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 86

11/11/2018

Summary / Parallel Bottlenecks
 Open|SpeedShop supports MPI, OpenMP, and

threaded applications (including hybrid)
 Works with multiple MPI implementations

 Parallel experiments
 Apply the sequential O|SS collectors to all nodes
 Specialized MPI profiling and tracing experiments
 Specialized OpenMP profiling experiment

 Result Viewing
 Results are aggregated across ranks/processes/threads
 Optionally: select individual ranks/threads or groups
 Specialized views:

• Load balance view
• Cluster analysis

 Use features to isolate sections of problem code
How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 87

11/11/2018

Hands-on Section 4: Going Parallel - MPI

 Parallel related application exercise (MPI)
 More information at the tutorial

 Exercises are in the exercise directory:
 $HOME/exercises/mpi_nbody
 Supplemental:

• $HOME/exercises/smg2000/test

 Consult README file in each of the directories for the
instructions/guidance

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 88

11/11/2018

Hands-on Section 4: Going Parallel - threading

 Parallel related parallel application exercise (threading)
 Exercises are in the exercise directory:

 $HOME/exercises/matmul
 Supplemental:

• $HOME/exercises/lulesh2.0.3

 Parallel related application exercise (MPI)
 Exercises are in the exercise directory:

 $HOME/exercises/mpi_nbody

 Consult README file in each of the directories for the
instructions/guidance

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 89

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 6
Advanced analysis: Hardware Counter Experiments

11/11/2018

Identify architectural impact on code inefficiencies

 Timing information shows where you spend your time
 Hot functions / statements / libraries
 Hot call paths

 BUT: It doesn’t show you why
 Are the computationally intensive parts efficient?
 Are the processor architectural components working optimally?

 Answer can be very platform dependent
 Bottlenecks may differ
 Cause of missing performance portability
 Need to tune to architectural parameters

 Next: Investigate hardware/application interaction
 Efficient use of hardware resources or Micro-architectural

tuning
 Architectural units (on/off chip) that are stressed

91How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Good Primary Focus: Efficient movement of data

 Modern memory systems are complex
 Deep hierarchies
 Explicitly managed memory
 NUMA behavior
 Streaming/Prefetching

 Key to performance: Data locality and Concurrency
 Accessing the same data repeatedly(Temporal)
 Accessing neighboring data(Spatial)
 Effective/parallel use of cores

 Information to look for
 Load/Store Latencies
 Prefetch efficiency
 Cache miss rate at all levels
 TLB miss rates
 NUMA overheads

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 92

Data Location Access Latency, ns (Sandy Bridge, 2.6GHZ)

L1 1.2

L2 3.5

L3 6.5

DRAM 28

11/11/2018

Another important focus: Efficient Vectorization
 Newer processors have wide vector registers

 Intel Xeon 2670,Sandy Bridge: 256 bits floating point registers, AVX (8 Real
/ 4 Double)

 Intel Xeon Phi,Knights Corner: 512 bits(16 Real / 8 Double)
 Intel Haswell - 256 bits Integer Registers, AVX2 : FMA (2X the peak flops)

 Key to performance: Vectorization
 Compiler Vectorization
 Use of ‘intrinsics’
 Use of Pragmas to help the compiler
 Assembly code

 Analysis Options
 Compiler vectorization report
 Look at assembly code
 Measure performance with PAPI counters

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 93

Going from Scalar to Intel® AVX can provide up to 8x faster performance

11/11/2018

Hardware Performance Counters
 Architectural Features

 Typically/Mostly packaged inside the CPU
 Count hardware events transparently without overhead

 Newer platforms also provide system counters
 Network cards and switches
 Environmental sensors

 Drawbacks
 Availability differs between platform & processors
 Slight semantic differences between platforms
 In some cases : requires privileged access & kernel patches

 Recommended: Access through PAPI
 API for tools + simple runtime tools
 Abstractions for system specific layers
 More information: http://icl.cs.utk.edu/papi/

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 94

11/11/2018

The O|SS HWC Experiments
 Provides access to hardware counters

 Implemented on top of PAPI
 Access to PAPI and native counters
 Examples: cache misses, TLB misses, bus accesses

 Basic model 1: Timer Based Sampling: HWCsamp
 Samples at set sampling rate for the chosen event
 Supports multiple counters
 Lower statistical accuracy
 Can be used to estimate good threshold for hwc/hwctime

 Basic model 2: Thresholding: HWC and HWCtime
 User selects one counter
 Run until a fixed number of events have been reached
 Take PC sample at that location

• HWCtime also records stacktrace
 Reset number of events
 Ideal number of events (threshold) depends on application

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 95

11/11/2018

Examples of Typical Counters (Xeon E5-2670)

Note: Threshold indications are just rough guidance and depend on the application.

Note: counters platform dependent (use papi_avail& papi_native_avail)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 96

PAPI Name Description Threshold

PAPI_L1_DCM L1 data cache misses high

PAPI_L2_DCM L2 data cache misses high/medium

PAPI_L3_TCM L3 cache misses high

PAPI_TOT_INS Instructions completed high

PAPI_STL_ICY Cycles with no instruction issue high/medium

PAPI_BR_MSP Miss-predicted branches medium/low

PAPI_DP_OPS Number of 64-Bit floating point Vector OPS high

PAPI_LD_INS Number of load instructions high

PAPI_VEC_DP Number of vector/SIMD instructions – 64Bit high

PAPI_BR_INS Number of branch instructions low

PAPI_TLB_TL Number of TLB misses low

11/11/2018

Suggestions to Manage Complexity
 The number of PAPI counters and their use can be

overwhelming; Some guidance here with a few “Metric-
Ratios”.
 Ratios derived from a combination of hardware events can

sometimes provide more useful information than raw metrics

 Develop the ability to interpret Metric-Ratios with a
focus on understanding:
 Instructions per cycle or cycles per instruction
 Floating point / Vectorization efficiency
 Cache behaviors; Long latency instruction impact
 Branch mispredictions
 Memory and resource access patterns
 Pipeline stalls

 This presentation will illustrate with some examples of
the use of Metric-Ratios

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 97

11/11/2018

How to use OSS HWCsamp experiment
 osshwcsamp “<command>< args>” [default

|<PAPI_event_list>|<sampling_rate>]
 Sequential job example:

• osshwcsamp “smg2000”
 Parallel job example:

• osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50”
PAPI_L1_DCM,PAPI_L1_TCA 50

 default events: PAPI_TOT_CYC and PAPI_TOT_INS
 default sampling_rate: 100
 <PAPI_event_list>: Comma separated PAPI event list

(Maximum of 6 events that can be combined)
 <sampling_rate>:Integer value sampling rate
 Use event count values to guide selection of thresholds

for HWC, HWCtime experiments for deeper analysis

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 98

11/11/2018

Selecting the Counters & Sampling Rate
 For osshwcsamp, Open|SpeedShop supports …

 Derived and Non derived PAPI presets
• All derived and non derived events reported by “papi_avail”
• Also reported by running “osshwcsamp” with no arguments
• Ability to sample up to six (6) counters at one time; before use test with

– papi_event_chooser PRESET <list of events>
• If a counter does not appear in the output, there may be a conflict in the

hardware counters
 All native events

• Architecture specific (incl. naming)
• Names listed in the PAPI documentation
• Native events reported by “papi_native_avail”

 Sampling rate depends on application
 Overhead vs. Accuracy

• Lower sampling rate causes less samples

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 99

11/11/2018

Useful Metric-Ratio 1: IPC
 Instructions Per Cycle(IPC) also referred to as

Computational Intensity
 IPC= PAPI_TOT_INS/PAPI_TOT_CYCLES

 Data from single-core Xeon E5-2670, Sandy Bridge

 In the table below compiler optimization -O1 used to
bring out differences in IPC based on stride used with
different loop order;

 If you use –O2 for this simple case compiler does the
right transformations, permuting loop order and
vectorizing to yield IPC = 3.594 (jki order); This
improves access to memory through cache.

 Importance of stride through the data is illustrated
with this simple example; Compiler may not always
do the needed optimization. Use IPC values from
functions and loops to understand efficiency of data
access through your data structures.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 100

Metric IJK IKJ JIK JKI KIJ KJI MATMUL DGEMM

PAPI_TOT_INS 8.012E+09 9.011E+09 8.011E+09 9.01E+09 9.01E+09 9.011E+09 9.016E+09 7.405E+08

PAPI_TOT_CYC 2.42E+10 5.615E+10 2.423E+10 2.507E+09 5.612E+10 2.61E+09 2.601E+09 2.859E+08

IPC 0.331 0.160 0.331 3.594 0.161 3.452 3.466 2.590
MFLOPS 272 117 271 2625 117 2525 2532 19233 (93% peak)

 Example matrix multiply;
Triple do loop;
(n1=n2=n3=1000)

 code for loop order ‘ijk’; All
vectors ‘double’

do i = 1, n1
do j = 1, n3
do k = 1, n2
a(i,j) = a(i,j) + b(i,k) * c(k,j)

end do
end do

end do

11/11/2018

BLAS Operations Illustrate impact of moving data
A, B, C = nxn Matrices; x,y = nx1 Vectors; k = Scaler

Level Operation # Memory
Refs or Ops

Flops Flops/Ops Comments
on
Flops/Ops

1 y = kx + y 3n 2n 2/3 Achieved in
Benchmarks

2 y = Ax + y n2 2n2 2 Achieved in
Benchmarks

3 C = AB + C 4n2 2n3 n/2 Exceeds HW
MAX

Use these Flops/Ops to understand how sections of your code relate to
simple memory access patterns as typified by these BLAS operations

101How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

Useful Metric-Ratio 2: FloatOps/Cycle
 Traditionally PAPI_FP_INS/PAPI_TOT_CYC used to evaluate relative floating point density

 For a number of reasons measuring and analyzing floating point performance on Intel Sandy Bridge and Ivy bridge must be
done with care. See PAPI web site for full discussion. The reasons are: instruction mix - scalar instructions + vector (AVX, SSE)
packed instructions, hyperthreading, turbo-mode and speculative execution.

 The floating point counters have been disabled in the newer Intel Haswell cpu architecture
 On Sandy Bridge and Ivy Bridge PAPI_FP_INS is no longer an appropriate counter if loops are vectorized
 No single PAPI metric captures all floating point operations

 We provide some guidance with useful PAPI Preset counters. Data from single-core Xeon E5-2670,
Sandy Bridge. Double precision array operations for Blas1(daxpy), Blas2(dgemv) and
Blas3(dgemm) are benchmarked. Matrix size=nxn; vector size=nx1 . Data array sizes are picked to
force operations from DRAM memory

 Table below shows measured PAPI counter data for a few counters and compares the measured
FLOP/Ops against theoretical expectations.

 PAPI_DP_OPS and PAPI_VEC_DP give similar values and these counter values correlate well with
expected floating point operation counts for double precision.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 102

Blas Operation n

Thererical
mem refs or

Ops
Theoretical

FLOP
Theoretical
FLOP/Ops

wall time,
secs TOT_CYC TOT_INS FP_INS LD_INS SR_INS DP_OPS

PAPI
GFLOPS

PAPI
FLOP/Ops

daxpy 2.50E+07 7.5E+07 5.0E+07 0.67 0.03 1.04E+08 5.20E+07 11.52 2.50E+07 1.25E+07 5.01E+07 1.56 0.668

dgemv 1.00E+04 1.0E+08 2.0E+08 2 0.06073 2.16E+08 1.69E+08 29.12 6.25E+07 1.25E+07 2.36E+08 3.89 1.57557985

dgemm 1.00E+04 4.00E+08 2E+12 5000.00 80.937 2.67E+11 7.33E+11 7.2 1.12E+11 1.38E+09 2.01E+12 24.80 8.83518225

11/11/2018

For Intel Haswell FloatOps not available: Use IPC or CPI

 We again provide some guidance with data from a single-core of a Haswell
Processor (Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz)

 Blas1, Blas2 and Blas3 kernels as in the previous slide are benchmarked.
Matrix size=nxn; vector size=nx1 . Data array sizes are picked to force
operations from DRAM memory

 Table below shows measured PAPI counter data for a few counters and
metric ratio IPC

 When operating at peak performance, Haswell can retire 4 micro-ops/cycle

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 103

n

Thererical
mem refs
or Ops

Theoretica
l FLOP

Theoretical
FLOP/Ops

wall
time,
secs TOT_CYC TOT_INS IPC CPI LD_INS SR_INS GFLOPS FLOP/mem-Ops

2.50E+07 7.50E+07 5.00E+07 0.67 3.24E-02 1.17E+08 6.25E+07 0.54 1.87 3.13E+07 1.25E+07 1.53932 0.57

1.00E+04 1.00E+08 2.00E+08 2 6.11E-02 2.2E+08 2.06E+08 0.94 1.06 7.81E+07 1.25E+07 3.272 1.10

1.00E+04 4.00E+08 2.00E+12 5000 41.8546 1.38E+11 4.65E+11 3.36 0.30 1.9E+11 1.23E+09 47.7655 5.23

11/11/2018

hwcsamp with miniFE (see mantevo.org)
 osshwcsamp “mpiexec –n 72 miniFE.X –nx 614 –ny 614 –nz 614” PAPI_DP_OPS,PAPI_L1_DCM,PAPI_TOT_CYC,PAPI_TOT_INS

 openss –f miniFE.x-hwcsamp.openss

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 104

Also have pcsamp
information

Up to six event can be
displayed. Here we have 4.

11/11/2018

Viewing hwcsamp Data in CLI
openss -cli -f miniFE.x-hwcsamp.openss

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 105

11/11/2018

Viewing Data in CLI
Selections of CLI commands used to view the data:

expview -v linkedobjects
expview –m loadbalance
expview –v statements hwcsamp<number>
Example to show top 10 statements:

• expview –v statements hwcsamp10
expview –v calltrees,fullstack usertime<number>
expcompare – r 1 –r 2 –m time (compares rank 1 to

rank 2 for metric equal time)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 106

11/11/2018

Deeper Analysis with HWC and HWCtime

 osshwc[time] “<command> < args>” [default |
<PAPI_event> | <PAPI threshold> | <PAPI_event><PAPI
threshold>]
 Sequential job example:

• osshwc[time] “smg2000 –n 50 50 50” PAPI_FP_OPS 50000
 Parallel job example:

• osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50”

 default: event (PAPI_TOT_CYC), threshold (10000000)
 <PAPI_event>: PAPI event name
 <PAPI threshold>: PAPI integer threshold
 NOTE: If the output is empty, try lowering the

<threshold> value. There may not have been enough PAPI
event occurrences to record and present

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 107

11/11/2018

Viewing hwc Data
 hwc default view: Counter = Instruction Cache Misses

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 108

Flat hardware counter profile
of a single hardware counter

event.
Exclusive counts only

11/11/2018

Viewing hwctime Data
hwctime default view: Counter = L1 Data Cache Misses

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 109

Calling context hardware
counter profile of a single
hardware counter event.

Exclusive/Inclusive counts

11/11/2018

Example 1 on use of PAPI: LLNL Sparse Solver Benchmark AMG

 On the other hand L3 Evictions for 1,2,4 PEs
similarly decrease ‘near-perfect’ but
dramatically increases to 100x at 8PEs and
170x at 16 PEs

 L3 evictions are a good measure of memory
bandwidth limited performance bottleneck at
a node

 General Memory BW limitation Remedies
 Blocking
 Remove false sharing for threaded codes

0 0.25 0.5 0.75 1 1.25

1
2
4
8

16

L3_CACHE_MISSES:ALL

0 50 100 150 200

1

2

4

8

16

L3_EVICTIONS:ALL

Normalized to 1 PE count; Counts are Avg. of PE values

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

of Cores

AMG Intra Node Scaling
AMG Weak

AMG Strong

AMG Ideal

110How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

 Major reasons on-node scaling limitations
 Memory Bandwidth
 Shared L3 Cache

 L3 cache miss for 1,2,4 Pes matches
expectation for strong scaling
 Reduced data per PE
 L3 misses decreasing up to 4 PEs linearly.

11/11/2018

Example 2 on use of PAPI: False Cache-line sharing in OpenMP

! Cache line UnAligned
real*4, dimension(100,100)::c,d
!$OMP PARALLEL DO
do i=1,100

do j=2, 100
c(i,j) = c(i, j-1) + d(i,j)

enddo
enddo
!$OMP END PARALLEL DO

! Cache line Aligned
real*4, dimension(112,100)::c,d
!$OMP DO SCHEDULE(STATIC, 16)
do i=1,100

do j=2, 100
c(i,j) = c(i, j-1) + d(i,j)

enddo
enddo
!$OMP END DO

Run Time L3_EVICTIONS:ALL L3_EVICTIONS:MODIFIED

Aligned 6.5e-03 9 3

UnAligned 2.4e-02 1583 1422

Perf. Penalty 3.7 175 474

Same computation, but careful attention to alignment and independent OMP parallel
cache-line chunks can have big impact; L3_EVICTIONS a good measure;

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 111

11/11/2018

Hands-on Section 5: Architectural Details

 Hardware counter experiments related exercises
 Exercises are in the exercise directory:

 $HOME/exercises/soa_aos
 $HOME/exercises/matrix_multiply
 Supplemental exercises:

• $HOME/exercises/HPCCG-0.5
• $HOME/exercises/HPCCG-0.5_from_snl (no run just view)

 Consult README file in each of the directories for the
instructions/guidance

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 113

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 7
Analysis of I/O

11/11/2018

Need for Understanding I/O
 I/O could be significant percentage of execution time

dependent upon:
 Checkpoint, analysis output, visualization & I/O frequencies
 I/O pattern in the application:

N-to-1, N-to-N; simultaneous writes or requests
 Nature of application:

data intensive, traditional HPC, out-of-core
 File system and Striping: NFS, Lustre, Panasas, and # of Object

Storage Targets (OSTs)
 I/O libraries: MPI-IO, hdf5, PLFS,…
 Other jobs stressing the I/O sub-systems

 Obvious candidates to explore first while tuning:
 Use parallel file system
 Optimize for I/O pattern
 Match checkpoint I/O frequency to MTBI of the system
 Use appropriate libraries

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 115

11/11/2018

I/O Performance Example
 Application: OOCORE benchmark from DOD HPCMO

 Out-of-core SCALAPACK benchmark from UTK
 Can be configured to be disk I/O intensive
 Characterizes a very important class of HPC application involving

the use of Method of Moments (MOM) formulation for
investigating electromagnetics (e.g. Radar Cross Section, Antenna
design)

 Solves dense matrix equations by LU, QR or Cholesky
factorization

 “Benchmarking OOCORE, an Out-of-Core Matrix Solver,” Cable,
S.B., D’Avezedo, E. SCALAPACK Team, University of Tennessee at
Knoxville/U.S. Army Engineering and Development Center

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 116

11/11/2018

Why use this example?
 Used by HPCMO to evaluate I/O system scalability
 Out-of-core dense solver benchmarks demonstrate the

importance of the following in performance analysis:
 I/O overhead minimization
Matrix Multiply kernel – possible to achieve close to

peak performance of the machine if tuned well
 “Blocking” very important to tune for deep memory

hierarchies

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 117

11/11/2018

Use O|SS to measure and tune for I/O
INPUT: testdriver.in
ScaLAPACK out-of-core LU,QR,LL

factorization input file
testdriver.out
6 device out
1 number of factorizations
LU factorization methods -- QR, LU,

or LT
1 number of problem sizes
31000 values of M
31000 values of N
1 values of nrhs
9200000 values of Asize
1 number of MB's and NB's
16 values of MB
16 values of NB
1 number of process grids
4 values of P
4 values of Q

Run on 16 cores on an SNL Quad-Core, Quad-Socket Opteron
IB Cluster

Investigate File system impact with OpenSpeedShop:
Compare Lustre I/O with striping to NFS I/O

run cmd: ossio “srun -N 1-n 16 ./testzdriver-std”
Sample Output from Lustre run:
TIME M N MB NB NRHS P Q Fact/SolveTime Error Residual
---- ------ ------ --- --- ----- ----- --------------- ----------- --------
WALL 31000 31000 16 16 1 4 4 1842.20 1611.59 4.51E+15

1.45E+11
DEPS = 1.110223024625157E-016
sum(xsol_i) = (30999.9999999873,0.000000000000000E+000)
sum |xsol_i - x_i| = (3.332285336962339E-

006,0.000000000000000E+000)
sum |xsol_i - x_i|/M = (1.074930753858819E-

010,0.000000000000000E+000)
sum |xsol_i - x_i|/(M*eps) =

(968211.548505533,0.000000000000000E+000)
From output of two separate runs using Lustre and NFS:

LU Fact time with Lustre= 1842 secs;
LU Fact time with NFS = 2655 secs
813 sec penalty (more than 30%) if you do not use parallel file

system like Lustre!

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 118

11/11/2018

NFS and Lustre O|SS Analysis (screen shot from NFS)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 119

Min t (secs) Max t (secs) Avg t (secs) call Function

1102.380076 1360.727283 1261.310157
__libc_read(/lib64/libpthread-

2.5.so)

31.19218 99.444468 49.01867
__libc_write(/lib64/libpthread-

2.5.so)

Min t (secs) Max t (secs) Avg t (secs) call Function

368.898283 847.919127 508.658604
__libc_read(/lib64/libpthread-

2.5.so)

6.27036 7.896153 6.850897
__libc_write(/lib64/libpthread-

2.5.so)

NFS RUN LUSTRE RUN

I/O to Lustre instead of NFS reduces runtime 25%: (1360 + 99) – (847 + 7) = 605 secs

11/11/2018

Lustre file system striping

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 120

Lustre File System (lfs) commands:

lfs setstripe –s (size bytes; k, M, G) –c (count; -1 all) –I (index; -1 round robin) <file | directory>
Typical defaults: -s 1M -c 4 –i -1 (usually good to try first)
File striping is set upon file creation

lfs getstripe <file | directory>
Example: lfs getstripe --verbose ./oss_lfs_stripe_16 | grep stripe_count

stripe_count: 16 stripe_size: 1048576 stripe_offset: -1

1 PE writes; BW limited 1 file per process; BW enhanced

Co
m

pu
te

HS
 N

et
w

or
k

IO
 n

od
es

O
ST

s

Subset of PEs do I/O; Could be most optimal

11/11/2018

OpenSpeedShop IO-experiment used to identify optimal lfs striping
(from load balance view (max, min & avg) for 16 way parallel run)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 121

0

200

400

600

800

1000

1200

Stripe count=1 Stripe count=4 Stripe count=8 Stripe count=16

W
al

l T
im

e,
 s

ec
s

OOCORE I/O performance
libc_read time from OpenSpeedShop

MAX
MIN
AVG

11/11/2018

Additional I/O analysis with O|SS

Extended I/O Tracing (iot experiment)
 Records each event in chronological order
 Collects Additional Information

• Function Parameters
• Function Return Value

When to use extended I/O tracing?
• When you want to trace the exact order of events
• When you want to see the return values or bytes read or

written.
• When you want to see the parameters of the IO call

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 122

11/11/2018

Beware of Serial I/O in applications: Encountered in VOSS, code LeP:
Simple code here illustrates (acknowledgment: Mike Davis, Cray, Inc.)
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define VARS_PER_CELL 15

/ * Write a single restart file from many MPI processes */
int write_restart (
MPI_Comm comm /// MPI communicator
, int num_cells /// number of cells on this process
, double *cellv) /// cell vector

{
int rank; // rank of this process within comm
int size; // size of comm
int tag; // for MPI_Send, MPI_Recv
int baton; // for serializing I/O
FILE *f; // file handle for restart file
/ * Procedure: Get MPI parameters */
MPI_Comm_rank (comm, &rank);
MPI_Comm_size (comm, &size);
tag = 4747;

if (rank == 0) {

/* Rank 0 create a fresh restart file,
* and start the serial I/O;
* write cell data, then pass the baton to rank 1 */

f = fopen ("restart.dat", "wb");
fwrite (cellv, num_cells, VARS_PER_CELL * sizeof (double), f);
fclose (f);
MPI_Send (&baton, 1, MPI_INT, 1, tag, comm);

} else {

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 123

/* Ranks 1 and higher wait for previous rank to complete I/O,
* then append its cell data to the restart file,
* then pass the baton to the next rank */

MPI_Recv (&baton, 1, MPI_INT, rank - 1, tag, comm, MPI_STATUS_IGNORE);
f = fopen ("restart.dat", "ab");
fwrite (cellv, num_cells, VARS_PER_CELL * sizeof (double), f);
fclose (f);
if (rank < size - 1) {

MPI_Send (&baton, 1, MPI_INT, rank + 1, tag, comm);
}

}
/* All ranks have posted to the restart file; return to called */

return 0;
}

int main (int argc, char *argv[]) {
MPI_Comm comm;
int comm_rank;
int comm_size;
int num_cells;
double *cellv;
int i;
MPI_Init (&argc, &argv);
MPI_Comm_dup (MPI_COMM_WORLD, &comm);
MPI_Comm_rank (comm, &comm_rank);
MPI_Comm_size (comm, &comm_size);
/**
* Make the cells be distributed somewhat evenly across ranks
*/
num_cells = 5000000 + 2000 * (comm_size / 2 - comm_rank);
cellv = (double *) malloc (num_cells * VARS_PER_CELL * sizeof (double));
for (i = 0; i < num_cells * VARS_PER_CELL; i++) {

cellv[i] = comm_rank;
}
write_restart (comm, num_cells, cellv);
MPI_Finalize ();

return 0;
}

11/11/2018

IOT O|SS Experiment of Serial I/O Example

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 124

SHOWS EVENT BY
EVENT LIST:
Clicking on this
gives each call to a
I/O function being
traced as shown.

Below is a
graphical trace
view of the same
data showing
serialization of
fwrite() (THE RED
BARS for each PE)
with another tool.

11/11/2018

Running I/O Experiments
Offline io/iop/iot experiment on sweep3d application
Convenience script basic syntax:
ossio[p][t] “executable” [default | <list of I/O func>]

 Parameters
• I/O Function list to sample(default is all)
• creat, creat64, dup, dup2, lseek, lseek64, open, open64,

pipe, pread, pread64, pwrite, pwrite64, read, readv,
write, writev

Examples:
ossio “mpirun –np 256 sweep3d.mpi”
ossiop “mpirun –np 256 sweep3d.mpi” read,readv,write
ossiot “mpirun –np 256 sweep3d.mpi” read,readv,write

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 125

11/11/2018

I/O output via GUI

126

 I/O Default View for IOR application “io” experiment

Shows the aggregated time
spent in the I/O functions

traced during the application.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

I/O output via GUI

127

 I/O Call Path View for IOR application “io” experiment

Shows the call paths to the
I/O functions traced and the
time spent along the paths.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

I/O output via CLI (equivalent of HC in GUI)
openss>>expview -vcalltrees,fullstack iot1

I/O Call Time(ms) % of Total Time Number of Calls Call Stack Function (defining location)

_start (sweep3d.mpi)

> @ 470 in __libc_start_main (libmonitor.so.0.0.0: main.c,450)

>>__libc_start_main (libc-2.10.2.so)

>>> @ 428 in monitor_main (libmonitor.so.0.0.0: main.c,412)

>>>>main (sweep3d.mpi)

>>>>> @ 58 in MAIN__ (sweep3d.mpi: driver.f,1)

>>>>>> @ 25 in task_init_ (sweep3d.mpi: mpi_stuff.f,1)

>>>>>>>_gfortran_ftell_i2_sub (libgfortran.so.3.0.0)

>>>>>>>>_gfortran_ftell_i2_sub (libgfortran.so.3.0.0)

….

>>>>>>>>>>>>>_gfortran_st_read (libgfortran.so.3.0.0)

17.902981000 96.220812461 1 >>>>>>>>>>>>>>__libc_read (libpthread-2.10.2.so)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 128

11/11/2018

Section Summary - I/O Tradeoffs
 Avoid writing to one file from all MPI tasks

 If you need to, be sure to distinguish offsets for each PE at a stripe boundary,
and use Buffered I/O

 If each process writes its own file, then the parallel file system
attempts to load balance the Object Storage Targets (OSTs), taking
advantage of the stripe characteristics

 Metadata server overhead can often create severe I/O problems
 Minimize number of files accessed per PE and minimize each PE doing

operations like seek, open, close, stat that involve inode information

 I/O time is usually not measured, even in applications that keep
some function profile
 Open|SpeedShop can shed light on time spent in I/O using io, iot

experiments

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 129

11/11/2018

Hands-on Section 6: I/O Performance

 I/O experiments related application exercise
 Exercises are in the exercise directory:

 $HOME/exercises/IOR
 $HOME/exercises/ser_par_io

 Consult README file in each of the directories for the
instructions/guidance

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 130

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 8
Analysis of Memory Usage

11/11/2018

Memory Hierarchy

Memory Hierarchy
 CPU registers and cache
 System RAM
 Online memory, such as disks, etc.
 Offline memory not physically connected to system
 https://en.wikipedia.org/wiki/Memory_hierarchy

What do we mean by memory?
Memory an application requires from the system RAM
Memory allocated on the heap by system calls, such as

malloc and friends

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 132

https://en.wikipedia.org/wiki/Memory_hierarchy

11/11/2018

Need for Understanding Memory Usage

Memory Leaks
 Is the application releasing memory back to the

system?
Memory Footprint
 How much memory is the application using?
 Finding the High Water Mark (HWM) of memory

allocated
 Out Of Memory (OOM) potential
 Swap and paging issues

Memory allocation patterns
Memory allocations longer than expected
 Allocations that consume large amounts of heap space
 Short lived allocations

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 133

11/11/2018

Example Memory Heap Analysis Tools

MemP is a parallel heap profiling library
 Requires mpi
 http://sourceforge.net/projects/memp

ValGrind provides two heap profilers.
 Massif is a heap profiler

• http://valgrind.org/docs/manual/ms-manual.html
 DHAT is a dynamic heap analysis tool

• http://valgrind.org/docs/manual/dh-manual.html

Dmalloc - Debug Malloc Library
 http://dmalloc.com/

Google PerfTools heap analysis and leak
detection.
 https://github.com/gperftools/gperftools

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 134

http://sourceforge.net/projects/memp
http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/dh-manual.html
http://dmalloc.com/
https://github.com/gperftools/gperftools

11/11/2018

O|SS Memory Experiment
 Supports sequential, mpi and threaded applications.

 No instrumentation needed in application.
 Traces system calls via wrappers

• malloc
• calloc
• realloc
• free
• memalign and posix_memalign

 Provides metrics for
 Timeline of events that set an new high-water mark.
 List of event allocations (with calling context) to leaks.
 Overview of all unique callpaths to traced memory calls that provides

max and min allocation and count of calls on this path.

 Example Usage
 ossmem "./lulesh2.0”
 ossmem "srun -N4 -n 64 ./sweep3d.mpi"

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 135

11/11/2018

O|SS Memory Experiment CLI commands
 expview -vunique

 Show times, call counts per path, min,max bytes allocation, total
allocation to all unique paths to memory calls that the mem collector
saw

 expview -vleaked
 Show function view of allocations that were not released while the

mem collector was active
 expview -vtrace,leaked

 Will show a timeline of any allocation calls that were not released
 expview -vfullstack,leaked

 Display a full callpath to each unique leaked allocation
 expview -v trace,highwater

 Is a timeline of mem calls that set a new high-water
 The last entry is the allocation call that the set the high-water for the

complete run
 Investigate the last calls in the timeline and look at allocations that

have the largest allocation size (size1,size2,etc) if your application is
consuming lots of system ram

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 136

11/11/2018

O|SS Memory Experiment
 Shows the last 8 allocation events that set the high

water mark
openss>>expview -vtrace,highwater

Start Time(d:h:m:s) Event Size Size Ptr Return Value New Call Stack Function (defining location)
Ids Arg1 Arg2 Arg Highwater

*** trimmed all but the last 8 events of 61 ****
2016/11/10 09:56:50.824 11877:0 2080 0 0x7760e0 19758988 >>>>>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.826 11877:0 1728000 0 0x11783d0 21484908 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.827 11877:0 1728000 0 0x131e1e0 23212908 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.827 11877:0 1728000 0 0x14c3ff0 24940908 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.827 11877:0 2080 0 0x776a90 24942988 >>>>>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.919 11877:0 1728000 0 0x1654030 25286604 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.919 11877:0 1728000 0 0x17f9e40 27014604 >>>>__GI___libc_malloc (libc-
2.18.so)
2016/11/10 09:56:50.919 11877:0 2080 0 0xabc6a0 27016684 >>>>>>>__GI___libc_malloc (libc-
2.18.so)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 137

11/11/2018

O|SS Memory Experiment
 The next slide shows the default view of all unique memory calls

seen while the mem collector was active. This is an overview of
the memory activity. The default is display is aggregated across all
processes and threads. Can view specific processes or threads.

 For all memory calls the following are displayed:
 The exclusive time and percent of exclusive time
 The number of times this memory function was called.
 The traced memory function name.

 For allocation calls (e.g. malloc) the follow:
 The max and min allocation size seen.
 The number of times the that max or min was seen are

displayed.
 The total allocation size of all allocations.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 138

11/11/2018

O|SS Memory Experiment (Unique Calls)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 139

openss>>expview -vunique

Exclusive % of Number Min Min Max Max Total Function (defining location)
(ms) Total of Request Requested Request Requested Bytes

Time Calls Count Bytes Count Bytes Requested

0.024847 89.028629 1546 1 192 6 4096 6316416 __GI___libc_malloc (libc-2.18.so)
0.002371 8.495467 5 __GI___libc_free (libc-2.18.so)
0.000369 1.322154 1 1 40 1 40 40 __realloc (libc-2.18.so)
0.000322 1.153750 3 1 368 1 368 1104 __calloc (libc-2.18.so)

NOTE: Number of Calls means the number of unique paths to the memory function call.
To see the paths use the CLI command: expview –vunique,fullstack

11/11/2018

O|SS Memory Experiment (Leaked Calls)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 140

openss>>exprestore -f lulesh-mem-initial.openss
openss>>exprestore -f lulesh-mem-improved.openss
openss>>expcompare -vleaked -mtot_bytes -mcalls -x1 -x2

-x 1, -x 1, -x 2, -x 2, Function (defining location)
Total Number Total Number
Bytes of Bytes of

Requested Calls Requested Calls
10599396 69 3332 8 __GI___libc_malloc (libc-2.17.so)

72 1 72 1 __realloc (libc-2.17.so)

In this example the sequential OpenMP version of lulesh was run under ossmem.
The initial run detected 69 potential leaks of memory.
Examining the calltrees using the cli command "expview -vfullstack,leaked -mtot_bytes"
revealed that allocations from the Domain::Domain constructor where not later released in the
Domain::~Domain destructor. After adding appropriate delete's in the
destructor and rerunning ossmem, we observed a resolution of the leaks detected
in the Domain class. The remaining leaks where minor and from system libraries.

Using the exprestore command to load in the initial database and the database
from the second run, we can use the expcompare cli command to see the improvements.
Below, database -x1 shows the initial run and -x2 shows the results
from the run with the changes to address the leaks detected in the Domain class.

11/11/2018

Summary and Conclusions

Benefits of Memory Heap Analysis
Detect leaks
 Inefficient use of system memory
 Find potential OOM, paging, swapping conditions
Determine memory footprint over lifetime of

application run

Observations of Memory Analysis Tools
 Less concerned with the time spent in memory calls
 Emphasis is placed on the relationship of allocation

calls to free calls.
 Can slow down and impact application while running

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 141

11/11/2018

Hands-on Section 7: Memory Analysis

 Memory experiment related application exercise
 More information provided at the tutorial

 Exercises are in the exercise directory in
 $HOME/exercises/matmul
 $HOME/exercises/lulesh2.0.3
 $HOME/exercises/lulesh2.0.3-fixed

 Look for the README file for instructions.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 142

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 9
Analysis of heterogeneous codes

11/11/2018

Emergence of HPC Heterogeneous Processing

 Heterogeneous computing refers to systems that use
more than one kind of processor.

 What led to increased heterogeneous processing in HPC?
 Limits on ability to continue to scale processor frequencies
 Power consumption hitting realistic upper bound
 Programmability advances lead to more wide-spread, general

usage of graphics processing unit (GPU).
 Advances in manycore, multi-core hardware technology (MIC)

 Heterogeneous accelerator processing: (GPU, MIC)
 Data level parallelism (GPU)

• Vector units, SIMD execution
• Single instruction operates on multiple data items

 Thread level parallelism (MIC)
• Multithreading, multi-core, manycore

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 144

11/11/2018

Overview: Most Notable Hardware Accelerators

GPU (Graphics Processing Unit)
 General-purpose computing on graphics processing units

(GPGPU)
 Solve problems of type: Single-instruction, multiple thread

(SIMT) model
 Vectors of data where each element of the vector can be

treated independently
 Offload model – where data is transferred into/out-of the GPU
 Program using CUDA/OpenCL language or use directive based

OpenACC

 Intel MIC (Many Integrated Cores)
 Has a less specialized architecture than a GPU
 Can execute parallel code written for:

• Traditional programming models including POSIX threads, OpenMP
 Initially offload based (transfer data to and from co-processor)
 Now/future: programs to run natively

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 145

11/11/2018

GPGPU Accelerator
GPU versus CPU comparison
 Different goals produce different designs

 GPU assumes work load is highly parallel
 CPU must be good at everything, parallel or not

 CPU: minimize latency experienced by 1 thread
 Big on-chip caches
 Sophisticated control logic

 GPU: maximize throughput of all threads
 # threads in flight limited by resources => lots of resources

(registers, bandwidth, etc.)
 Multi-threading can hide latency => skip the big caches
 Shared control logic across many threads

*based on NVIDIA presentation

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 146

11/11/2018

GPGPU Accelerator
Mixing GPU and CPU usage in applications

Data must be transferred to/from the CPU to the GPU in order
for the GPU to operate on it and return the new values.
*NVIDIA image

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 147

Multicore CPU Manycore GPU

11/11/2018

Heterogeneous Programming
 There are four main ways to use an accelerator

 Explicit programming:
• The programmer writes explicit instructions for the accelerator device to

execute as well as instructions for transferring data to and from the
device (e.g. CUDA-C for GPUs or OpenMP+Cilk Plus for Phis). This method
requires to most effort and knowledge from programmers because
algorithms must be ported and optimized on the accelerator device.

 Accelerator-specific pragmas/directives:
• Accelerator code is automatically generated from your serial code by a

compiler (e.g. OpenACC, OpenMP 4.0). For many applications, adding a
few lines of code (pragmas/directives) can result in good performance
gains on the accelerator.

 Accelerator-enabled libraries:
• Only requires the use of the library, no explicit accelerator programming

is necessary once the library has been written. The programmer effort is
similar to using a non-accelerator enabled scientific library.

 Accelerator-aware applications:
• These software packages have been programed by other

scientists/engineers/software developers to use accelerators and may
require little or no programming for the end-user.

Credit: http://www.hpc.mcgill.ca/index.php/starthere/81-doc-pages/255-accelerator-overview

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 148

11/11/2018

Programming for GPGPU
Prominent models for programming the GPGPU
Augment current languages to access GPU strengths
 NVIDIA CUDA

 Scalable parallel programming model
 Extensions to familiar C/C++ environment
 Heterogeneous serial-parallel computing
 Supports NVIDIA only

 OpenCL (Open Computing Language)
 Open source, royalty-free
 Portable, can run on different types of devices
 Runs on AMD, Intel, and NVIDIA

 OpenACC
 Provides directives (hint commands inserted into source)
 Directives tell the compiler where to create acceleration (GPU) code

without the user modifying or adapting the code.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 149

11/11/2018

Optimal Heterogeneous Execution
GPGPU considerations for best performance?
 How is the parallel scaling for the application overall?

 Can you balance the GPU and CPU workload?
 Keep both the GPU and CPU busy for best performance

 Is it profitable to send a piece of work to the GPU?
 What is the cost of the transfer of data to and from the GPU?

 How much work is there to be done inside the GPU?
 Will the work to be done fully populate and keep the GPU processors busy
 Are there opportunities to chain together operations so the data can stay in the

GPU for multiple operations?

 Is there a vectorization opportunity?

Intel MIC considerations for best performance?
 Program should be heavily threaded

 Parallel scaling should be high with an OpenMP version

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 150

11/11/2018

Accelerator Performance Monitoring
How can performance tools help optimize code?
 Is profitable to send a piece of work to the GPU?

 Can tell you this by measuring the costs:
• Transferring data to and from the GPU
• How much time is spent in the GPU versus the CPU

 Is there a vectorization opportunity?
 Could measure the mathematical operations versus the vector

operations occurring in the application
 Experiment with compiler optimization levels, re-measure operations

and compare

 How is the parallel scaling for the application overall?
 Use performance tool to get idea of real performance versus expected

parallel speed-up

 Provide OpenMP programming model to source code insights
 Use OpenMP performance analysis to map performance issues to

source code

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 151

11/11/2018

Open|SpeedShop accelerator support
What performance info does Open|SpeedShop provide?
 For GPGPU it reports information to help understand:

 Time spent in the GPU device
 Cost and size of data transferred to/from the GPU
 Balance of CPU versus GPU utilization
 Transfer of data between the host and device memory versus the execution

of computational kernels
 Performance of the internal computational kernel code running on the GPU

device

 Open|SpeedShop is able to monitor CUDA scientific libraries
because it operates on application binaries.

 Support for CUDA based applications is provided by tracing actual
CUDA events

 OpenACC support is conditional on the CUDA RT.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 152

11/11/2018

Open|SpeedShop accelerator support
What performance info does Open|SpeedShop provide?
 For Intel MIC (non-offload model):

 Reports the same range of performance information that it
does for CPU based applications

 Open|SpeedShop will operate on MIC (co-processor KNC)
similar to targeted platforms where the compute node
processer is different than the front-end node processor

 Only non-offload support is in our current plans
 A specific OpenMP profiling experiment (omptp) has been

developed. Initial version is available now.
• Will help to better support analysis of MIC based applications
• OpenMP performance analysis key to understanding performance

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 153

11/11/2018

CUDA GUI View: Default CUDA view

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 154

Note: The left pane shows the executable and the nodes it ran on. In future, will effect views.
Internal GPU activity is shown in thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions
Source panel displays source for metrics clicked on in the Metric pane.

11/11/2018

CUDA GUI View: All Events Trace

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 155

Note: The chronological list of data transfers and kernel executions in bottom pane.
Duration of kernel execution and data transfer available.
Internal GPU activity is shown thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions

11/11/2018

CUDA GUI View: Kernel Trace

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 156

Note: The chronological list of kernel executions with details is in bottom pane.
Internal GPU activity is shown in thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions

11/11/2018

CUDA GUI View: Transfers Trace

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 157

Note: The chronological list of data transfers with details is in bottom pane.
Internal GPU activity is shown in thread t1 (GPU) graphic (shaded area)
Red lines indicate data transfers, Green lines indication GPU kernel executions

11/11/2018

CUDA GUI View: Timeline Zoom

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 158

Note: Here is a zoomed in view of the data transfer and kernel execution timeline
Red lines indicate data transfers, Green lines indication GPU kernel executions
The metric view is dependent on what is active in the timeline view.

11/11/2018

Open|SpeedShop CUDA CLI Views
openss>>expview [-vExec]

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count

Exclusive
Time

14.810702 52.042113 300 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
13.648369 47.957887 300 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

openss>>expview -vXfer

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count

Exclusive
Time

1.774178 75.232917 69 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
0.584069 24.767083 69 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

openss>>expview -v trace, Xfer

Start Time (d:h:m:s) Exclusive % of Size Kind Call Stack Function (defining location)
Time (ms) Total

Exclusive
Time

2016/08/24 10:01:03.845 0.001217 0.051606 112 HostToDevice >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.850 0.027392 1.161541 262144 HostToDevice >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.850 0.027553 1.168368 262144 HostToDevice >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.001217 0.051606 112 HostToDevice >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.027425 1.162940 262144 DeviceToHost >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.852 0.026721 1.133087 262144 DeviceToHost >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.852 0.026753 1.134444 262144 DeviceToHost >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

……

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 159

11/11/2018

Open|SpeedShop CUDA CLI Views
openss>>expview -v trace,Exec

Start Time (d:h:m:s) Exclusive % of Grid Block Call Stack Function (defining location)
Time (ms) Total Dims

Exclusive
Time

2016/08/24 10:01:03.851 0.055585 0.195316 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.048705 0.171141 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.049761 0.174851 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.051617 0.181373 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.051648 0.181482 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.050817 0.178562 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.046496 0.163378 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.851 0.048193 0.169341 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
2016/08/24 10:01:03.852 0.049633 0.174401 4,4,1 16,16,1 >>void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

….

openss>>expview -vcalltrees,fullstack

Exclusive % of Exclusive Call Stack Function (defining location)
Time (ms) Total Count

Exclusive
Time

main (GEMM: main.cpp,135)
> @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)

11.818358 41.527561 240 >> @ 240 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
main (GEMM: main.cpp,135)

> @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)
10.894840 38.282486 240 >> @ 240 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

main (GEMM: main.cpp,135)
> @ 130 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)

2.992344 10.514553 60 >> @ 231 in void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
main (GEMM: main.cpp,135)
> @ 137 in RunBenchmark(ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,122)

2.753529 9.675400 60 >> @ 231 in void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 160

11/11/2018

Open|SpeedShop CUDA CLI Views

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 161

pfe27-433>openss -cli -f GEMM-cuda-4.openss
openss>>[openss]: The restored experiment identifier is: -x 1
openss>>expview

Exclusive % of Exclusive Function (defining location)
Time (ms) Total Count

Exclusive
Time

14.810702 52.042113 300 void RunTest<float>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)
13.648369 47.957887 300 void RunTest<double>(std::string, ResultDatabase&, OptionParser&) (GEMM: GEMM.cpp,19)

openss>>expview -vhwpc
Time CPU All GPU All |<-------------CPU-- ----------|---GPU---------------------->|
(ms)

0 15868757 0 | ***| |
11 5336880 0 | *| |
22 5205442 0 | *| |
33 5410977 0 | *| |
44 3780335 0 | | |
55 2794120 0 | | |
66 5031483 0 | *| |
77 3289826 0 | | |
88 2243716 0 | | |
99 1628496 0 | | |

110 670313 0 | | |
121 105549 0 | | |
132 125052 0 | | |
143 134162 0 | | |
154 143953 0 | | |
165 146363 0 | | |
176 155874 0 | | |
187 182306 0 | | |
198 194074 0 | | |
209 176671 0 | | |
220 196696 0 | | |
231 196431 0 | | |
242 203576 0 | | |
253 730303 0 | | |
264 4937670 0 | *| |
275 24977312 0 | ******| |
286 53366059 0 | ************| |
297 75579534 0 | ******************| |
308 79920340 0 | *******************| |
319 76604975 0 | ******************| |
330 77356196 0 | ******************| |
341 78801255 0 | *******************| |
352 68318322 0 | ****************| |
363 66937166 0 | ****************| |
374 69401858 0 | ****************| |
385 73239976 0 | *****************| |
396 71365211 544298 | *****************| |
407 70238071 3554730 | ****************|***** |
418 70172897 10504920 | ****************|***************** |
429 82853194 11857290 |********************|********************|
440 68740879 5299162 | ****************|******** |
451 20665073 0 | ****| |

242 203576 0 | | |
253 730303 0 | | |
264 4937670 0 | *| |
275 24977312 0 | ******| |
286 53366059 0 | ************| |
297 75579534 0 | ******************| |
308 79920340 0 | *******************| |
319 76604975 0 | ******************| |
330 77356196 0 | ******************| |
341 78801255 0 | *******************| |
352 68318322 0 | ****************| |
363 66937166 0 | ****************| |
374 69401858 0 | ****************| |
385 73239976 0 | *****************| |
396 71365211 544298 | *****************| |
407 70238071 3554730 | ****************|***** |
418 70172897 10504920 | ****************|***************** |
429 82853194 11857290 | ********************|********************|
440 68740879 5299162 | ****************|******** |
451 20665073 0 | ****| |

11/11/2018

Hands-on Section 8: GPU Performance

 GPU related application exercises
 Exercises are in the exercise directory in

 $HOME/exercises/cuda/matrixMul
 $HOME/exercises/cuda/shoc/bindir/bin/EP/CUDA

 Consult README for exercise instructions/guidance
 Run matrixMul exercise
 Run shoc benchmarks: GEMM and FFT

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 162

11/11/2018

SC2018 Tutorial
How to Analyze the Performance of Parallel Codes 101

A case study with Open|SpeedShop

Section 10
DIY & Conclusions

11/11/2018

O|SS Booth and Tutorial Survey Reminder

 OpenSpeedShop booth: 2840
 On-demand Demos, discussion, new GUI feedback, etc.

 Reminder: Tutorial surveys are entirely electronic this
year

 QR code:
https://submissions.supercomputing.org/eval.png

 Evaluation site URL: http://bit.ly/SC18-eval

 Thanks for attending our tutorial!

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 164

https://submissions.supercomputing.org/eval.png
http://bit.ly/sc17-eval

11/11/2018

How to Take This Experience Home?
 General questions should apply to ...

 … all systems
 … all applications

 Prerequisite
 Know what to expect from your application
 Know the basic architecture of your system

 Ask the right questions
 Start with simple overview questions
 Dig deeper after that

 Pick the right tool for the task
 May need more than one tool
 Will depend on the question you are asking
 May depend on what is supported on your system

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 165

11/11/2018

If You Want to Give O|SS a Try?
 Available on the these system architectures

 AMD x86-64
 Intel x86, x86-64, MIC/Phi
 IBM PowerPC, PowerPC64. Power8
 ARM: AArch64/A64 and AArch32/A32

 Work with these operating system
 Tested on Many Popular Linux Distributions

• SLES, SUSE
• RHEL, Fedora, CentOS
• Debian, Ubuntu

 Tested on some large scale platforms
 IBM Blue Gene and Cray
 GPU and Intel Phi support available
 Available on many DOE/DOD systems in shared locations
 Ask your system administrator

166How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18

11/11/2018

How to Install Open|SpeedShop?
 Most tools are complex pieces of software

 Low-level, platform specific pieces
 Complex dependencies
 Need for multiple versions, e.g., based on MPIs and compilers
 Open|SpeedShop is no exception

• In many cases even harder because of its transparency

 Installation support
 Traditional installation mechanism

• Three parts of the installation
– Krell Root – base packages
– CBTF – Component based tool framework
– O|SS client itself

• Install script
 Support for “spack” now available

• https://github.com/spack/spack

 When in doubt, don’t hesitate, ask us:
 oss-contact@openspeedshop.org

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 167

https://github.com/spack/spack
mailto:oss-questions@openspeedshop.org

11/11/2018

Availability and Contact
Current version: 2.4.0 has been released
Open|SpeedShop Website
 https://www.openspeedshop.org/

Open|SpeedShop help and bug reporting
 Direct email: oss-contact@openspeedshop.org
 Forum/Group: oss-questions@openspeedshop.org

Feedback
 Bug tracking available from website
 Feel free to contact presenters directly

Support contracts and onsite training available
We are working with users to develop a support

contract process through the Trenza Synergy Center.
 Stop at booth 2840 to discuss options, if interested.

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 168

http://www.openspeedshop.org/
mailto:oss-contact@openspeedshop.org
mailto:oss-questions@openspeedshop.org

11/11/2018

Getting Open|SpeedShop
Download options:
 Package with install script (install-tool)
 Source for tool and base libraries

Project Wiki:
 https://github.com/OpenSpeedShop/openspeedshop/wiki

Repositories access
 https://github.com/OpenSpeedShop

Release Information
 Release Tarball and Packages are accessible from

www.openspeedshop.org

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 169

https://github.com/OpenSpeedShop/openspeedshop/wiki
https://github.com/OpenSpeedShop
http://www.openspeedshop.org/

11/11/2018

Open|SpeedShop Documentation
Build and Installation Instructions
 https://www.openspeedshop.org/documentation

• Look for: Open|SpeedShop Version 2.4 Build/Install Guide

Open|SpeedShop User Guide Documentation
 https://www.openspeedshop.org/documentation

• Look for Open|SpeedShop Version 2.4 Users Guide

Man pages: OpenSpeedShop, osspcsamp, ossmpi,
…

Quick start guide downloadable from web site
 https://www.openspeedshop.org
 Click on “Download Quick Start Guide” button

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 170

http://www.openspeedshop.org/documentation
https://www.openspeedshop.org/documentation
http://www.openspeedshop.org

11/11/2018

Tutorial Summary
 Performance analysis critical on modern systems

 Complex architectures vs. complex applications
 Need to break black box behavior at multiple levels
 Lots of performance left on the table by default

 Performance tools can help
 Open|SpeedShop as one comprehensive option
 Scalability of tools is important

• Performance problems often appear only at scale
• We will see more and more online aggregation approaches
• CBTF as one generic framework to implement such tools

 Critical:
 Asking the right questions
 Comparing answers with good baselines or intuition
 Starting at a high level and iteratively digging deeper

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 171

11/11/2018

Questions vs. Experiments
 Where do I spend my time?

 Flat profiles (pcsamp)
 Getting inclusive/exclusive timings with callstacks (usertime)
 Identifying hot callpaths (usertime + HP analysis)

 How do I analyze cache performance?
 Measure memory performance using hardware counters (hwc)
 Compare to flat profiles (custom comparison)
 Compare multiple hardware counters (N x hwc, hwcsamp)

 How to identify I/O problems?
 Study time spent in I/O routines (io)
 Compare runs under different scenarios (custom comparisons)

 How do I find parallel inefficiencies?
 Study time spent in MPI routines (mpi)
 Look for load imbalance (LB view) and outliers (CA view)

How to Analyze the Performance of Parallel Codes 101 - A Tutorial at SC'18 172

	Slide Number 1
	Why This Tutorial?
	Tutorial Goals
	Open|SpeedShop Tool Set
	“Plan”/“Rules”
	Presenters
	Outline
	Tutorial Survey
	Section 1�Concepts in Performance Analysis
	Typical Development Cycle
	A Case for Performance Tools
	Performance Tools Overview
	How to Select a Tool?
	Next Step: Interpret Data
	Issue 1: Tool Types
	Issue 2: Asking the Right Questions
	What to Look For: Sequential Runs
	What to Look For: Shared Memory
	What to Look For: Message Passing
	What’s Next
	Section 2�Emerging Performance Analysis models
	Emerging Performance Monitoring
	Slide Number 23
	 High-level versus In-depth perf. tools
	Lightweight and Monitoring Tool efforts
	Value of High-level Performance Analysis
	Value of High-level Performance Analysis
	High-level Performance Analysis: O|SS
	High level Performance Analysis: O|SS
	High-level Performance Analysis: O|SS
	Section 3�Introduction into Tools and Open|SpeedShop
	Open|SpeedShop Tool Set
	Classifying Open|SpeedShop
	
	
	Alternative Interfaces
	Central Concept: Experiments
	Sampling Experiments in O|SS
	Tracing Experiments in O|SS
	Tracing Experiments in O|SS
	Additional Experiments in OSS/CBTF
	Performance Analysis in Parallel
	How to Run a First Experiment in O|SS?
	Example Run with Output
	Example Run with Output
	Default Output Report View
	Statement Report Output View
	Associate Source & Performance Data
	Library (LinkedObject) View
	Loop View
	Open|SpeedShop Basics
	Hands-on Section 2: Basic Sampling Experiments
	Section 4�Basic timing experiments and their Pros/Cons
	Identifying Critical Regions
	Adding Context through Stack Traces
	Inclusive vs. Exclusive Timing
	Call path profiling & Comparisons
	Interpreting Call Context Data
	Inclusive and Exclusive Time Profiles: Usertime
	Reading Inclusive/Exclusive Timings
	Stack Trace Views: Hot Call Path
	Stack Trace Views: Butterfly View
	Comparing Performance Data
	Comparing Performance Data in O|SS
	Comparison Report in O|SS
	Summary / Timing analysis
	Hands-on Section 3: Basic Sampling Experiments
	Section 5�Analysis of parallel codes:�MPI, OpenMP, POSIX threads
	 Parallel Application Performance Challenges
	 Parallel Execution Goals
	Parallel Execution Goals
	Parallel Application Analysis Techniques
	pcsamp Default View: NPB: LU
	Load Balance View: NPB: LU
	Default Linked Object View: NPB: LU
	Parallel Execution Analysis Techniques
	Hot Call Paths View (CLI): NPB: LU
	Identifying Load Imbalance With O|SS
	Link. Obj. Load Balance: Using NPB: LU
	Using Cluster Analysis in O|SS
	Link. Obj. Cluster Analysis: NPB: LU
	MPI/OpenMP Specific Experiments
	MPI Tracing Results: Default View
	Using OMPTP experiment in O|SS
	Using OMPTP experiment in O|SS
	Using OMPTP experiment in O|SS
	Summary / Parallel Bottlenecks
	Hands-on Section 4: Going Parallel - MPI
	Hands-on Section 4: Going Parallel - threading
	Section 6�Advanced analysis: Hardware Counter Experiments
	Identify architectural impact on code inefficiencies
	Good Primary Focus: Efficient movement of data
	Another important focus: Efficient Vectorization
	Hardware Performance Counters
	The O|SS HWC Experiments
	Examples of Typical Counters (Xeon E5-2670)
	Suggestions to Manage Complexity
	How to use OSS HWCsamp experiment
	Selecting the Counters & Sampling Rate
	Useful Metric-Ratio 1: IPC
	BLAS Operations Illustrate impact of moving data �A, B, C = nxn Matrices; x,y = nx1 Vectors; k = Scaler�
	Useful Metric-Ratio 2: FloatOps/Cycle
	For Intel Haswell FloatOps not available: Use IPC or CPI
	hwcsamp with miniFE (see mantevo.org)
	Viewing hwcsamp Data in CLI
	Viewing Data in CLI
	Deeper Analysis with HWC and HWCtime
	Viewing hwc Data
	Viewing hwctime Data
	Example 1 on use of PAPI: LLNL Sparse Solver Benchmark AMG
	Example 2 on use of PAPI: False Cache-line sharing in OpenMP
	Hands-on Section 5: Architectural Details
	Section 7�Analysis of I/O
	Need for Understanding I/O
	I/O Performance Example
	Why use this example?
	Use O|SS to measure and tune for I/O
	NFS and Lustre O|SS Analysis (screen shot from NFS)
	Lustre file system striping
	OpenSpeedShop IO-experiment used to identify optimal lfs striping �(from load balance view (max, min & avg) for 16 way parallel run)
	Additional I/O analysis with O|SS
	Beware of Serial I/O in applications: Encountered in VOSS, code LeP: �Simple code here illustrates (acknowledgment: Mike Davis, Cray, Inc.)
	IOT O|SS Experiment of Serial I/O Example
	Running I/O Experiments
	I/O output via GUI
	I/O output via GUI
	I/O output via CLI (equivalent of HC in GUI)
	Section Summary - I/O Tradeoffs
	Hands-on Section 6: I/O Performance
	Section 8�Analysis of Memory Usage
	 Memory Hierarchy
	 Need for Understanding Memory Usage
	 Example Memory Heap Analysis Tools
	O|SS Memory Experiment
	O|SS Memory Experiment CLI commands
	O|SS Memory Experiment
	O|SS Memory Experiment
	O|SS Memory Experiment (Unique Calls)
	O|SS Memory Experiment (Leaked Calls)
	 Summary and Conclusions
	Hands-on Section 7: Memory Analysis
	Section 9�Analysis of heterogeneous codes
	 Emergence of HPC Heterogeneous Processing
	Overview: Most Notable Hardware Accelerators
	GPGPU Accelerator
	GPGPU Accelerator
	 Heterogeneous Programming
	Programming for GPGPU
	Optimal Heterogeneous Execution
	Accelerator Performance Monitoring
	Open|SpeedShop accelerator support
	Open|SpeedShop accelerator support
	CUDA GUI View: Default CUDA view
	CUDA GUI View: All Events Trace
	CUDA GUI View: Kernel Trace
	CUDA GUI View: Transfers Trace
	CUDA GUI View: Timeline Zoom
	Open|SpeedShop CUDA CLI Views
	Open|SpeedShop CUDA CLI Views
	Open|SpeedShop CUDA CLI Views
	Hands-on Section 8: GPU Performance
	Section 10�DIY & Conclusions
	O|SS Booth and Tutorial Survey Reminder
	How to Take This Experience Home?
	If You Want to Give O|SS a Try?
	How to Install Open|SpeedShop?
	Availability and Contact
	Getting Open|SpeedShop
	Open|SpeedShop Documentation
	Tutorial Summary
	Questions vs. Experiments

